Asiantuntijatarkastetut artikkelit - Original articles and reviews

 

Recent Submissions

  • Simon, Gaëlle; Larsen, Lars E.; Dürrwald, Ralf; Foni, Emanuela; Harder, Timm; Van Reeth, Kristien; Markowska-Daniel, Iwona; Reid, Scott M.; Dan, Adam; Maldonado, Jaime; Huovilainen, Anita; Billinis, Charalambos; Davidson, Irit; Agüero, Montserrat; Vila, Thaïs; Hervé, Séverine; Østergaard Breum, Solvej; Chiapponi, Chiara; Urbaniak, Kinga; Kyriakis, Constantinos S.; ESNIP3 consortium; Brown, Ian H.; Loeffen, Willien (2014)
  • Rintala, Eeva-Maria; Ekholm, Päivi; Koivisto, Pertti; Peltonen, Kimmo; Venäläinen, Eija-Riitta (2014)
  • Revez, Joana; Llarena, Ann-Katrin; Schott, Thomas; Kuusi, Markku; Hakkinen, Marjaana; Kivistö, Rauni; Hänninen, Marja-Liisa; Rossi, Mirko (2014)
  • Nordgren, Heli; Aaltonen, Kirsi; Sironen, Tarja; Kinnunen, Paula M.; Kivistö, Ilkka; Raunio-Saarnisto, Mirja; Moisander-Jylhä, Anna-Maria; Korpela, Johanna; Kokkonen, Ulla-Maija; Hetzel, Udo; Sukura, Antti; Vapalahti, Olli (2014)
  • Karkamo, Veera; Kaistinen, Anu; Näreaho, Anu; Dillard, Kati; Vainio-Siukola, Katri; Vidgrén, Gabriele; Tuoresmäki, Niina; Anttila, Marjukka (2014)
  • Grönthal, Thomas; Moodley, Arshnee; Nykäsenoja, Suvi; Junnila, Jouni; Guardabassi, Luca; Thomson, Katariina; Rantala, Merja (2014)
  • Garcia-Alvarez, Alicia; Egan, Bernadette; de Klein, Simone; Dima, Lorena; Maggi, Franco M.; Isoniemi, Merja; Ribas-Barba, Lourdes; Raats, Monique M.; Meissner, Eva Melanie; Badea, Mihaela; Bruno, Flavia; Salmenhaara, Maija; Milà-Villarroel, Raimon; Knaze, Viktoria; Hodgkins, Charo; Marculescu, Angela; Uusitalo, Liisa; Restani, Patrizia; Serra-Majem, Lluís (2014)
  • Suutari, Anniina; Hallikainen, Anja; Ruokojärvi, Päivi; Kiviranta, Hannu; Nieminen, Mauri; Laaksonen, Sauli (2012)
    Background: The aim of this study was to determine 17 Polychlorinated Dibenzo-p-dioxin and Dibenzofuran (PCDD/F) and 12 Dioxin-like Polychlorinated Biphenyl (DL-PCB) concentrations in the tissues of Finnish terrestrial herbivore species, semi-domesticated reindeer (Rangifer tarandus tarandus L.), and wild moose (Alces alces), investigate transfer and accumulation of PCDD/Fs and DL-PCBs in milk of the lactating reindeer hinds, and explore contaminant concentrations in stillborn reindeer calves exposed via placental transfer to PCDD/Fs and DL-PCBs. Methods: Reindeer and moose tissue sampling was focused in Finnish reindeer herding region. Reindeer milk samples were sampled in summer and autumn from reindeer hinds in experimental reindeer station in northern Finland. PCDD/Fs and DL-PCBs were analyzed using HRGC/HRMS method. The results are reported here as WHOTEQ upper bound concentrations and congener-specific lower bound concentrations. Results: WHO-PCDD/F- and PCB-TEQs in reindeer muscle and liver were generally higher in the calves than in adults. Concentrations in moose calves were lower than in reindeer calves, while in adult reindeer and moose the levels were equal. General PCDD/F congeners in reindeer muscle and liver were 23478-PeCDF, 123678-HxCDD and OCDD. In reindeer milk, the highest PCDD/F detected was OCDD, and it was common also in the moose muscle samples. A strong contribution of non-ortho-PCBs to WHO-TEQ was detected in all studied samples. The most dominating non-ortho-DL-PCB congener was PCB-126 in reindeer muscle, liver and milk. In moose muscle samples PCB-77 was the most abundant congener. Species-, individual- and tissue-specific accumulation of PCDD/Fs and DL-PCBs may be the result from varying extent and quality of exposure, and to some extent from different metabolic potential. Conclusions: PCDD/Fs showed partly similar profiles in reindeer and moose muscle, reindeer liver and milk samples - indicating equal mode of bioaccumulation. A strong contribution of non-ortho-PCBs to WHO-TEQ was detected, although there were some differences in frequency of particular congeners in these species. Due to the harmonized sampling method the study offers the way to determine and compare the levels of PCDD/Fs and DLPCBs in reindeer and moose tissues and examine the transfer and dynamics of dioxins and dioxin-like compounds in northern terrestrial food web.
