Computer-Assisted Language Learning based on Authentic Texts : applications to Italian

Show full item record

Title: Computer-Assisted Language Learning based on Authentic Texts : applications to Italian
Alternative title: Autenttisiin teksteihin perustuva tietokoneavusteinen kielen oppiminen: sovelluksia italian kielelle
Author: China-Kolehmainen, Elena
Other contributor: Helsingin yliopisto, Humanistinen tiedekunta
University of Helsinki, Faculty of Arts
Helsingfors universitet, Humanistiska fakulteten
Publisher: Helsingin yliopisto
Date: 2021
Language: eng
Thesis level: master's thesis
Degree program: Kielellisen diversiteetin ja digitaalisten menetelmien maisteriohjelma
Master's Programme Linguistic Diversity in the Digital Age
Magisterprogrammet i språklig diversitet och digitala metoder
Specialisation: Kieliteknologia
Language Technology
Abstract: Computer-Assisted Language Learning (CALL) is one of the sub-disciplines within the area of Second Language Acquisition. Clozes, also called fill-in-the-blank, are largely used exercises in language learning applications. A cloze is an exercise where the learner is asked to provide a fragment that has been removed from the text. For language learning purposes, in addition to open-end clozes where one or more words are removed and the student must fill the gap, another type of cloze is commonly used, namely multiple-choice cloze. In a multiple-choice cloze, a fragment is removed from the text and the student must choose the correct answer from multiple options. Multiple-choice exercises are a common way of practicing and testing grammatical knowledge. The aim of this work is to identify relevant learning constructs for Italian to be applied to automatic exercises creation based on authentic texts in the Revita Framework. Learning constructs are units that represent language knowledge. Revita is a free to use online platform that was designed to provide language learning tools with the aim of revitalizing endangered languages including several Finno-Ugric languages such as North Saami. Later non-endangered languages were added. Italian is the first majority language to be added in a principled way. This work paves the way towards adding new languages in the future. Its purpose is threefold: it contributes to the raising of Italian from its beta status towards a full development stage; it formulates best practices for defining support for a new language and it serves as a documentation of what has been done, how and what remains to be done. Grammars and linguistic resources were consulted to compile an inventory of learning constructs for Italian. Analytic and pronominal verbs, verb government with prepositions, and noun phrase agreement were implemented by designing pattern rules that match sequences of tokens with specific parts-of-speech, surfaces and morphological tags. The rules were tested with test sentences that allowed further refining and correction of the rules. Current precision of the 47 rules for analytic and pronominal verbs on 177 test sentences results in 100%. Recall is 96.4%. Both precision and recall for the 5 noun phrase agreement rules result in 96.0% in respect to the 34 test sentences. Analytic and pronominal verb, as well as noun phrase agreement patterns, were used to generate open-end clozes. Verb government pattern rules were implemented into multiple-choice exercises where one of the four presented options is the correct preposition and the other three are prepositions that do not fit in context. The patterns were designed based on colligations, combinations of tokens (collocations) that are also explained by grammatical constraints. Verb government exercises were generated on a specifically collected corpus of 29074 words. The corpus included three types of text: biography sections from Wikipedia, Italian news articles and Italian language matriculation exams. The last text type generated the most exercises with a rate of 19 exercises every 10000 words, suggesting that the semi-authentic text met best the level of verb government exercises because of appropriate vocabulary frequency and sentence structure complexity. Four native language experts, either teachers of Italian as L2 or linguists, evaluated usability of the generated multiple-choice clozes, which resulted in 93.55%. This result suggests that minor adjustments i.e., the exclusion of target verbs that cause multiple-admissibility, are sufficient to consider verb government patterns usable until the possibility of dealing with multiple-admissible answers is addressed. The implementation of some of the most important learning constructs for Italian resulted feasible with current NLP tools, although quantitative evaluation of precision and recall of the designed rules is needed to evaluate the generation of exercises on authentic text. This work paves the way towards a full development stage of Italian in Revita and enables further pilot studies with actual learners, which will allow to measure learning outcomes in quantitative terms
Subject: language technology
Computer-Assisted Language Learning
language learning
cloze generation
automatic exercise generation

Files in this item

Total number of downloads: Loading...

Files Size Format View
China-Kolehmainen_Elena_thesis_2021.pdf 1.185Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record