Genome-wide identification and analysis of the heat shock transcription factor family in moso bamboo (Phyllostachys edulis)

Show full item record



Permalink

http://hdl.handle.net/10138/333911

Citation

Huang , B , Huang , Z , Ma , R , Chen , J , Zhang , Z & Yrjälä , K 2021 , ' Genome-wide identification and analysis of the heat shock transcription factor family in moso bamboo (Phyllostachys edulis) ' , Scientific Reports , vol. 11 , 16492 . https://doi.org/10.1038/s41598-021-95899-3

Title: Genome-wide identification and analysis of the heat shock transcription factor family in moso bamboo (Phyllostachys edulis)
Author: Huang, Bin; Huang, Zhinuo; Ma, Ruifang; Chen, Jialu; Zhang, Zhijun; Yrjälä, Kim
Contributor organization: Helsinki Institute of Sustainability Science (HELSUS)
Department of Forest Sciences
Biosciences
Date: 2021-08-13
Language: eng
Number of pages: 19
Belongs to series: Scientific Reports
ISSN: 2045-2322
DOI: https://doi.org/10.1038/s41598-021-95899-3
URI: http://hdl.handle.net/10138/333911
Abstract: Heat shock transcription factors (HSFs) are central elements in the regulatory network that controls plant heat stress response. They are involved in multiple transcriptional regulatory pathways and play important roles in heat stress signaling and responses to a variety of other stresses. We identified 41 members of the HSF gene family in moso bamboo, which were distributed non-uniformly across its 19 chromosomes. Phylogenetic analysis showed that the moso bamboo HSF genes could be divided into three major subfamilies; HSFs from the same subfamily shared relatively conserved gene structures and sequences and encoded similar amino acids. All HSF genes contained HSF signature domains. Subcellular localization prediction indicated that about 80% of the HSF proteins were located in the nucleus, consistent with the results of GO enrichment analysis. A large number of stress response-associated cis-regulatory elements were identified in the HSF upstream promoter sequences. Synteny analysis indicated that the HSFs in the moso bamboo genome had greater collinearity with those of rice and maize than with those of Arabidopsis and pepper. Numerous segmental duplicates were found in the moso bamboo HSF gene family. Transcriptome data indicated that the expression of a number of PeHsfs differed in response to exogenous gibberellin (GA) and naphthalene acetic acid (NAA). A number of HSF genes were highly expressed in the panicles and in young shoots, suggesting that they may have functions in reproductive growth and the early development of rapidly-growing shoots. This study provides fundamental information on members of the bamboo HSF gene family and lays a foundation for further study of their biological functions in the regulation of plant responses to adversity.
Subject: DNA-BINDING DOMAIN
GENE DUPLICATION
INTRACELLULAR-DISTRIBUTION
ABIOTIC STRESSES
ARABIDOPSIS
TOLERANCE
EXPRESSION
PROTEINS
DROUGHT
OVEREXPRESSION
11831 Plant biology
4112 Forestry
Peer reviewed: Yes
Rights: cc_by
Usage restriction: openAccess
Self-archived version: publishedVersion


Files in this item

Total number of downloads: Loading...

Files Size Format View
s41598_021_95899_3.pdf 8.728Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record