Exploring Multiple Aspects of Taxonomic and Functional Diversity in Microphytobenthic Communities : Effects of Environmental Gradients and Temporal Changes

Show full item record



Permalink

http://hdl.handle.net/10138/331644

Citation

Teittinen , A & Virta , L 2021 , ' Exploring Multiple Aspects of Taxonomic and Functional Diversity in Microphytobenthic Communities : Effects of Environmental Gradients and Temporal Changes ' , Frontiers in Microbiology , vol. 12 , 668993 . https://doi.org/10.3389/fmicb.2021.668993

Title: Exploring Multiple Aspects of Taxonomic and Functional Diversity in Microphytobenthic Communities : Effects of Environmental Gradients and Temporal Changes
Author: Teittinen, Anette; Virta, Leena
Other contributor: University of Helsinki, Department of Geosciences and Geography
University of Helsinki, Department of Geosciences and Geography
Date: 2021-05-21
Language: eng
Number of pages: 11
Belongs to series: Frontiers in Microbiology
ISSN: 1664-302X
DOI: https://doi.org/10.3389/fmicb.2021.668993
URI: http://hdl.handle.net/10138/331644
Abstract: Biodiversity has traditionally been quantified using taxonomic information but the importance of also considering its functional characteristics has recently gained an increasing attention among microorganisms. However, studies exploring multiple aspects of taxonomic and functional diversity and their temporal variations are scarce for diatoms, which is one of the most important microbial groups in aquatic ecosystems. Here, our aim was to examine the taxonomic and functional alpha and beta diversities of diatoms in a coastal rock pool system characterized by a naturally high environmental heterogeneity. We also investigated the temporal differences in the diversity patterns and drivers. The relationship between the species richness and functional dispersion was temporally coherent, such that species-poor communities tended to be functionally clustered. The trend between the species richness and taxonomic uniqueness of community composition was temporally inconsistent, changing from negative to non-significant over time. Conductivity or distance to the sea or both were key determinants of species richness, functional dispersion, and uniqueness of community composition. The increase of community dissimilarity with an increasing environmental distance was stronger for the taxonomic than the functional composition. Our results suggest that even minor decreases in the species richness may result in a lowered functional diversity and decreased ecosystem functioning. Species-poor ecosystems may, however, have unique species compositions and high contributions to regional biodiversity. Despite changing the species compositions along the environmental gradients, communities may remain to have a high functional similarity and robustness in the face of environmental changes. Our results highlight the advantage of considering multiple biodiversity metrics and incorporating a temporal component for a deeper understanding of the effects of environmental changes on microbial biodiversity.
Subject: alpha diversity
beta diversity
diatoms
environmental gradients
functional diversity
rock pools
BETA-DIVERSITY
DIATOM COMMUNITIES
ECOLOGICAL GUILDS
SPECIES RICHNESS
BALTIC SEA
CELL-SIZE
BIODIVERSITY
METACOMMUNITY
TRAIT
CONSERVATION
1181 Ecology, evolutionary biology
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
fmicb_12_668993.pdf 1.569Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record