Benchmarking magnetizabilities with recent density functionals

Näytä kaikki kuvailutiedot



Pysyväisosoite

http://hdl.handle.net/10138/341402

Lähdeviite

Lehtola , S , Dimitrova , M , Fliegl , H & Sundholm , D 2021 , ' Benchmarking magnetizabilities with recent density functionals ' , Journal of Chemical Theory and Computation , vol. 17 , no. 3 , pp. 1457-1468 . https://doi.org/10.1021/acs.jctc.0c01190

Julkaisun nimi: Benchmarking magnetizabilities with recent density functionals
Tekijä: Lehtola, Susi; Dimitrova, Maria; Fliegl, Heike; Sundholm, Dage
Tekijän organisaatio: Department of Chemistry
Doctoral Programme in Chemistry and Molecular Sciences
Päiväys: 2021-03-09
Kieli: eng
Sivumäärä: 12
Kuuluu julkaisusarjaan: Journal of Chemical Theory and Computation
ISSN: 1549-9618
DOI-tunniste: https://doi.org/10.1021/acs.jctc.0c01190
URI: http://hdl.handle.net/10138/341402
Tiivistelmä: We have assessed the accuracy of the magnetic properties of a set of 51 density functional approximations, including both recently published and already established functionals. The accuracy assessment considers a series of 27 small molecules and is based on comparing the predicted magnetizabilities to literature reference values calculated using coupled-cluster theory with full singles and doubles and perturbative triples [CCSD(T)] employing large basis sets. The most accurate magnetizabilities, defined as the smallest mean absolute error, are obtained with the BHandHLYP functional. Three of the six studied Berkeley functionals and the three range-separated Florida functionals also yield accurate magnetizabilities. Also, some older functionals like CAM-B3LYP, KT1, BHLYP (BHandH), B3LYP, and PBE0 perform rather well. In contrast, unsatisfactory performance is generally obtained with Minnesota functionals, which are therefore not recommended for calculations of magnetically induced current density susceptibilities and related magnetic properties such as magnetizabilities and nuclear magnetic shieldings. We also demonstrate that magnetizabilities can be calculated by numerical integration of magnetizability density; we have implemented this approach as a new feature in the gauge-including magnetically induced current (GIMIC) method. Magnetizabilities can be calculated from magnetically induced current density susceptibilities within this approach even when analytical approaches for magnetizabilities as the second derivative of the energy have not been implemented. The magnetizability density can also be visualized, providing additional information that is not otherwise easily accessible on the spatial origin of magnetizabilities.
Avainsanat: 116 Chemical sciences
Vertaisarvioitu: Kyllä
Pääsyrajoitteet: openAccess
Rinnakkaistallennettu versio: acceptedVersion


Tiedostot

Latausmäärä yhteensä: Ladataan...

Tiedosto(t) Koko Formaatti Näytä
JCTC_2011.06560.pdf 6.239MB PDF Avaa tiedosto

Viite kuuluu kokoelmiin:

Näytä kaikki kuvailutiedot