Title: | On Extensions and Variants of Dependence Logic : A study of intuitionistic connectives in the team semantics setting |
Author: | Yang, Fan |
Contributor organization: | University of Helsinki, Faculty of Science, Department of Mathematics and Statistics Helsingin yliopisto, matemaattis-luonnontieteellinen tiedekunta, matematiikan ja tilastotieteen laitos Helsingfors universitet, matematisk-naturvetenskapliga fakulteten, institutionen för matematik och statistik |
Publisher: | Helsingin yliopisto |
Date: | 2014-03-28 |
Language: | eng |
URI: |
http://urn.fi/URN:ISBN:978-952-10-9787-4
http://hdl.handle.net/10138/43011 |
Thesis level: | Doctoral dissertation (monograph) |
Abstract: | Dependence logic is a new logic which incorporates the notion of dependence , as well as independence between variables into first-order logic. In this thesis, we study extensions and variants of dependence logic on the first-order, propositional and modal level. In particular, the role of intuitionistic connectives in this setting is emphasized.
We obtain, among others, the following results: 1. First-order intuitionistic dependence logic is proved to have the same expressive power as the full second-order logic. 2. Complete axiomatizations for propositional dependence logic and its variants are obtained. 3. The complexity of model checking problem for modal intuitionistic dependence logic is analyzed. Riippuvuus ja riippumattomuus ovat yleisiä ilmiöitä monella alalla aina tietojenksittelytieteestä (tietokannat, ohjelmistotekniikka, tiedon esitys, tekoäly) valtiotieteisiin (historia, osakemarkkinat). 1960-luvulta lähtien matemaatikot ja filosofit ovat olleet tietoisia klassisen ensimmäisen kertaluvun logiikan rajoitteista muuttujien riippuvuuden ja riippumattomuuden ilmaisemisessa. Ongelman ratkaisemiseksi Henkin (1961) laajensi ensimmäisen kertaluvun logiikkaa haarautuvilla kvanttoreilla ja Hintikka ja Sandu (1989) määrittelivät IF-logiikan. Väänäsen (2007) kehittämä riippuvuuslogiikka on uusi suunta lähestymistavoissa. Riippuvuuslogiikan käsitteellinen uutuus on lisätä vaatimukset riippuvuudesta ja riippumattomuudesta atomaariselle tasolle, eikä kvanttoritasolle, kuten aiemmissa lähestymistavoissa. Lisäksi logiikan metodologia on täysin uusi: tavanomaisesta yhteen tulkintafunktioon perustuvasta Tarksin semantiikasta poiketen riippuvuuslogiikan toteutuvuusrelaatio määrtellään tulkintafunktiojoukon suhteen (alunperin Hodgesilta, 1997). Riippuvuuslogiikka on luonteeltaan hyvin monitieteinen ja siksi logiikalla, ja sen monilla laajennuksilla ja muunnelmilla, on mahdollisia sovelluksia mm. tietokantateorian, kielifilosofian ja valtiotieteiden aloilla. Tämä väitöskirja tutkii riippuvuuslogiikan laajennuksia ja muunnelmia. Erityisesti painotetaan intuitionististen konnektiivien roolia tässä lähestymistavassa. Päätuloksia ovat: 1. Ensimmäisen kertaluvun intuitionistisen riippuvuuslogiikan ilmaisuvoima osoitetaan yhtä vahvaksi kuin täyden toisen kertaluvun logiikan. 2. Annetaan täydellisiä aksiomatisointeja propositionaaliselle riippuvuuslogiikalle ja sen variaatioille. 3. Analysodaan modaalisen intuitionsitisen riippuvuuslogiikan mallintarkastusongelman kompleksisuutta. |
Subject: | mathematics |
Rights: | Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty. |
Total number of downloads: Loading...
Files | Size | Format | View |
---|---|---|---|
fanyang_dissertation.pdf | 1.010Mb |
View/ |