Discovering distorted repeating patterns in polyphonic music through longest increasing subsequences

Näytä kaikki kuvailutiedot



Pysyväisosoite

http://hdl.handle.net/10138/333418

Lähdeviite

Laaksonen , A & Lemström , K 2021 , ' Discovering distorted repeating patterns in polyphonic music through longest increasing subsequences ' , Journal of Mathematics and Music , vol. 15 , no. 2 , pp. 99-111 . https://doi.org/10.1080/17459737.2021.1896811

Julkaisun nimi: Discovering distorted repeating patterns in polyphonic music through longest increasing subsequences
Tekijä: Laaksonen, Antti; Lemström, Kjell
Muu tekijä: University of Helsinki, Department of Computer Science
University of Helsinki, Department of Computer Science
Päiväys: 2021
Kieli: eng
Sivumäärä: 13
Kuuluu julkaisusarjaan: Journal of Mathematics and Music
ISSN: 1745-9737
URI: http://hdl.handle.net/10138/333418
Tiivistelmä: We study the problem of identifying repetitions under transposition and time-warp invariances in polyphonic symbolic music. Using a novel onset-time-pair representation, we reduce the repeating pattern discovery problem to instances of the classical problem of finding the longest increasing subsequences. The resulting algorithm works in O(n(2) log n) time where n is the number of notes in a musical work. We also study windowed variants of the problem where onset-time differences between notes are restricted, and show that they can also be solved in O(n(2) log n) time using the algorithm.
Avainsanat: repeating pattern discovery
longest increasing subsequences
symbolic music processing
music retrieval
pattern matching
111 Mathematics
6131 Theatre, dance, music, other performing arts
113 Computer and information sciences
Tekijänoikeustiedot:


Tiedostot

Latausmäärä yhteensä: Ladataan...

Tiedosto(t) Koko Formaatti Näytä
17459737.2021.1896811.pdf 739.8KB PDF Avaa tiedosto

Viite kuuluu kokoelmiin:

Näytä kaikki kuvailutiedot