Browsing by Title

Sort by: Order: Results:

Now showing items 1-20 of 45
  • Metsämäki, Sari (Suomen ympäristökeskus, 2013)
    Monographs of the Boreal Environment Research 43
    This thesis focuses on the determination of fractional snow cover (FSC) from optical data provided by satellite instruments. It describes the method development, starting from a simple regionally applicable linear interpolation method and ending at a globally applicable, semi-empirical modeling approach. The development work was motivated by the need for an easily implementable and feasible snow mapping method that could provide reliable information particularly for forested areas. The contribution of the work to the optical remote sensing of snow is mainly associated with accounting for boreal forest canopy effect to the observed reflectance, thus facilitating accurate fractional snow retrievals also for ground beneath the tree canopies. The first proposed approach was based on a linear interpolation technique, which relies on a priori known reference reflectances at a) full snow cover and b) snow-free conditions for each calculation unit-area. An important novelty in the methodology was the utilization of a forest sparseness index determined from AVHRR reflectance data acquired at full dry snow cover conditions. This index was employed to describe the similarity between different unit-areas. In practice, the index was used to determine the reference reflectances for such unit-areas for which the reflectance level could not be determined otherwise, e.g. due to frequent cloud cover. This approach was found to be feasible for Finnish drainage basins characterized by fragmented landscape with moderate canopies. Using a more physical approach instead of linear interpolation would allow the model parameterization using physical quantities (reflectances), and would therefore leave space for further model developments based on measuring and/or modeling of these quantities. The semi-empirical reflectance model-based method SCAmod originates from radiative transfer theory and describes the scene-level reflectance as a mixture of three major constituents: opaque forest canopy, snow and snow-free ground, which are interconnected through transmissivity and snow fraction. Transmissivity, in turn, can be derived from reflectance observations under conditions that highlight the presence of forest canopy, namely the presence of full snow cover on the ground. Thus, SCAmod requires a priori information on transmissivity, but given that it can be determined with the appropriate accuracy, it enables consideration of the obstructing effects of forests in fractional snow estimation. In continental-scale snow mapping, determination of the transmissivity map becomes a key issue. The preliminary demonstration of transmissivity generation using global land cover data was a part of this study. The first implementations and validations for SCAmod were presented for AVHRR data at Finnish drainage basin scale. In subsequent work, determination of the feasible reflectance constituents was addressed, followed by a sensitivity analysis targeting at selection of optimal spectral bands to be applied with SCAmod. Feasibility of the NDSI-based approach in FSC-retrievals over boreal forests is also discussed. Finally, the implementations and validations for MODIS and AATSR data are presented. The results from relative (using high-resolution Earth Observation data to represent the truth) and absolute validation (using in situ observations) indicate a good performance for both forested and non-forested regions in northern Eurasia. Accounting for the effect of forest canopy in the FSC-retrievals is the key issue in snow remote sensing over boreal regions; this study provides a new contribution to this research field and provides one solution for continental scale snow mapping.
  • Syri, Sanna (Finnish Environment Institute, 2001)
    Monographs of the Boreal Environment Research 19
    This study presents the development and applications of regional and local scale models for use in integrated assessment of air pollution effects in conjunction with large-scale models. A regional deposition model called DAIQUIRI (Deposition, AIr QUality and Integrated Regional Information) for integrated assessment purposes in Finland was constructed, and regional matrices for nitrogen oxides and ammonia were developed from the results of the regional air quality model of the FMI. DAIQUIRI produced similar estimates of deposition from Finnish sources as the original model, and long-term trends and the average level of deposition estimated with DAIQUIRI were found comparable with the monitored deposition levels and trends. For the mid-nineties situation, the regional nitrogen modeling resulted in 9% to 19% (depending on the region compared) larger estimates of areas with acidity critical load exceedances than when using European scale nitrogen deposition modeling.In this work, also a method for estimating the impacts of local NOx emissions on urban and sub-urban ozone levels was developed and tested. The study concentrated on representing the destruction of ozone by fresh NO emissions in urban areas for future use in integrated assessment modeling of ozone control strategies. Correlation coefficients between measured daytime ozone values in the study area were found to improve from 0.64 (correlation between urban and surrounding rural measurements) to 0.85, on the average. The average correlation between daytime large-scale model estimates and urban site measurements was found to improve from 0.37 to 0.58.In the study, also integrated assessment model applications were carried out at European, national and local levels. The synergies between control strategies for CO2 and acidification and ozone formation in the case of the UN/FCCC Kyoto protocol and the air quality targets of the EU were assessed with the help of coupled models. With two alternative energy scenarios reflecting the Kyoto targets for CO2, reductions of sulfur and NOx emissions between 12% and 22% and 8% to 12%, respectively, were estimated by 2010 in the EU-15 with the present emission control legislation. Due to the lower activity levels generating less emissions and the cleaner energy forms used, 35-43% cost savings in further technical emission controls required for achieving the EU air quality targets would be achieved with the scenarios studied. Case studies for Finland indicated that there has been a decrease of 60% in the area at risk of acidification from 1990 to 1995, and that the declining trend is expected to continue due to the recent international emission reduction agreements within the UN/ECE and the EU. Implementation of the Kyoto protocol in Finland and in the whole of EU-15 (with the present emission legislation) could bring up to 8% more reduction of ecosystems at risk of acidification in Finland by 2010 than the recent UN/ECE protocol.An uncertainty analysis of acidification integrated assessment modeling in Finland indicated that critical loads dominate the uncertainty. Estimates are becoming more robust, as the general level of deposition is decreasing. In Finland, further efforts to reduce the overall uncertainty should be mainly directed to more accurate description of critical thresholds. In areas affected by major nearby emission sources, also uncertainties in emissions and deposition are significant. The models and their applications presented in this study contributed to identifying the problem characteristics and have supported environmental policy development at international, national and regional levels.
