Image Recognition for Atomic Force Microscopy

Visa fullständig post



Permalänk

http://urn.fi/URN:NBN:fi:hulib-202109233754
Titel: Image Recognition for Atomic Force Microscopy
Sekundär titel: Kuvantunnistus atomivoimamikroskopiassa
Författare: Kurki, Lauri
Medarbetare: Helsingin yliopisto, Matemaattis-luonnontieteellinen tiedekunta
University of Helsinki, Faculty of Science
Helsingfors universitet, Matematisk-naturvetenskapliga fakulteten
Utgivare: Helsingin yliopisto
Datum: 2021
Språk: eng
Permanenta länken (URI): http://urn.fi/URN:NBN:fi:hulib-202109233754
http://hdl.handle.net/10138/334559
Nivå: pro gradu-avhandlingar
Utbildningsprogram: Materiaalitutkimuksen maisteriohjelma
Master's Programme in Materials Research
Magisterprogrammet i materialforskning
Studieinriktning: Laskennallinen materiaalifysiikka
Computational Material Physics
Beräkningsmaterialfysik
Abstrakt: Atomic force microscopy (AFM) is a widely utilized characterization method capable of capturing atomic level detail in individual organic molecules. However, an AFM image contains relatively little information about the deeper atoms in a molecule and thus interpretation of AFM images of non-planar molecules offers significant challenges for human experts. An end-to-end solution starting from an AFM imaging system ending in an automated image interpreter would be a valuable asset for all research utilizing AFM. Machine learning has become a ubiquitous tool in all areas of science. Artificial neural networks (ANNs), a specific machine learning tool, have also arisen as a popular method many fields including medical imaging, self-driving cars and facial recognition systems. In recent years, progress towards interpreting AFM images from more complicated samples has been made utilizing ANNs. In this thesis, we aim to predict sample structures from AFM images by modeling the molecule as a graph and using a generative model to build the molecular structure atom-by-atom and bond-by-bond. The generative model uses two types of ANNs, a convolutional attention mechanism to process the AFM images and a graph neural network to process the generated molecule. The model is trained and tested using simulated AFM images. The results of the thesis show that the model has the capability to learn even slight details from complicated AFM images, especially when the model only adds a single atom to the molecule. However, there are challenges to overcome in the generative model for it to become a part of a fully capable end-to-end AFM process.
Subject: Atomic force microscopy
machine learning
deep learning
convolutional neural networks


Filer under denna titel

Totalt antal nerladdningar: Laddar...

Filer Storlek Format Granska
Kurki_Lauri_thesis_2021.pdf 3.047Mb PDF Granska/Öppna

Detta dokument registreras i samling:

Visa fullständig post