Behavioral Task Modeling for Entity Recommendation

Show full item record



Permalink

http://urn.fi/URN:ISBN:978-951-51-7983-8
Title: Behavioral Task Modeling for Entity Recommendation
Author: Vuong, Tung
Contributor organization: University of Helsinki, Faculty of Science
Doctoral Programme in Computer Science
Helsingin yliopisto, matemaattis-luonnontieteellinen tiedekunta
Tietojenkäsittelytieteen tohtoriohjelma
Helsingfors universitet, matematisk-naturvetenskapliga fakulteten
Doktorandprogrammet i datavetenskap
Publisher: Helsingin yliopisto
Date: 2022-03-17
Language: eng
Belongs to series: Series of publications A / Department of Computer Science, University of Helsinki. - URN:ISSN:2814-4031
URI: http://urn.fi/URN:ISBN:978-951-51-7983-8
http://hdl.handle.net/10138/341155
Thesis level: Doctoral dissertation (article-based)
Abstract: Our everyday tasks involve interactions with a wide range of information. The information that we manage is often associated with a task context. However, current computer systems do not organize information in this way, do not help the user find information in task context, but require explicit user actions such as searching and information seeking. We explore the use of task context to guide the delivery of information to the user proactively, that is, to have the right information easily available at the right time. In this thesis, we used two types of novel contextual information: 24/7 behavioral recordings and spoken conversations for task modeling. The task context is created by monitoring the user's information behavior from temporal, social, and topical aspects; that can be contextualized by several entities such as applications, documents, people, time, and various keywords determining the task. By tracking the association amongst the entities, we can infer the user's task context, predict future information access, and proactively retrieve relevant information for the task at hand. The approach is validated with a series of field studies, in which altogether 47 participants voluntarily installed a screen monitoring system on their laptops 24/7 to collect available digital activities, and their spoken conversations were recorded. Different aspects of the data were considered to train the models. In the evaluation, we treated information sourced from several applications, spoken conversations, and various aspects of the data as different kinds of influence on the prediction performance. The combined influences of multiple data sources and aspects were also considered in the models. Our findings revealed that task information could be found in a variety of applications and spoken conversations. In addition, we found that task context models that consider behavioral information captured from the computer screen and spoken conversations could yield a promising improvement in recommendation quality compared to the conventional modeling approach that considered only pre-determined interaction logs, such as query logs or Web browsing history. We also showed how a task context model could support the users' work performance, reducing their effort in searching by ranking and suggesting relevant information. Our results and findings have direct implications for information personalization and recommendation systems that leverage contextual information to predict and proactively present personalized information to the user to improve the interaction experience with the computer systems.Jokapäiväisiin tehtäviimme kuuluu vuorovaikutusta monenlaisten tietojen kanssa. Hallitsemamme tiedot liittyvät usein johonkin tehtäväkontekstiin. Nykyiset tietokonejärjestelmät eivät kuitenkaan järjestä tietoja tällä tavalla tai auta käyttäjää löytämään tietoja tehtäväkontekstista, vaan vaativat käyttäjältä eksplisiittisiä toimia, kuten tietojen hakua ja etsimistä. Tutkimme, kuinka tehtäväkontekstia voidaan käyttää ohjaamaan tietojen toimittamista käyttäjälle ennakoivasti, eli siten, että oikeat tiedot olisivat helposti saatavilla oikeaan aikaan. Tässä väitöskirjassa käytimme kahdenlaisia uusia kontekstuaalisia tietoja: 24/7-käyttäytymistallenteita ja tehtävän mallintamiseen liittyviä puhuttuja keskusteluja. Tehtäväkonteksti luodaan seuraamalla käyttäjän tietokäyttäytymistä ajallisista, sosiaalisista ja ajankohtaisista näkökulmista katsoen; sitä voidaan kuvata useilla entiteeteillä, kuten sovelluksilla, asiakirjoilla, henkilöillä, ajalla ja erilaisilla tehtävää määrittävillä avainsanoilla. Tarkastelemalla näiden entiteettien välisiä yhteyksiä voimme päätellä käyttäjän tehtäväkontekstin, ennustaa tulevaa tiedon käyttöä ja hakea ennakoivasti käsillä olevaan tehtävään liittyviä asiaankuuluvia tietoja. Tätä lähestymistapaa arvioitiin kenttätutkimuksilla, joissa yhteensä 47 osallistujaa asensi vapaaehtoisesti kannettaviin tietokoneisiinsa näytönvalvontajärjestelmän, jolla voitiin 24/7 kerätä heidän saatavilla oleva digitaalinen toimintansa, ja joissa tallennettiin myös heidän puhutut keskustelunsa. Mallien kouluttamisessa otettiin huomioon datan eri piirteet. Arvioinnissa käsittelimme useista sovelluksista, puhutuista keskusteluista ja datan eri piirteistä saatuja tietoja erilaisina vaikutuksina ennusteiden toimivuuteen. Malleissa otettiin huomioon myös useiden tietolähteiden ja näkökohtien yhteisvaikutukset. Havaintomme paljastivat, että tehtävätietoja löytyi useista sovelluksista ja puhutuista keskusteluista. Lisäksi havaitsimme, että tehtäväkontekstimallit, joissa otetaan huomioon tietokoneen näytöltä ja puhutuista keskusteluista saadut käyttäytymistiedot, voivat parantaa suositusten laatua verrattuna tavanomaiseen mallinnustapaan, jossa tarkastellaan vain ennalta määritettyjä vuorovaikutuslokeja, kuten kyselylokeja tai verkonselaushistoriaa. Osoitimme myös, miten tehtäväkontekstimalli pystyi tukemaan käyttäjien suoritusta ja vähentämään heidän hakuihin tarvitsemaansa työpanosta järjestämällä hakutuloksia ja ehdottamalla heille asiaankuuluvia tietoja. Tuloksillamme ja havainnoillamme on suoria vaikutuksia tietojen personointi- ja suositusjärjestelmiin, jotka hyödyntävät kontekstuaalista tietoa ennustaakseen ja esittääkseen ennakoivasti personoituja tietoja käyttäjälle ja näin parantaakseen vuorovaikutuskokemusta tietokonejärjestelmien kanssa.
Subject: computer Science
Rights: Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.


Files in this item

Total number of downloads: Loading...

Files Size Format View
vuong_tung_dissertation_2022.pdf 5.008Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record