Compressed Full-Text Indexes for Highly Repetitive Collections

Show full item record

Permalink

http://urn.fi/URN:ISBN:978-952-10-8052-4
Title: Compressed Full-Text Indexes for Highly Repetitive Collections
Author: Sirén, Jouni
Contributor: University of Helsinki, Faculty of Science, Department of Computer Science
Thesis level: Doctoral dissertation (article-based)
Abstract: This thesis studies problems related to compressed full-text indexes. A full-text index is a data structure for indexing textual (sequence) data, so that the occurrences of any query string in the data can be found efficiently. While most full-text indexes require much more space than the sequences they index, recent compressed indexes have overcome this limitation. These compressed indexes combine a compressed representation of the index with some extra information that allows decompressing any part of the data efficiently. This way, they provide similar functionality as the uncompressed indexes, while using only slightly more space than the compressed data. The efficiency of data compression is usually measured in terms of entropy. While entropy-based estimates predict the compressed size of most texts accurately, they fail with highly repetitive collections of texts. Examples of such collections include different versions of a document and the genomes of a number of individuals from the same population. While the entropy of a highly repetitive collection is usually similar to that of a text of the same kind, the collection can often be compressed much better than the entropy-based estimate. Most compressed full-text indexes are based on the Burrows-Wheeler transform (BWT). Originally intended for data compression, the BWT has deep connections with full-text indexes such as the suffix tree and the suffix array. With some additional information, these indexes can be simulated with the Burrows-Wheeler transform. The first contribution of this thesis is the first BWT-based index that can compress highly repetitive collections efficiently. Compressed indexes allow us to handle much larger data sets than the corresponding uncompressed indexes. To take full advantage of this, we need algorithms for constructing the compressed index directly, instead of first constructing an uncompressed index and then compressing it. The second contribution of this thesis is an algorithm for merging the BWT-based indexes of two text collections. By using this algorithm, we can derive better space-efficient construction algorithms for BWT-based indexes. The basic BWT-based indexes provide similar functionality as the suffix array. With some additional structures, the functionality can be extended to that of the suffix tree. One of the structures is an array storing the lengths of the longest common prefixes of lexicographically adjacent suffixes of the text. The third contribution of this thesis is a space-efficient algorithm for constructing this array, and a new compressed representation of the array. In the case of individual genomes, the highly repetitive collection can be considered a sample from a larger collection. This collection consists of a reference sequence and a set of possible differences from the reference, so that each sequence contains a subset of the differences. The fourth contribution of this thesis is a BWT-based index that extrapolates the larger collection from the sample and indexes it.Tässä väitöskirjassa käsitellään tiivistettyjä kokotekstihakemistoja tekstimuotoisille aineistoille. Kokotekstihakemistot ovat tietorakenteita, jotka mahdollistavat mielivaltaisten hahmojen esiintymien löytämisen tekstistä tehokkaasti. Perinteiset kokotekstihakemistot, kuten loppuosapuut ja -taulukot, vievät moninkertaisesti tilaa itse aineistoon nähden. Viime aikoina on kuitenkin kehitetty tiivistettyjä hakemistorakenteita, jotka tarjoavat vastaavan toiminnallisuuden alkuperäistä tekstiä pienemmässä tilassa. Tämä on mahdollistanut aikaisempaa suurempien aineistojen käsittelyn. Tekstin tiivistyvyyttä mitataan yleensä suhteessa sen entropiaan. Vaikka entropiaan perustuvat arviot ovat useimmilla aineistoilla varsin tarkkoja, aliarvioivat ne vahvasti toisteisien aineistojen tiivistyvyyttä. Esimerkkejä tällaisista aineistoista ovat kokoelmat saman populaation yksilöiden genomeita tai saman dokumentin eri versioita. Siinä missä tällaisen kokoelman entropia suhteessa aineiston kokoon on vastaava kuin yksittäisellä samaa tyyppiä olevalla tekstillä, tiivistyy kokoelma yleensä huomattavasti paremmin kuin entropian perusteella voisi odottaa. Useimmat tiivistetyt kokotekstihakemistot perustuvat Burrows-Wheeler-muunnokseen (BWT), joka kehitettiin alun perin tekstimuotoisten aineistojen tiivistämiseen. Pian kuitenkin havaittiin, että koska BWT muistuttaa rakenteeltaan loppuosapuuta ja -taulukkoa, voidaan sitä käyttää niissä tehtävien hakujen simulointiin. Tässä väitöskirjassa esitetään ensimmäinen BWT-pohjainen kokotekstihakemisto, joka pystyy tiivistämään vahvasti toisteiset aineistot tehokkaasti. Tiivistettyjen tietorakenteiden käyttö mahdollistaa suurempien aineistoiden käsittelemisen kuin tavallisia tietorakenteita käytettäessä. Tämä etu kuitenkin menetetään, jos tiivistetty tietorakenne muodostetaan luomalla ensin vastaava tavallinen tietorakenne ja tiivistämällä se. Tässä väitöskirjassa esitetään aikaisempaa vähemmän muistia käyttäviä algoritmeja BWT-pohjaisten kokotekstihakemistojen muodostamiseen. Kokoelma yksilöiden genomeita voidaan käsittää otokseksi suuremmasta kokoelmasta, joka koostuu populaation kaikkien yksilöiden sekä niiden hypoteettisten jälkeläisten genomeista. Tällainen kokoelma voidaan esittää äärellisenä automaattina, joka muodostuu referenssigenomista ja yksilöiden genomeissa esiintyvistä poikkeamista referenssistä. Tässä väitöskirjassa esitetään BWT-pohjaisten kokotekstihakemistojen yleistys, joka mahdollistaa tällaisten automaattien indeksoinnin.
URI: URN:ISBN:978-952-10-8052-4
http://hdl.handle.net/10138/33995
Date: 2012-06-29
Subject: tietojenkäsittelytiede
Rights: This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.


Files in this item

Total number of downloads: Loading...

Files Size Format View
compress.pdf 836.0Kb PDF View/Open

This item appears in the following Collection(s)

Show full item record