  • Ekholm, Petri (Finnish Environment Institute, 1998)
    Monographs of the Boreal Environment Research 11
  • Myrberg, Kai (Finnish Institute of Marine Research, 1998)
    Monographs of the Boreal Environment Research 10
  • Tanskanen, Juha-Heikki (Finnish Environment Institute, 2000)
    Monographs of the Boreal Environment Research 17
  • Sorvari, Jaana (Finnish Environment Institute, 2010)
    Monographs of the Boreal Environment Research 37
    Land contamination is a significant environmental problem requiring systematic management actions. Defining the type and scale of the actions requires information on the risks involved. The numerous methods available for conducting risk assessment (RA) vary in terms of complexity, level of detail, conservatism, and outcomes. Thus, selecting suitable methods requires information on their applicability in Finnish conditions and at the specific site. On the other hand, it is generally accepted that current contaminated land management (CLM) should not only focus on minimizing site-specific risks, but should also consider overall environmental effects and socio-cultural and socio-economic aspects. Multi-Criteria Analysis (MCA) could then be used as a tool for integrating multidimensional data and generating aggregated information on the consequences of different risk management (RM) options, such as environmental, social, and economic impacts. Nonetheless, such approaches have very seldom been applied in CLM in Finland, probably partly due to a lack of tools specifically developed or modified for Finnish conditions.This research studied the application and suitability of different RA methods for assessing risks and identifying RM needs at some typical contaminated sites in Finland and demonstrated the use of MCA, the emphasis being on soil contamination. The studied RA approaches comprised qualitative rating and quantitative methods that were based on using environmental benchmarks, uptake and exposure models, and multimedia software. To derive estimates of ecological risks, the so-called TRIAD procedure that uses chemical studies, bioassays, and ecological studies was also applied and combined with MCA in order to account for the performance of the study methods, i.e. their ability to depict ecological risks at a study site. Qualitative rating and the statistical Monte Carlo technique provided additional means for uncertainty analysis. A separate study applying the Metaplan technique, interviews, a questionnaire, and a literature survey showed that a lack of suitable assessment tools was one of the key barriers to eco-efficient CLM in Finland. An MCA-based decision support tool (DST) adapting the Multi-Attribute Value Theory (MAVT) was therefore developed for case-by-case determination of the preferred RM option and tested with some typical Finnish contaminated sites.Many of the conclusions of the research are overarching and applicable to RA methods in general. Fistly, it appered that care must be taken in applying different models and software tools in site-specific RA, since some of their components are not straightforwardly suitable for Finnish conditions or for certain contaminants. These problems often relate to specific contaminant transport pathways. Moreover, the lack of verified data on the parameter values representative of Finnish conditions is an issue. The prevailing practice of using complicated software programs with ample data demands as the first and primary tools in human health risk assessment is not supported by this research, since it appeared that even simple tools and calculations can often provide adequate information on risks for decision-making. In ecological risk assessment (ERA), the usefulness of the approach founded on uptake and exposure models is reduced by the high uncertainties involved, particularly since the applicability of these models in Finnish conditions could not be verified. The accuracy and reliability of ecological risk estimates can be enhanced by applying the TRIAD methodology, although the procedure includes some pitfalls that need to be acknowledged. Combining TRIAD with MCA proved to be a feasible means to quantitatively study the performance of separate ERA methods. MCA thereby complements mechanical statistical analysis, such as Monte Carlo simulation, and increases the reliability of the final integrated risk estimates. In practice, a lack of data on the statistics of the input variables can restrict the use of statistical tools. The MAVT-based DST turned out to be efficient in facilitating discussion between different interest groups and experts and in identifying the preferred RM option in the common situation where risks are not the only factors relevant in decision-making. In practice, additional factors, such as the temporal scope of RM actions and some sustainability components that were not comprehensively included in the DST, might need to be considered.
