Modeling a Coronal Mass Ejection from an Extended Filament Channel. I. Eruption and Early Evolution

Show simple item record Lynch, Benjamin J. Palmerio, Erika DeVore, C. Richard Kazachenko, Maria D. Dahlin, Joel T. Pomoell, Jens Kilpua, Emilia K. J. 2021-06-24T04:30:01Z 2021-06-24T04:30:01Z 2021-06
dc.identifier.citation Lynch , B J , Palmerio , E , DeVore , C R , Kazachenko , M D , Dahlin , J T , Pomoell , J & Kilpua , E K J 2021 , ' Modeling a Coronal Mass Ejection from an Extended Filament Channel. I. Eruption and Early Evolution ' , Astrophysical Journal , vol. 914 , no. 1 , 39 .
dc.identifier.other PURE: 165427608
dc.identifier.other PURE UUID: 32643d2e-716f-4ff6-935f-46656c61596c
dc.identifier.other WOS: 000661255100001
dc.identifier.other ORCID: /0000-0003-1175-7124/work/96051318
dc.identifier.other ORCID: /0000-0002-4489-8073/work/96053061
dc.description.abstract We present observations and modeling of the magnetic field configuration, morphology, and dynamics of a large-scale, high-latitude filament eruption observed by the Solar Dynamics Observatory. We analyze the 2015 July 9-10 filament eruption and the evolution of the resulting coronal mass ejection (CME) through the solar corona. The slow streamer-blowout CME leaves behind an elongated post-eruption arcade above the extended polarity inversion line that is only poorly visible in extreme ultraviolet (EUV) disk observations and does not resemble a typical bright flare-loop system. Magnetohydrodynamic (MHD) simulation results from our data-inspired modeling of this eruption compare favorably with the EUV and white-light coronagraph observations. We estimate the reconnection flux from the simulation's flare-arcade growth and examine the magnetic-field orientation and evolution of the erupting prominence, highlighting the transition from an erupting sheared-arcade filament channel into a streamer-blowout flux-rope CME. Our results represent the first numerical modeling of a global-scale filament eruption where multiple ambiguous and complex observational signatures in EUV and white light can be fully understood and explained with the MHD simulation. In this context, our findings also suggest that the so-called stealth CME classification, as a driver of unexpected or "problem" geomagnetic storms, belongs more to a continuum of observable/nonobservable signatures than to separate or distinct eruption processes. en
dc.format.extent 17
dc.language.iso eng
dc.relation.ispartof Astrophysical Journal
dc.rights cc_by
dc.rights.uri info:eu-repo/semantics/openAccess
dc.subject SOLAR
dc.subject DYNAMICS
dc.subject PROMINENCE
dc.subject ONSET
dc.subject CMES
dc.subject 114 Physical sciences
dc.title Modeling a Coronal Mass Ejection from an Extended Filament Channel. I. Eruption and Early Evolution en
dc.type Article
dc.contributor.organization Department of Physics
dc.contributor.organization Space Physics Research Group
dc.description.reviewstatus Peer reviewed
dc.relation.issn 0004-637X
dc.rights.accesslevel openAccess
dc.type.version publishedVersion

Files in this item

Total number of downloads: Loading...

Files Size Format View
Lynch_2021_ApJ_914_39.pdf 2.577Mb PDF View/Open

This item appears in the following Collection(s)

Show simple item record