Yliopiston etusivulle Suomeksi På svenska In English Helsingin yliopisto

Computational methods for small molecules

Show simple item record

dc.contributor Helsingin yliopisto, matemaattis-luonnontieteellinen tiedekunta, tietojenkäsittelytieteen laitos fi
dc.contributor Helsingfors universitet, matematisk-naturvetenskapliga fakulteten, institutionen för datavetenskap sv
dc.contributor University of Helsinki, Faculty of Science, Department of Computer Science en
dc.contributor.author Heinonen, Markus fi
dc.date.accessioned 2012-11-28T08:21:39Z
dc.date.available 2012-12-07 fi
dc.date.available 2012-11-28T08:21:39Z
dc.date.issued 2012-12-17 fi
dc.identifier.uri URN:ISBN:978-952-10-8452-2 fi
dc.identifier.uri http://hdl.handle.net/10138/37656
dc.description.abstract Metabolism is the system of chemical reactions sustaining life in the cells of living organisms. It is responsible for cellular processes that break down nutrients for energy and produce building blocks for necessary molecules. The study of metabolism is vital to many disciplines in medicine and pharmacy. Chemical reactions operate on small molecules called metabolites, which form the core of metabolism. In this thesis we propose efficient computational methods for small molecules in metabolic applications. In this thesis we discuss four distinctive studies covering two major themes: the atom-level description of biochemical reactions, and analysis of tandem mass spectrometric measurements of metabolites. In the first part we study atom-level descriptions of organic reactions. We begin by proposing an optimal algorithm for determining the atom-to-atom correspondences between the reactant and product metabolites of organic reactions. In addition, we introduce a graph edit distance based cost as the mathematical formalism to determine optimality of atom mappings. We continue by proposing a compact single-graph representation of reactions using the atom mappings. We investigate the utility of the new representation in a reaction function classification task, where a descriptive category of the reaction's function is predicted. To facilitate the prediction, we introduce the first feasible path-based graph kernel, which describes the reactions as path sequences to high classification accuracy. In the second part we turn our focus on analysing tandem mass spectrometric measurements of metabolites. In a tandem mass spectrometer, an input molecule structure is fragmented into substructures or fragments, whose masses are observed. We begin by studying the fragment identification problem. A combinatorial algorithm is presented to enumerate candidate substructures based on the given masses. We also demonstrate the usefulness of utilising approximated bond energies as a cost function to rank the candidate structures according to their chemical feasibility. We propose fragmentation tree models to describe the dependencies between fragments for higher identification accuracy. We continue by studying a closely related problem where an unknown metabolite is elucidated based on its tandem mass spectrometric fragment signals. This metabolite identification task is an important problem in metabolomics, underpinning the subsequent modelling and analysis efforts. We propose an automatic machine learning framework to predict a set of structural properties of the unknown metabolite. The properties are turned into candidate structures by a novel statistical model. We introduce the first mass spectral kernels and explore three feature classes to facilitate the prediction. The kernels introduce support for high-accuracy mass spectrometric measurements for enhanced predictive accuracy. en
dc.description.abstract Tässä väitöskirjassa esitetään tehokkaita laskennallisia menetelmiä pienille molekyyleille aineenvaihduntasovelluksissa. Aineenvaihdunta on kemiallisten reaktioiden järjestelmä, joka ylläpitää elämää solutasolla. Aineenvaihduntaprosessit hajottavat ravinteita energiaksi ja rakennusaineiksi soluille tarpeellisten molekyylien valmistamiseen. Kemiallisten reaktioiden muokkaamia pieniä molekyylejä kutsutaan metaboliiteiksi. Tämä väitöskirja sisältää neljä itsenäistä tutkimusta, jotka jakautuvat teemallisesti biokemiallisten reaktioiden atomitason kuvaamiseen ja metaboliittien massaspektrometriamittausten analysointiin. Väitöskirjan ensimmäisessä osassa käsitellään biokemiallisten reaktioiden atomitason kuvauksia. Väitöskirjassa esitellään optimaalinen algoritmi reaktioiden lähtö- ja tuoteaineiden välisten atomikuvausten määrittämiseen. Optimaalisuus määrittyy verkkojen editointietäisyyteen perustuvalla kustannusfunktiolla. Optimaalinen atomikuvaus mahdollistaa reaktion kuvaamisen yksikäsitteisesti yhdellä verkolla. Uutta reaktiokuvausta hyödynnetään reaktion funktion ennustustehtävässä, jossa pyritään määrittämään reaktiota sanallisesti kuvaava kategoria automaattisesti. Väitöskirjassa esitetään polku-perustainen verkkokerneli, joka kuvaa reaktiot atomien polkusekvensseinä verrattuna aiempiin kulkusekvensseihin saavuttaen paremman ennustustarkkuuden. Väitöskirjan toisessa osassa analysoidaan metaboliittien tandem-massaspektrometriamittauksia. Tandem-massaspektrometri hajottaa analysoitavan syötemolekyylin fragmenteiksi ja mittaa niiden massa-varaus suhteet. Väitöskirjassa esitetään perusteellinen kombinatorinen algoritmi fragmenttien tunnistamiseen. Menetelmän kustannusfunktio perustuu fragmenttien sidosenergioiden vertailuun. Lopuksi väitöskirjassa esitetään fragmentaatiopuut, joiden avulla voidaan mallintaa fragmenttien välisiä suhteita ja saavuttaa parempi tunnistustarkkuus. Fragmenttien tunnistuksen ohella voidaan tunnistaa myös analysoitavia metaboliitteja. Ongelma on merkittävä ja edellytys aineenvaihdunnun analyyseille. Väitöskirjassa esitetään koneoppimismenetelmä, joka ennustaa tuntemattoman metaboliitin rakennetta kuvaavia piirteitä ja muodostaa niiden perusteella rakenne-ennusteita tilastollisesti. Menetelmä esittelee ensimmäiset erityisesti massaspektrometriadataan soveltuvat kernel-funktiot ja saavuttaa hyvän ennustustarkkuuden. fi
dc.format.mimetype application/pdf fi
dc.language.iso en fi
dc.publisher Helsingin yliopisto fi
dc.publisher Helsingfors universitet sv
dc.publisher University of Helsinki en
dc.relation.isformatof URN:ISBN:978-952-10-8451-5 fi
dc.relation.isformatof Helsinki: 2012, Series of publications / Department of Computer Science, University of Helsinki. A. 1238-8645 fi
dc.rights Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty. fi
dc.rights This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited. en
dc.rights Publikationen är skyddad av upphovsrätten. Den får läsas och skrivas ut för personligt bruk. Användning i kommersiellt syfte är förbjuden. sv
dc.subject tietojenkäsittelytiede fi
dc.title Computational methods for small molecules en
dc.type.ontasot Väitöskirja (artikkeli) fi
dc.type.ontasot Doctoral dissertation (article-based) en
dc.type.ontasot Doktorsavhandling (sammanläggning) sv
dc.ths Rousu, Juho fi
dc.ths Ketola, Raimo fi
dc.opn Moreau, Yves fi
dc.type.dcmitype Text fi

Files in this item

Files Description Size Format View/Open
heinonen_dissertation.pdf 2.745Mb PDF View/Open
This item appears in the following Collection(s)

Show simple item record

Search Helda


Advanced Search

Browse

My Account