  • Laine, M. Minna (Finnish Environment Institute, 1998)
    Monographs of the Boreal Environment Research 9
  • Bergström, Irina (Finnish Environment Institute, 2011)
    Monographs of the Boreal Environment Research 38
    The carbon dioxide (CO2) and methane (CH4) fluxes from aquatic sediments have recently received considerable interest because of the role of these gases in enhancing climate warming. CO2 is the main end product of aerobic respiration and CH4 is produced in large amounts under anaerobic conditions. Shallow, vegetated sediments are an important source of both gases. CH4 may be transported via rhizomes and aerenchymal tissues of aquatic plants from the sediment to the atmosphere, thus avoiding oxidation in the aerated sediment surface and water column. Temperature is known to be a key factor affecting benthic CO2 and CH4 flux rates, but the interplay between other factors that may affect the fluxes from sediments is still poorly known. In order to study the spatial and temporal variability of carbon gas fluxes in boreal aquatic sediments, the area-based CO2 production rates in lake and brackish water sediments and CH4 emissions in vegetated lake littorals were measured in this work. The effects of temperature, sediment quality, plant species, zoobenthos and seasonal variation on flux rates were also estimated. The range of CO2 production rates measured in the field was 0.1–12.0 mg C m–2 h–1 and that of CH4 emission rates 0–14.3 mg C m–2 h–1. When incubated at elevated temperatures (up to 30 °C) in the laboratory, the CO2 production rates increased up to 70 mg C m–2 h–1. Temperature explained 70–94% of the temporal variation in the CO2 production in lake sites and 51% in a brackish water site. In the lake mesocosm, temperature explained 50–90% of the variation of CH4 emission. By contrast, CH4 oxidation rate was not dependent on temperature. The CH4 fluxes through the plants of six emergent and floating-leaved plant species were studied in the field (temperature range 20.4–24.9 °C). Stands of the emergent macrophyte Phragmites australis emitted the largest amounts of CH4 (mean emission 13.9 ± 4.0 (SD) mg C m-2 h–1), the mean emission rate being correlated with mean net primary production (NPP) and mean solar radiation. In the stands of floating-leaved Nuphar lutea the mean CH4 efflux (0.5 ± 0.1 (SD) mg C m–2 h–1) was negatively correlated with mean fetch and positively with percentage cover of leaves on the water surface. On a regional level, stands of the emergents P. australis and Equisetum fluviatile emitted 32% more CH4 than natural open peatland during the growing season, although their areal coverage in the study region was only 41% of that of peatland area. Climate warming will presumably increase the carbon gas emission from vegetated littorals. The model-based estimated increase of CO2 production rate in June was 29% and for CH4 emissions as much as 65% for the time interval of 110 years from 1961–1990 to 2071–2100. The results indicate that carbon gas fluxes from aquatic sediments, especially from vegetated littorals, are significant at the landscape level. They are linked to temperature but also to several other interacting factors such as e.g. water and bottom quality and ecosystem composition. Detailed investigation of the overall links between the causes and effects is urgently needed in order to understand and predict the changes caused by warming climate.
  • Fronzek, Stefan (Suomen ympäristökeskus, 2013)
    Monographs of the Boreal Environmental Research No. 44
    Palsas are mounds with a permafrost core covered by peat. They occur in subarctic palsa mires, which are ecologically valuable mire complexes located at the outer margin of the permafrost zone. Palsas are expected to undergo rapid changes under global warming. This study presents an assessment of the potential impacts of climate change on the spatial distribution of palsa mires in northern Fennoscandia during the 21st century. A large ensemble of statistical climate envelope models was developed, each model defining the relationship between palsa occurrences and a set of temperature- and precipitation-based indicators. The models were used to project areas suitable for palsas in the future. The sensitivity of these models to changes in air temperature and precipitation was analysed to construct impact response surfaces. These were used to assess the behaviour of models when extrapolated into changed climate conditions, so that new criteria, in addition to conventional model evaluation statistics, could be defined for determining model reliability. A special focus has been on comparing alternative methods of representing future climate, applying these with impact models and quantifying different sources of uncertainty in the assessment. Climate change projections were constructed from output of coupled atmosphere-ocean general circulation models as well as finer resolution regional climate models and uncertainties in applying these with impact models were explored. New methods were developed to translate probabilistic climate change projections to probabilistic estimates of impacts on palsas. In addition to future climate, structural differences in impact models appeared to be a major source of uncertainty. However, using the model judged most reliable according to the new criteria, results indicated that the area with suitable climatic conditions for palsas can be expected to shrink considerably during the 21st century, disappearing entirely for an increase in mean annual air temperature of 4°C relative to the period 1961-1990. The risk of this occurring by the end of the 21st century was quantified to be between 43% (for the B1 low emissions scenario) and 100% (for the A2 high emissions scenario). The projected changes in areas suitable for palsas are expected to have a significant influence on the biodiversity of subarctic mires and are likely to affect the regional carbon budget.
