Browsing Asiantuntijatarkastetut julkaisut - Refereed publications by Subject "air quality"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Sokhi, Ranjeet S.; Moussiopoulos, Nicolas; Baklanov, Alexander; Bartzis, John; Coll, Isabelle; Finardi, Sandro; Friedrich, Rainer; Geels, Camilla; Grönholm, Tiia; Halenka, Tomas; Ketzel, Matthias; Maragkidou, Androniki; Matthias, Volker; Moldanova, Jana; Ntziachristos, Leonidas; Schäfer, Klaus; Suppan, Peter; Tsegas, George; Carmichael, Greg; Franco, Vicente; Hanna, Steve; Jalkanen, Jukka-Pekka; Velders, Guus J. M.; Kukkonen, Jaakko (Copernicus Publ., 2022)
    Atmospheric chemistry and physics
    This review provides a community’s perspective on air quality research focusing mainly on developments over the past decade. The article provides perspectives on current and future challenges as well as research needs for selected key topics. While this paper is not an exhaustive review of all research areas in the field of air quality, we have selected key topics that we feel are important from air quality research and policy perspectives. After providing a short historical overview, this review focuses on improvements in characterizing sources and emissions of air pollution, new air quality observations and instrumentation, advances in air quality prediction and forecasting, understanding interactions of air quality with meteorology and climate, exposure and health assessment, and air quality management and policy. In conducting the review, specific objectives were (i) to address current developments that push the boundaries of air quality research forward, (ii) to highlight the emerging prominent gaps of knowledge in air quality research, and (iii) to make recommendations to guide the direction for future research within the wider community. This review also identifies areas of particular importance for air quality policy. The original concept of this review was borne at the International Conference on Air Quality 2020 (held online due to the COVID 19 restrictions during 18–26 May 2020), but the article incorporates a wider landscape of research literature within the field of air quality science. On air pollution emissions the review highlights, in particular, the need to reduce uncertainties in emissions from diffuse sources, particulate matter chemical components, shipping emissions, and the importance of considering both indoor and outdoor sources. There is a growing need to have integrated air pollution and related observations from both ground-based and remote sensing instruments, including in particular those on satellites. The research should also capitalize on the growing area of low-cost sensors, while ensuring a quality of the measurements which are regulated by guidelines. Connecting various physical scales in air quality modelling is still a continual issue, with cities being affected by air pollution gradients at local scales and by long-range transport. At the same time, one should allow for the impacts from climate change on a longer timescale. Earth system modelling offers considerable potential by providing a consistent framework for treating scales and processes, especially where there are significant feedbacks, such as those related to aerosols, chemistry, and meteorology. Assessment of exposure to air pollution should consider the impacts of both indoor and outdoor emissions, as well as application of more sophisticated, dynamic modelling approaches to predict concentrations of air pollutants in both environments. With particulate matter being one of the most important pollutants for health, research is indicating the urgent need to understand, in particular, the role of particle number and chemical components in terms of health impact, which in turn requires improved emission inventories and models for predicting high-resolution distributions of these metrics over cities. The review also examines how air pollution management needs to adapt to the abovementioned new challenges and briefly considers the implications from the COVID-19 pandemic for air quality. Finally, we provide recommendations for air quality research and support for policy.
