Clumpy coexistence in phytoplankton : the role of functional similarity in community assembly

Show full item record



Graco-Roza , C , Segura , A M , Kruk , C , Domingos , P , Soininen , J & Marinho , M M 2021 , ' Clumpy coexistence in phytoplankton : the role of functional similarity in community assembly ' , Oikos , vol. 130 , no. 9 , pp. 1583-1597 .

Title: Clumpy coexistence in phytoplankton : the role of functional similarity in community assembly
Author: Graco-Roza, Caio; Segura, Angel M.; Kruk, Carla; Domingos, Patricia; Soininen, Janne; Marinho, Marcelo Manzi
Contributor organization: Department of Geosciences and Geography
Helsinki Institute of Sustainability Science (HELSUS)
Date: 2021-09
Language: eng
Number of pages: 15
Belongs to series: Oikos
ISSN: 0030-1299
Abstract: Emergent neutrality (EN) suggests that species must be sufficiently similar or sufficiently different in their niches to avoid interspecific competition. Such a scenario results in a transient pattern with clumps and gaps of species abundance along the niche axis (e.g. represented by body size). From this perspective, clumps are groups of coexisting species with negligible fitness differences and stochastic abundance fluctuations. Plankton is an excellent model system for developing and testing ecological theories, especially those related to size structure and species coexistence. We tested EN predictions using the phytoplankton community along the course of a tropical river considering 1) body size structure, 2) functional clustering of species in terms of morphology-based functional groups (MBFG) and 3) the functional similarity among species concerning their functional traits. Two main clumps in the body size axis (clump I and II) were conspicuous through time and were detected in different stretches of the river. Clump I comprised medium-sized species from the MBFGs IV, V and VI while clump II included large-bodied species from the MBFGs V and VI. Pairwise differences in species biovolume correlated with species functional similarity when the whole species pool was considered, but not among species within the same clump. Although clumps comprised multiple MBFGs, the dominant species within the clump belonged always to the same MBFG. Also, within-clump species biovolume increased with functional distinctiveness considering both seasons and stretches, except the lower course. These results suggest that species within clumps behave in a quasi-neutral state, but even minor shifts in trait composition may affect species biovolume. Our findings point that EN belongs to the plausible mechanisms explaining community assembly in river ecosystems.
Subject: emergent neutrality
functional distinctiveness
functional similarity
species coexistence
1181 Ecology, evolutionary biology
Peer reviewed: Yes
Rights: unspecified
Usage restriction: openAccess
Self-archived version: acceptedVersion

Files in this item

Total number of downloads: Loading...

Files Size Format View
Graco_Roza_et_al._2021_Main_text_.pdf 1.697Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record