  • Korkka-Niemi, Kirsti (Finnish Environment Institute, 2001)
    Monographs of the Boreal Environment Research 20
    Groundwater quality in domestic wells and the reasons for problems in this respect are described on the scale of an individual household well using an extensive database of 1421 wells. The water quality in these wells is compared with that reported in the late 1950’s in order to assess longterm changes, and a comparison is made between the dug wells (N = 1096) and the bedrock wells (N = 325). The possibility of seasonal changes is assessed by comparing analyses of water taken from the same 423 wells at three seasons of the year.Only 37.2 % of the wells fulfilled all the hygienic and technical requirements and recommendations for drinking water. Statistical evaluation of the water quality analyses and background data obtained from questionnaires and geological maps points to five water quality factors contributing to the conclusions reached in the survey: salinity, redox, pH, pollution and contamination. These correspond to a combination of specific geological, regional and site-specific factors which together are manifested as cumulative effects operating at particular locations. All the layers of factors are represented to various extents in each well.Well owners can modify the site-specific factors and ameliorate their effects by keeping their wells in a good state of repair, addressing problems of insufficient aeration and eliminating any nearby sources of pollution. Such measures can affect the microbiological quality of the well water, the amounts of nitrogen compounds contained in it, its turbidity, KMnO4 consumption and in part its Al, Fe and Mn concentrations, but it is not possible to influence the state of oxidation in the aquifer (affecting turbidity, colour, KMnO4 consumption, Fe and Mn, SO4 and NO3 ) or any of the extra-regional factors such as the chemical composition of the soil and bedrock or present or relict marine influence (F, Al, SO4 ,Cl, Na, K, Mn, Fe, alkalinity, pH and total hardness). The seasonal variation in quality variables in individual wells is likely to be greater than the seasonal variation in the aquifers, which emphasises the vulnerability of the wells.
  • Lahti, Kirsti (Finnish Environment Institute, 1997)
    Monographs of the Boreal Environment Research 4
  • Lehtoranta, Jouni (Finnish Environment Institute, 2003)
    Monographs of the Boreal Environment Research 24
    One of the main threats facing the Baltic Sea is eutrophication due to an excess supply of nutrients. In the Gulf of Finland, primary productivity and biomasses of autotrophic and heterotrophic organisms are among the highest in the Baltic. The high biomasses are attributed mainly to the eutrophying effects of the large land-derived nutrient inflow from St. Petersburg and via the River Neva. The role of sediment phosphorus (P) in eutrophication is, however, poorly understood in the Gulf. The aim of this study was to obtain information on the regional levels of sediment P and to specify the pools of P. Efforts were also made to define the sediment retention ability of P along the estuarine gradient, to establish the factors that affect the benthic fl ux of P and to assess whether sulphur (S) is a significant factor in sediment P cycling. On the basis of the results it was possible to quantify and consider the ecological implications of the benthic flux of P.The sediments of the Gulf are rich in organic matter, nitrogen (N) and P. A large portion of the mobile pool of P in these sediments consists of iron (Fe)-bound P, which is released when Fe(III) oxides are reduced under anoxic conditions. The increase in the sediment organic matter concentration along the estuarine gradient seems to impair the sediments’ ability to retain P. The highest benthic P efflux was measured in summer and the lowest in winter. The decrease in the near-bottom oxygen concentration in summer may favour anaerobic sulphate reduction followed by iron sulphide (FeS) formation close to the sediment- water interface. In the sediment, the key role in preventing P from entering the water is played by the binding ability of P related to diffusing Fe. In the brackish Baltic Sea, in contrast to most lake systems, the diffusion of Fe may be inactivated by FeS formation. Thus, high effluxes of P to oxic water were measured on bottoms where black sediment indicating the presence of FeS extended to the surface of the sediment.The P released from the sediments of the Gulf itself may largely explain the high P concentrations and low N:P ratios in near-bottom waters in summer and, after autumn mixing, in the entire water column. However, the input of P from the main Baltic basin may also lead to an increase in P concentrations in the Gulf. The high release rates of P measured – rather than denitrification – largely explain the N limitation of the primary production. A relationship seems to exist between the increase in near-bottom salinity and the weakening of the sediment oxidation state of the Gulf since 1996. The inflow of saline water to the Gulf strengthens density stratification, thus favouring the release of P to water. Therefore, the variations in hydrological factors may produce a marked between-year variation in the benthic P efflux and counteract the reduction in the external P load. The ability of sediment to retain P could most likely be promoted by decreasing the sedimentation of labile organic matter on the bottom. Organic matter sedimentation could be lowered by cutting the amount of bioavailable N and P from an anthropogenic sources.
