Kinetics of arsenic and antimony reduction and oxidation in peatlands treating mining-affected waters: Effects of microbes, temperature, and carbon substrate

Show simple item record

dc.contributor.author Kujala, Katharina
dc.contributor.author Laamanen, Tiina
dc.contributor.author Khan, Uzair Akbar
dc.contributor.author Besold, Johannes
dc.contributor.author Planer-Friedrich, Britta
dc.date.accessioned 2022-05-05T06:36:28Z
dc.date.available 2022-05-05T06:36:28Z
dc.date.issued 2022
dc.identifier.citation Katharina Kujala, Tiina Laamanen, Uzair Akbar Khan, Johannes Besold, Britta Planer-Friedrich. Kinetics of arsenic and antimony reduction and oxidation in peatlands treating mining-affected waters: Effects of microbes, temperature, and carbon substrate. Soil Biology and Biochemistry 167 (2022), 108598, ISSN 0038-0717. https://doi.org/10.1016/j.soilbio.2022.108598
dc.identifier.uri http://hdl.handle.net/10138/343323
dc.description Highlights • Peatland microbes catalyze oxidation and reduction of arsenic and antimony species. • Microbial As/Sb reduction is crucial for efficient contaminant removal in peatlands. • Temperature strongly affects microbial arsenic and antimony turnover rates. • Removal in winter possible due to low concentrations and long water residence times.
dc.description.abstract Arsenic (As) and antimony (Sb) from mining-affected waters are efficiently removed in two treatment peatlands (TPs) in Northern Finland. However, the exact mechanisms behind this removal are not well resolved. Thus, the present study combines results from microcosm experiments and pilot-scale TPs on the effects of microbes, temperature, and carbon substrate to elucidate the role of peat microorganisms in As and Sb removal. The main As and Sb species in TP inflow water are arsenate and antimonate. In peat microcosms, they were quantitatively reduced, however, at rates about 20–400 times lower than previously reported from pure cultures, likely due to excess of other terminal electron acceptors, such as nitrate and sulfate. Addition of the microbial inhibitor sodium azide inhibited reduction, indicating that it is indeed microbially mediated. Arsenite and antimonite (re)oxidation, which is in situ likely limited to upper, oxic peat layers, was likewise observed in peat microcosms. Only for antimonite, oxidation also occurred abiotically, likely catalyzed by humic acids or metals. Process rates increased with increasing temperature, but all processes occurred also at low temperatures. Monitoring of pilot-scale TPs revealed only minor effects of winter conditions (i.e., low temperature and freezing) on arsenic and antimony removal. Formation of methylated oxyarsenates was observed to increase As mobility at the onset of freezing. From different carbon substrates tested, lactate slightly enhanced arsenate reduction and antimonate reduction was stimulated by acetate, lactate, and formate. However, a maximum rate enhancement of only 1.8 times indicates that carbon substrate availability is not the rate-limiting factor in microbial arsenate or antimonate reduction. The collective data indicate that microorganisms catalyze reduction and (re)oxidation of As and Sb species in the TPs, and even though temperature is a major factor controlling microbial As and Sb reduction/(re)oxidation, low inflow concentrations, long water residence times, and the presence of unfrozen peat in lower layers allow for efficient removal also under winter conditions.
dc.language.iso en
dc.publisher Elsevier BV
dc.relation.ispartofseries Soil Biology and Biochemistry
dc.rights CC BY 4.0
dc.subject biokemia
dc.subject mikrobit
dc.subject aineenvaihdunta
dc.subject arseeni
dc.subject antimoni
dc.subject hapetus-pelkistysreaktio
dc.subject tuvemaat
dc.subject saasteet
dc.subject poistaminen
dc.title Kinetics of arsenic and antimony reduction and oxidation in peatlands treating mining-affected waters: Effects of microbes, temperature, and carbon substrate
dc.format.volume 167
dc.identifier.urn URN:NBN:fi-fe2022050532796
dc.subject.yso arsenic
dc.subject.yso antimony
dc.subject.yso peatlands
dc.subject.yso mining-affected waters
dc.subject.yso cold climate
dc.subject.yso ecophysiology
dc.subject.yso pollutants
dc.contributor.organization Suomen ympäristökeskus fi
dc.contributor.organization The Finnish Environment Institute en
dc.format.pagerange 108598
dc.relation.doi https://doi.org/10.1016/j.soilbio.2022.108598
dc.relation.issn 0038-0717
dc.type.okm A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä fi
dc.type.okm A1 Journal article (refereed), original research en

Files in this item

Total number of downloads: Loading...

Files Size Format View
Kujala et al. 2 ... , and carbon substrate.pdf 5.612Mb PDF View/Open

This item appears in the following Collection(s)

Show simple item record