Concurrent multi-scale modelling of vacuum arc plasma initiation

Show full item record



Permalink

http://urn.fi/URN:NBN:fi:hulib-202206282965
Title: Concurrent multi-scale modelling of vacuum arc plasma initiation
Alternative title: Tyhjiökaarien syttymisen yhtäaikainen ja moniskaalainen mallintaminen
Author: Koitermaa, Roni
Other contributor: Helsingin yliopisto, Matemaattis-luonnontieteellinen tiedekunta
University of Helsinki, Faculty of Science
Helsingfors universitet, Matematisk-naturvetenskapliga fakulteten
Publisher: Helsingin yliopisto
Date: 2022
Language: eng
URI: http://urn.fi/URN:NBN:fi:hulib-202206282965
http://hdl.handle.net/10138/345533
Thesis level: master's thesis
Degree program: Materiaalitutkimuksen maisteriohjelma (Materials Research)
Master 's Programme in Materials Research
Magisterprogrammet i materialforskning
Specialisation: Laskennallinen materiaalifysiikka
Computational Materials Physics
Beräkningsmaterialfysik
Abstract: The complex physical mechanisms involved in the formation of vacuum arcs have been of interest for many decades. Vacuum arcs are relevant in many engineering disciplines, but the physics behind them is not yet fully understood. In recent years, there have been many experimental and computational studies focused on understanding aspects of vacuum arcs. This thesis focuses on further development of a simulation model to describe the physical processes starting from electron emission and leading to the formation of an ionized plasma. The FEMOCS code is extended to include plasma simulation based on previous work on ArcPIC. Emission of electrons and heating of the cathode is simulated using the finite element method, while plasma simulation is performed using the particle-in-cell method. We add evaporation of neutral atoms from the cathode, as well as ionization processes for multiple species of ions. Monte Carlo collisions for elastic, Coulomb, impact ionization, charge exchange and recombination collisions between particles are added. Direct field ionization of neutrals is included to account for ionization at high electric fields. A dynamic weighting scheme is described for adjusting superparticle weights during the simulation. Ion bombardment effects such as bombardment heating and sputtering are added to account for additional supply of neutrals resulting from energetic ions accelerated by the electric field. Finally, we add a circuit model for coupling to an external circuit. A static nanotip is simulated with different parameters to study local field thresholds leading to thermal runaway. We find that our simulations agree with experimental results. The most significant interactions contributing to initial formation of vacuum arcs are identified. We find most neutrals are created via evaporation rather than sputtering. The most important collision for plasma formation is impact ionization of neutrals into Cu+ ions, while higher-order ions are found to play a lesser role. Direct field ionization of neutrals is also found to be significant at high fields on the order of 10 GV/m.
Subject: vacuum arc
plasma simulation
finite element method
particle-in-cell method
Monte Carlo collision


Files in this item

Total number of downloads: Loading...

Files Size Format View
Koitermaa_Roni_thesis_2022.pdf 20.68Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record