  • Lehtonen, Kari K. (Finnish Institute of Marine Research, 1997)
    Monographs of the Boreal Environment Research 7
  • Karvosenoja, Niko (Finnish Environment Institute, 2008)
    Monographs of the Boreal Environment Research 32
    Air pollution emissions are produced in a wide variety of sources. They often result in detrimental impacts on both environments and human populations. To assess the emissions and impacts of air pollution, mathematical models have been developed. This study presents results from the application of an air pollution emission model, the Finnish Regional Emission Scenario (FRES) model, that covers the emissions of sulfur dioxide (SO2), nitrogen oxides (NOx), ammonia (NH3), non-methane volatile organic compounds (NMVOCs) and primary particulate matter (TSP, PM10, PM2.5 and PM1) in high 1 ´ 1 km2 spatial resolution over the area of Finland. The aims of the study were to identify key emission sources in Finland at present and in the future, to assess the effects of climate policies on air pollution, and to estimate emission reduction potentials and costs. Uncertainties in emission estimates were analyzed. Finally, emission model characteristics for use in different air pollution impact applications were discussed.The main emission sources in Finland are large industrial and energy production plants for SO2 (64% of 76 Gg a-1 total in the year 2000). Traffic vehicles are the main contributors for NOx (58% of 206 Gg a-1), NMVOCs (54% of 152 Gg a-1) and primary PM2.5 (26% of 31 Gg a-1) emissions. Agriculture is the key source for NH3 (97% of 33 Gg a-1). Other important sources are domestic wood combustion for primary PM2.5 (25%) and NMVOCs (12%), and fugitive dust emissions from traffic and other activities for primary PM10 (30% of 46 Gg a-1).In the future, the emissions of traffic vehicle exhaust will decrease considerably, by 76% (NMVOCs), 74% (primary PM2.5) and 60% (NOx), from 2000 to 2020, because of tightening emission legislations. Rather smaller decrease is anticipated in the emissions of large combustion plants, depending on future primary energy choices. Sources that are not subject to tight emission standards, e.g. domestic combustion and traffic-induced fugitive dust (i.e. non-exhaust), pose a risk for increasing emissions.The majority of measures to abate climate change, e.g. energy saving and non-combustion based energy production, lead to co-benefits as reduced air pollution emissions, especially of SO2 (20% to 28% reduction). However, promotion of domestic wood combustion poses a risk for increase in PM2.5 and NMVOCs emissions. Further emission reductions with feasible control costs are possible mainly for PM2.5 in small energy production plants and domestic combustion sources. Highest emission uncertainties were estimated for primary PM emission factors of domestic wood combustion, traffic non-exhaust sources and small energy production plants.The most important characteristics of emission models are correct location information of flue gas stacks of large plants for the assessment of acidification, and description of small polluters with high spatial resolution when assessing impacts on populations. Especially primary PM2.5 emissions originate to a considerable degree from small low-altitude sources in urban areas, and therefore it is important to be able to assess the impacts that take place near the emission sources. Detailed descriptions of large plants and 1 ´ 1 km2 spatial resolution for small emission sources applied in the FRES model enable its use in the assessment of various national environmental impacts and their reduction possibilities.The main contribution of this work was the development of a unique modeling framework to assess emission scenarios of multiple air pollutants in high sectoral and spatial resolution in Finland. The developed FRES model provides support for Finnish air pollution polices and a tool to assess the co-benefits and trade-offs of climate change strategies on air pollution.
