Rapid mass growth and enhanced light extinction of atmospheric aerosols during the heating season haze episodes in Beijing revealed by aerosol-chemistry-radiation-boundary layer interaction

Show simple item record

dc.contributor.author Lin, Zhuohui
dc.contributor.author Wang, Yonghong
dc.contributor.author Zheng, Feixue
dc.contributor.author Zhou, Ying
dc.contributor.author Guo, Yishuo
dc.contributor.author Feng, Zemin
dc.contributor.author Li, Chang
dc.contributor.author Zhang, Yusheng
dc.contributor.author Hakala, Simo
dc.contributor.author Chan, Tommy
dc.contributor.author Yan, Chao
dc.contributor.author Dällenbach, Kaspar
dc.contributor.author Chu, Biwu
dc.contributor.author Dada, Lubna
dc.contributor.author Kangasluoma, Juha
dc.contributor.author Yao, Lei
dc.contributor.author Fan, Xiaolong
dc.contributor.author Du, Wei
dc.contributor.author Cai, Jing
dc.contributor.author Cai, Runlong
dc.contributor.author Kokkonen, Tom V.
dc.contributor.author Zhou, Putian
dc.contributor.author Wang, Lili
dc.contributor.author Petäjä, Tuukka
dc.contributor.author Bianchi, Federico
dc.contributor.author Kerminen, Veli-Matti
dc.contributor.author Liu, Yongchun
dc.contributor.author Kulmala, Markku
dc.date.accessioned 2021-09-30T12:53:01Z
dc.date.available 2021-09-30T12:53:01Z
dc.date.issued 2021-08-16
dc.identifier.citation Lin , Z , Wang , Y , Zheng , F , Zhou , Y , Guo , Y , Feng , Z , Li , C , Zhang , Y , Hakala , S , Chan , T , Yan , C , Dällenbach , K , Chu , B , Dada , L , Kangasluoma , J , Yao , L , Fan , X , Du , W , Cai , J , Cai , R , Kokkonen , T V , Zhou , P , Wang , L , Petäjä , T , Bianchi , F , Kerminen , V-M , Liu , Y & Kulmala , M 2021 , ' Rapid mass growth and enhanced light extinction of atmospheric aerosols during the heating season haze episodes in Beijing revealed by aerosol-chemistry-radiation-boundary layer interaction ' , Atmospheric Chemistry and Physics , vol. 21 , no. 16 , pp. 12173-12187 . https://doi.org/10.5194/acp-21-12173-2021
dc.identifier.other PURE: 168873930
dc.identifier.other PURE UUID: c7644bdf-7697-441f-b39a-5538f6918f7b
dc.identifier.other WOS: 000686179100001
dc.identifier.other Scopus: 85113142011
dc.identifier.other ORCID: /0000-0002-5700-7209/work/100825588
dc.identifier.other ORCID: /0000-0003-0803-7337/work/100826125
dc.identifier.other ORCID: /0000-0003-1105-9043/work/100826374
dc.identifier.other ORCID: /0000-0003-2996-3604/work/100826699
dc.identifier.other ORCID: /0000-0002-4804-7516/work/100826816
dc.identifier.other ORCID: /0000-0002-1185-9211/work/100826908
dc.identifier.other ORCID: /0000-0002-1639-1187/work/100827040
dc.identifier.other ORCID: /0000-0002-2680-1629/work/100827472
dc.identifier.other ORCID: /0000-0002-1881-9044/work/102822933
dc.identifier.uri http://hdl.handle.net/10138/334785
dc.description.abstract Despite the numerous studies investigating haze formation mechanism in China, it is still puzzling that intensive haze episodes could form within hours directly following relatively clean periods. Haze has been suggested to be initiated by the variation of meteorological parameters and then to be substantially enhanced by aerosol-radiation-boundary layer feedback. However, knowledge on the detailed chemical processes and the driving factors for extensive aerosol mass accumulation during the feedback is still scarce. Here, the dependency of the aerosol number size distribution, mass concentration and chemical composition on the daytime mixing layer height (MLH) in urban Beijing is investigated. The size distribution and chemical composition-resolved dry aerosol light extinction is also explored. The results indicate that the aerosol mass concentration and fraction of nitrate increased dramatically when the MLH decreased from high to low conditions, corresponding to relatively clean and polluted conditions, respectively. Particles having their dry diameters in the size of similar to 400-700 nm, and especially particle-phase ammonium nitrate and liquid water, contributed greatly to visibility degradation during the winter haze periods. The dependency of aerosol composition on the MLH revealed that ammonium nitrate and aerosol water content increased the most during low MLH conditions, which may have further triggered enhanced formation of sulfate and organic aerosol via heterogeneous reactions. As a result, more sulfate, nitrate and water-soluble organics were formed, leading to an enhanced water uptake ability and increased light extinction by the aerosols. The results of this study contribute towards a more detailed understanding of the aerosol-chemistry-radiation-boundary layer feedback that is likely to be responsible for explosive aerosol mass growth events in urban Beijing. en
dc.format.extent 15
dc.language.iso eng
dc.relation.ispartof Atmospheric Chemistry and Physics
dc.rights cc_by
dc.rights.uri info:eu-repo/semantics/openAccess
dc.subject 114 Physical sciences
dc.subject 1172 Environmental sciences
dc.title Rapid mass growth and enhanced light extinction of atmospheric aerosols during the heating season haze episodes in Beijing revealed by aerosol-chemistry-radiation-boundary layer interaction en
dc.type Article
dc.contributor.organization INAR Physics
dc.contributor.organization Institute for Atmospheric and Earth System Research (INAR)
dc.contributor.organization Air quality research group
dc.contributor.organization Polar and arctic atmospheric research (PANDA)
dc.contributor.organization Faculty of Science
dc.contributor.organization Global Atmosphere-Earth surface feedbacks
dc.description.reviewstatus Peer reviewed
dc.relation.doi https://doi.org/10.5194/acp-21-12173-2021
dc.relation.issn 1680-7316
dc.rights.accesslevel openAccess
dc.type.version publishedVersion

Files in this item

Total number of downloads: Loading...

Files Size Format View
acp_21_12173_2021.pdf 4.163Mb PDF View/Open

This item appears in the following Collection(s)

Show simple item record