Fine-Grained Versus Coarse-Grained Data for Estimating Time-on-Task in Learning Programming

Visa fullständig post



Permalänk

http://hdl.handle.net/10138/333945

Citation

Leinonen , J , Castro , F E V & Hellas , A 2021 , Fine-Grained Versus Coarse-Grained Data for Estimating Time-on-Task in Learning Programming . in Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) . The International Educational Data Mining Society , pp. 648-653 , The 14th International Conference on Educational Data Mining , Paris , France , 29/06/2021 . < https://educationaldatamining.org/edm2021/proceedings/ >

Titel: Fine-Grained Versus Coarse-Grained Data for Estimating Time-on-Task in Learning Programming
Författare: Leinonen, Juho; Castro, Francisco Enrique Vicente; Hellas, Arto
Medarbetare: University of Helsinki, Aalto University
University of Helsinki, RAGE - Agile Education Research group / Matti Luukkainen
Utgivare: The International Educational Data Mining Society
Datum: 2021-07-02
Språk: eng
Sidantal: 6
Tillhör serie: Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)
Permanenta länken (URI): http://hdl.handle.net/10138/333945
Subject: 113 Computer and information sciences
Licens:


Filer under denna titel

Totalt antal nerladdningar: Laddar...

Filer Storlek Format Granska
proc_1.pdf 202.3Kb PDF Granska/Öppna

Detta dokument registreras i samling:

Visa fullständig post