  • Alhola, Katriina (Finnish Environment Institute, 2012)
    Monographs of the Boreal Environment Research 40
    Green public procurement (GPP) is about setting environmental criteria in the public procurement process alongside the traditional purchasing criteria, e.g. price, quality and technical features of products, services and works. GPP is considered to be one of the key policies that could be used to promote the change of unsustainable patterns of consumption and production.The use of environmental procurement criteria has increased during this decennium, as it has been promoted by many international and national policies and programmes. Nevertheless, how does this push for greener public procurement comply with the primary aims of public procurement legislation – guaranteeing the best value for taxpayers’ money and the operability of the internal market? The challenge is to combine economic and environmental issues so that purchasing decisions are compliant with law and jurisprudence. In this thesis, this issue is analyzed by examining the relations of environmental and economic aspects as well as environmental and legal aspects in public procurement.This thesis uses several methods and tools to assess the greenness of public procurement; an analysis of purchasing criteria, life cycle assessment and eco-label criteria. Environmental criteria found in the tender documents are mirrored to the existing European procurement directives and case law. The relation between economy and environment is studied within the concept of the most economically advantageous tender as defined in the EU’s public procurement directives. Its content and applicability in the assessment of economic and environmental performance of a purchase is opened for discussion.The results of this thesis suggest that economical, environmental and legal aspects can be combined in public procurement, though the linking of green criteria is specific to a single contract. Despite the increased amount of green criteria in tender documents (i.e. calls for tenders and contracts), they mainly focus on those aspects that are undoubtedly covered by the procurement directives – possibly excluding some of the important environmental impacts of the product or service from a life cycle perspective. However, systematically presented green criteria in calls for tenders could give a signal to the manufacturers of the demand for environmentally preferable solutions, and encourage them to invest in developing green products, i.e. eco-design.
  • Hildén, Mikael; Lepola, Jukka; Mickwitz, Per; Mulders, Aard; Palosaari, Marika; Similä, Jukka; Sjöblom, Stefan; Vedung, Evert (Finnish Environment Institute, 2002)
    Monographs of the Boreal Environment Research 21
    This research-based evaluation of environmental policy Instruments in Finland is focussed on regulatory instruments based on the Water Act, the Air Pollution Control Act and the Chemicals Act, on electricity taxation and on voluntary environmental management systems. The examined policy instruments have had several positive effects. They have directed major industrial point source polluters towards solving environmental problems. The transparency has been an important factor ensuring the success of the policy instruments and in avoiding the regulatory capture that could have thrived in a system largely based on negotiations between operators and authorities. The transparency has made it easy for Finnish firms to adopt environmental management systems and an open attitude to environmental reporting. The permit conditions have not directly resulted in innovations, but they have contributed to the diffusion of end-of-pipe technology and have contributed to innovations by expanding the market for environmentally better technical solutions. The permit systems have also indirectly contributed to innovations by creating a demand for environmental experts and environmental education.Networks have clearly developed as a consequence of and in response to regulatory instruments. These networks appear to have had their greatest significance prior to the permit procedures. The trend has been towards a greater emphasis of the communication in the networks prior to the presentation of an application in order to ensure a smoothly functioning permit process. In the networks contributing to innovations and the diffusion of innovations authorities have largely been outsiders, except when an innovation has become a de facto standard for permit conditions.The different kind of effects, the complexity of consequences and the uncertainties with respect to causes and effects mean that studies aiming at evaluating the overall worth and merit of an environmental policy instrument should never be structured from a single point of view using only one method. Multiple criteria should be used. The drawback of the multiple approach principle in evaluation is that the evaluations will run into data problems and all the difficulties of multi- and transdisciplinary research, but the multidisciplinarity is a necessary condition for developing an informed view of the functioning and effects of environmental policy instruments.This publication is the result of a project financed by the environmental cluster research programme.
