Lineaaristen operaattoreiden invariantit aliavaruudet

Show full item record



Permalink

http://urn.fi/URN:NBN:fi:hulib-202108253496
Title: Lineaaristen operaattoreiden invariantit aliavaruudet
Author: Mäkinen, Otto
Contributor: University of Helsinki, Faculty of Science
Publisher: Helsingin yliopisto
Date: 2021
Language: fin
URI: http://urn.fi/URN:NBN:fi:hulib-202108253496
http://hdl.handle.net/10138/333550
Thesis level: master's thesis
Degree program: Matematiikan ja tilastotieteen maisteriohjelma
Master's Programme in Mathematics and Statistics
Magisterprogrammet i matematik och statistik
Specialisation: Matematiikka
Mathematics
Matematik
Abstract: Tutkielma käsittelee invariantin aliavaruuden ongelmaa. Päälähteenä toimii Isabelle Chalendarin ja Jonathan Partingtonin kirja Modern Approaches to the Invariant-Subspace Problem. Invariantin aliavaruuden ongelmassa kysytään, onko kompleksisessa Banachin avaruudessa X jokaisella jatkuvalla lineaarisella operaattorilla T olemassa suljettu aliavaruus A, joka on invariantti (T(A) ⊂ A) ja ei-triviaali (A 6= {0} ja A 6= X). Invariantin aliavaruuden ongelma on vielä avoin kompleksiselle ääretönulotteiselle separoituvalle Hilbertin avaruudelle. Tutkielma koostuu neljästä luvusta. Ensimmäisessä luvussa käydään läpi tarvittavia määritelmiä ja teorioita sekä pohjustetaan tulevia kappaleita. Toisessa luvussa määritellään Banachin algebra ja kompaktit operaattorit sekä esitetään Schauderin kiintopistelause ja päätuloksena Lomonosovin lause, jonka korollaarina saadaan, että kompaktilla operaattorilla, joka ei ole nollaoperaattori, on ei-triviaali invariantti aliavaruus. Lomonosovin lause on esitetty Chalendarin ja Partingtonin kirjan luvussa 6. Kolmannessa luvussa siirrytään Hilbertin avaruuksiin ja tutkitaan normaaleja operaattoreita. Päätuloksena todistetaan, että normaalilla operaattorilla, joka ei ole nollaoperaattori, on ei-triviaali hyperinvariantti aliavaruus. Tätä varten määritellään spektraalisäteen ja spektraalimitan käsitteet sekä näihin liittyviä tuloksia. Normaalit operaattorit löytyvät Chalendarin ja Partingtonin kirjan luvusta 3. Neljäs luku käsittelee minimaalisia vektoreita. Luvussa esitetään Hahn-Banachin, Eberlein-Smulyan ja Banach-Alaoglun lauseet sekä sovelletaan minimaalisia vektoreita invariantin aliavaruuden ongelmaan. Minimaalisten vektoreiden avulla saadaan esimerkiksi uusi ja erilainen todistus sille, että kompaktilla operaattorilla, joka ei ole nollaoperaattori, on ei-triviaali invariantti aliavaruus. Chalendarin ja Partingtonin kirja käsittelee minimaalisia vektoreita luvussa 7.
Subject: Invariantti aliavaruus
minimaaliset vektorit
Lomonosovin lause
kompakti operaattori


Files in this item

Total number of downloads: Loading...

Files Size Format View
Makinen_Otto_Li ... ntit aliavaruudet_2021.pdf 668.6Kb PDF View/Open

This item appears in the following Collection(s)

Show full item record