Wild Bootstrap Tests for Autocorrelation in Vector Autoregressive Models

Visa fullständig post

Filer under denna titel

Filer Storlek Format Granska/Öppna
562_978-952-232-178-7.pdf 593.9Kb PDF Granska/Öppna
Använd denna länk för att citera eller länka till detta dokument: http://hdl.handle.net/10138/36634
Titel: Wild Bootstrap Tests for Autocorrelation in Vector Autoregressive Models
Author: Ahlgren, Niklas; Catani, Paul
Tillhör serie: Working Paper - 562
ISBN: 978-952-232-178-7
Abstrakt: Standard asymptotic and residual-based bootstrap tests for error autocorrela-
tion are unreliable in the presence of conditional heteroskedasticity. In this article
we propose wild bootstrap tests for autocorrelation in vector autoregressive mod-
els when the errors are conditionally heteroskedastic. In particular, we investigate
the properties of Lagrange multiplier tests. Monte Carlo simulations show that
the wild bootstrap tests have satisfactory size properties in models with con-
stant conditional correlation generalised autoregressive conditional heteroskedas-
tic (CCC-GARCH) errors, whereas the standard asymptotic and residual-based
bootstrap tests are oversized. The tests are applied to credit default swap prices
and Euribor interest rates.
Permanenta länken (URI): http://hdl.handle.net/10138/36634
Datum: 2012-09-11
Detta dokument registreras i samling:

Visa fullständig post

Sök i Helda


Avancerad Sökning

Bläddra

Aktivitet