  • Auvinen, Ari-Pekka; Hildén, Mikael; Toivonen, Heikki; Primmer, Eeva; Niemelä, Jari; Aapala, Kaisu; Bäck, Saara; Härmä, Pekka; Ikävalko, Jussi; Järvenpää, Elise; Kaipiainen, Heidi; Korhonen, Kari T.; Kumela, Hanna; Kärkkäinen, Leena; Lankoski, Jussi; Laukkanen, Marita; Mannerkoski, Ilpo; Nuutinen, Tuula; Nöjd, Anna; Punttila, Pekka; Salminen, Olli; Söderman, Guy; Törmä, Markus; Virkkala, Raimo (Finnish Environment Institute, 2007)
    Monographs of the Boreal Environment Research 29
    The results of the evaluation of the Finnish National Biodiversity Action Plan 1997-2005 indicate clear changes towards better consideration of biodiversity in the routines and policies of many sectors of the administration and economy. There are many indications that actors across society have recognized the need to safeguard biodiversity and have begun to adjust their practices accordingly. Several concrete measures have been undertaken in forests, agricultural habitats and in other habitats significantly affected by human activities. Biodiversity research has expanded significantly and the knowledge of Finland´s biological diversity has increased. In general, the Action Plan has supported public discussion of the need to safeguard biodiversity and this discussion has resulted in more positive attitudes towards nature conservation.So far, however, the implemented measures have not been sufficiently numerous or efficient to stop the depletion of original biological diversity. Many habitats remain far from their original state. More species will become endangered in the immediate future unless more effective and far-reaching measuresare taken. The objective of the EU to halt the decline of biodiversity by 2010 will not be achieved given the current development. Although the deterioration in biodiversity may have slowed down in several cases, many economic activities continue to have a negative impact on biodiversity. The scale of these activities is normally greater than that of the measures taken to manage and restore biodiversity.The evaluation focused on detecting changes in the administration of key sectors, analysing the recent development of biodiversity and observing interlinkages between these two. The analysis of administrative measures was based on interviews and on examining policy documents, reports and other relevant literature. The analysis covered changes in the administration of nature conservation, forestry,  agriculture, land use and regional and development cooperation. The analysis of the development of biodiversity was based on employing 75 pressure, state, impact and response indicators. There were 5 to 15 indicators for each of the nine major habitat types of Finland.Three separate case studies were made to provide further insights into some key issues: 1) A GISanalysis was made of the development of land use patterns in North Karelia and south-west Finland between 1990 and 2000, 2) two scenarios on the development of forest structure in North Karelia until 2050 were developed using a special MELA-model and 3) the cost-effectiveness of the agri-environmental support scheme was examined by comparing different land allocation choices and their effects on biodiversity on an average farm in southern Finland. The evaluation also paid special attention to the role of research in safeguarding biodiversity and reflected Finnish experiences against an international background.
  • Mattsson, Tuija (Finnish Environment Institute, 2010)
    Monographs of the Boreal Environment Research 36
    The terrestrial export of dissolved organic matter (DOM) is associated with climate, vegetation and land use, and thus is under the influence of climatic variability and human interference with terrestrial ecosystems, their soils and hydrological cycles. The present study provides an assessment of spatial variation of DOM concentrations and export, and interactions between DOM, catchment characteristics, land use and climatic factors in boreal catchments. The influence of catchment characteristics, land use and climatic drivers on the concentrations and export of total organic carbon (TOC), total organic nitrogen (TON) and dissolved organic phosphorus (DOP) was estimated using stream water quality, forest inventory and climatic data from 42 Finnish pristine forested headwater catchments, and water quality monitoring, GIS land use, forest inventory and climatic data from the 36 main Finnish rivers (and their sub-catchments) flowing to the Baltic Sea. Moreover, the export of DOM in relation to land use along a European climatic gradient was studied using river water quality and land use data from four European areas. Additionally, the role of organic and minerogenic acidity in controlling pH levels in Finnish rivers and pristine streams was studied by measuring organic anion, sulphate (SO4) and base cation (Ca, Mg, K and Na) concentrations. In all study catchments, TOC was a major fraction of DOM, with much lower proportions of TON and DOP. Moreover, most of TOC and TON was in a dissolved form. The correlation between TOC and TON concentrations was strong and TOC concentrations explained 78% of the variation in TON concentrations in pristine headwater streams. In a subgroup of 20 headwater catchments with similar climatic conditions and low N deposition in eastern Finland, the proportion of peatlands in the catchment and the proportion of Norway spruce (Picea abies Karsten) of the tree stand had the strongest correlation with the TOC and TON concentrations and export. In Finnish river basins, TOC export increased with the increasing proportion of peatland in the catchment, whereas TON export increased with increasing extent of agricultural land. The highest DOP concentrations and export were recorded in river basins with a high extent of agricultural land and urban areas, reflecting the influence of human impact on DOP loads. However, the most important predictor for TOC, TON and DOP export in Finnish rivers was the proportion of upstream lakes in the catchment. The higher the upstream lake percentage, the lower the export, indicating organic matter retention in lakes. Molar TOC:TON ratio decreased from headwater catchments covered by forests and peatlands to the large river basins with mixed land use, emphasising the effect of the land use gradient on the stoichiometry of rivers. This study also demonstrated that the land use of the catchments is related to both organic and minerogenic acidity in rivers and pristine headwater streams. Organic anion dominated in rivers and streams situated in northern Finland, reflecting the higher extent of peatlands in these areas, whereas SO4 dominated in southern Finland and on western coastal areas, where the extent of fertile areas, agricultural land, urban areas, acid sulphate soils, and sulphate deposition is highest. High TOC concentrations decreased pH values in the stream and river water, whereas no correlation between SO4 concentrations and pH was observed. This underlines the importance of organic acids in controlling pH levels in Finnish pristine headwater streams and main rivers. High SO4 concentrations were associated with high base cation concentrations and fertile areas, which buffered the effects of SO4 on pH.