  • Sillanpää, Salla; Fung, P.L; Niemi, J.V.; Kousa, A; Kangas, L; Zaidan, M.A.; Timonen, H; Kulmala, M.; Petäjä, T; Hussein, T (Finnish Environment Institute, 2022)
    Boreal environment research
    Long-term trends of ambient gaseous pollutants and particulate matter in Helsinki metropolitan area were analyzed from 1994 to 2019. Measurement data from ten monitoring stations located in different types of urban environments including traffic, urban background, rural background, and suburban area were included in this study. We analyzed gas-phase air pollutants, such as NO, NO2, NOx, O3, SO2 and CO; and for aerosol pollutants, we explored mass concentrations for particles smaller than 10 µm and 2.5 µm in diameter (PM10 and PM2.5, respectively ). In order to quantify trends in the data, we deployed a non-parametric Mann-Kendall test and Theil-Sen method. The results were compared with the regional emissions trends and changes in meteorological conditions. Our analysis indicates that SO2 and CO in all stations have decreased to values corresponding to their regional background concentration levels and their role as urban air pollutants have diminished. Our results from the Helsinki Metropolitan area during the last 25 years show that the air quality improved and all the air pollutant concentrations show a decreasing trend, except ozone. Based on our analysis of the Air Quality Index (AQI) at traffic and urban background environments, NO2 concentration, which have typically represented the health effects resulting from vehicular traffic, is rapidly decreasing also in traffic environments. The current AQI standard therefore lacks clarity on the potential health risks from other air pollutants emitted from traffic exhaust. In addition, the air quality indicators currently considered in the AQI do not represent well enough residential wood burning and the possible health outcomes from its exposure. We suggest that the current AQI should be revised in a way that new air quality parameters would be considered, which would better represent the health effects resulting from these local combustion sources.
  • Kuula, Joel; Timonen, Hilkka; Niemi, Jarkko V.; Manninen, Hanna E.; Rönkkö, Topi; Hussein, Tareq; Fung, Pak Lun; Tarkoma, Sasu; Laakso, Mikko; Saukko, Erkka; Ovaska, Aino; Kulmala, Markku; Karppinen, Ari; Johansson, Lasse; Petäjä, Tuukka (Copernicus GmbH, 2022)
    Atmospheric Chemistry and Physics
    As evidence of adverse health effects due to air pollution continues to increase, the World Health Organization (WHO) recently published its latest edition of the global air quality guidelines (World Health Organization, 2021). Although not legally binding, the guidelines aim to provide a framework in which policymakers can combat air pollution by formulating evidence-based air quality management strategies. In the light of this, the European Union has stated its intent to revise the current ambient air quality directive (2008/50/EC) to more closely resemble the newly published WHO guidelines (European Commission, 2020). This article provides an informed opinion on selected features of the air quality directive that we believe would benefit from a reassessment. The selected features include discussion about (1) air quality sensors as a part of a hierarchical observation network, (2) the number of minimum sampling points and their siting criteria, and (3) new target air pollution parameters for future consideration.
  • Fatahi, Yalda; Kouznetsov, Rostislav; Sofiev, Mikhail (Copernicus Publ., 2021)
    Geoscientific model development
    This study quantifies the impact of emission changes during public holidays on air quality (AQ) and anal anayses the added value of accounting for the holidays in AQ modelling. Spatial and temporal distributions of atmosphericconcentrations of the major air pollutants (the main focus was on NO2, but we also included O3, CO, PM2.5, and SO2) were considered at the European scale for all public holi days of 2018. Particular attention was paid to the events with the most pronounced continental- or regional-scale impact: Christmas and New Year, Easter, May Day vacations, and the last days of Ramadan. The simulations were performed with the chemistry transport model SILAM v.5.7 (System for Integrated modeLling of Atmospheric coMposition). Three model runs were made: the baseline with no treatment of holidays, the run considering holidays as Sundays, and the run forcing 80 % reduction in emissions during holidays for the weekday-sensitive sectors. The emission scaling was applied on a country basis. The model predictions were compared with in situ observations collected by the European Environment Agency. The experiment showed that even conservative treatment of official holidays has a large positive impact on NOx (up to 30 % of reduction in the bias inhomogene ity during the holiday days) and improves the CO, PM2.5, and O3 predictions. In many cases, the sensitivity simulations suggested a greater emission reduction than the level of Sundays. An individual consideration of the holiday events in different countries may further improve their representation in the models: specific diurnal pattern of emissions, additional emission due to fireworks, and different driving patterns.