  • Heiskanen, Anna-Stiina (Finnish Environment Institute, 1998)
    Monographs of the Boreal Environment Research 8
  • Seppälä, Jukka (Finnish Environment Institute, 2009)
    Monographs of the Boreal Environment Research 34
    To obtain data on phytoplankton dynamics (abundance, taxonomy, productivity, and physiology) with improved spatial and temporal resolution, and at reduced cost, traditional phytoplankton monitoring methods have been supplemented with optical approaches. Fluorescence detection of living phytoplankton is very sensitive and not disturbed much by the other optically active components. Fluorescence results are easy to generate, but interpretation of measurements is not straightforward as phytoplankton fluorescence is determined by light absorption, light reabsorption, and quantum yield of fluorescence - all of which are affected by the physiological state of the cells. In this thesis, I have explored various fluorescence-based techniques for detection of phytoplankton abundance, taxonomy and physiology in the Baltic Sea.In algal cultures used in this thesis, the availability of nitrogen and light conditions caused changes in pigmentation, and consequently in light absorption and fluorescence properties of cells. The variation of absorption and fluorescence properties of natural phytoplankton populations in the Baltic Sea was more complex. Physical environmental factors (e.g. mixing depth, irradiance and temperature) and related seasonal succession in the phytoplankton community explained a large part of the seasonal variability in the magnitude and shape of Chlorophyll a (Chla)-specific absorption. Subsequent variations in the variables affecting fluorescence were large; 2.4-fold for light reabsorption at the red Chla peak and 7-fold for the spectrally averaged Chla-specific absorption coefficient for Photosystem II. In the studies included in this thesis, Chla-specific fluorescence varied 2-10 fold. This variability in Chla-specific fluorescence was related to the abundance of cyanobacteria, the size structure of the phytoplankton community, and absorption characteristics of phytoplankton.Cyanobacteria show very low Chla-specific fluorescence. In the presence of eukaryotic species, Chla fluorescence describes poorly cyanobacteria. During cyanobacterial bloom in the Baltic Sea, phycocyanin fluorescence explained large part of the variability in Chla concentrations. Thus, both Chla and phycocyanin fluorescence were required to predict Chla concentration.Phycobilins are major light harvesting pigments for cyanobacteria. In the open Baltic Sea, small picoplanktonic cyanobacteria were the main source of phycoerythrin fluorescence and absorption signal. Large filamentous cyanobacteria, forming harmful blooms, were the main source of the phycocyanin fluorescence signal and typically their biomass and phycocyanin fluorescence were linearly related. It was shown that for reliable phycocyanin detection, instrument wavebands must match the actual phycocyanin fluorescence peak well. In order to initiate an operational ship-of-opportunity monitoring of cyanobacterial blooms in the Baltic Sea, the distribution of filamentous cyanobacteria was followed in 2005 using phycocyanin fluorescence.Various taxonomic phytoplankton pigment groups can be separated by spectral fluorescence. I compared multivariate calibration methods for the retrieval of phytoplankton biomass in different taxonomic groups. During a mesocosm experiment, a partial least squares regression method gave the closest predictions for all taxonomic groups, and the accuracy was adequate for phytoplankton bloom detection. This method was noted applicable especially in the cases when not all of the optically active compounds are known.Variable fluorescence has been proposed as a tool to study the physiological state of phytoplankton. My results from the Baltic Sea emphasize that variable fluorescence alone cannot be used to detect nutrient limitation of phytoplankton. However, when combined with experiments with active nutrient manipulation, and other nutrient limitation indices, variable fluorescence provided valuable information on the physiological responses of the phytoplankton community. This thesis found a severe limitation of a commercial fast repetition rate fluorometer, which couldn’t detect the variable fluorescence of phycoerythrin-lacking cyanobacteria. For these species, the Photosystem II absorption of blue light is very low, and fluorometer excitation light did not saturate Photosystem II during a measurement.This thesis encourages the use of various in vivo fluorescence methods for the detection of bulk phytoplankton biomass, biomass of cyanobacteria, chemotaxonomy of phytoplankton community, and phytoplankton physiology. Fluorescence methods can support traditional phytoplankton monitoring by providing continuous measurements of phytoplankton, and thereby strengthen the understanding of the links between biological, chemical and physical processes in aquatic ecosystems.