  • Siekkinen, Kirsi-Maarit; Heikkilä, Jaakko; Tammiranta, Niina; Rosengren, Heidi (2012)
    Background: Farm-level biosecurity provides the foundation for biosecurity along the entire production chain. Many risk management practices are constantly in place, regardless of whether there is a disease outbreak or not. Nonetheless, the farm-level costs of preventive biosecurity have rarely been assessed. We examined the costs incurred by preventive biosecurity for Finnish poultry farms. Methods: We used a semi-structured phone interview and obtained results from 17 broiler producers and from 5 hatching egg producers, corresponding to about 10% of all producers in Finland. Results: Our results indicate that the average cost of biosecurity is some 3.55 eurocent per bird for broiler producers (0.10 eurocent per bird per rearing day) and 75.7 eurocent per bird for hatching egg producers (0.27 eurocent per bird per rearing day). For a batch of 75,000 broilers, the total cost would be €2,700. The total costs per bird are dependent on the annual number of birds: the higher the number of birds, the lower the cost per bird. This impact is primarily due to decreasing labour costs rather than direct monetary costs. Larger farms seem to utilise less labour per bird for biosecurity actions. There are also differences relating to the processor with which the producer is associated, as well as to the gender of the producer, with female producers investing more in biosecurity. Bird density was found to be positively related to the labour costs of biosecurity. This suggests that when the bird density is higher, greater labour resources need to be invested in their health and welfare and hence disease prevention. The use of coccidiostats as a preventive measure to control coccidiosis was found to have the largest cost variance between the producers, contributing to the direct costs. Conclusions: The redesign of cost-sharing in animal diseases is currently ongoing in the European Union. Before we can assert how the risk should be shared or resort to the ‘polluter pays’ principle, we need to understand how the costs are currently distributed. The ongoing study contributes towards understanding these issues. The next challenge is to link the costs of preventive biosecurity to the benefits thus acquired.
  • Lyhs, Ulrike; Ikonen, Ilona; Pohjanvirta, Tarja; Raninen, Kaisa; Perko-Mäkelä, Päivikki; Pelkonen, Sinikka (2012)
    Background: Extraintestinal pathogenic Escherichia coli bacteria (ExPEC) exist as commensals in the human intestines and can infect extraintestinal sites and cause septicemia. The transfer of ExPEC from poultry to humans and the role of poultry meat as a source of ExPEC in human disease have been discussed previously. The aim of the present study was to provide insight into the properties of ExPEC in poultry meat products on the Finnish retail market with special attention to their prevalence, virulence and phylogenetic profiles. Furthermore, the isolates were screened for possible ESBL producers and their resistance to nalidixic acid and ciprofloxacin was tested. Methods: The presence of ExPEC in 219 marinated and non-marinated raw poultry meat products from retail shops has been analyzed. One E. coli strain per product was analyzed further for phylogenetic groups and possession of ten virulence genes associated with ExPEC bacteria (kpsMT K1, ibeA, astA, iss, irp2, papC, iucD, tsh, vat and cva/cv) using PCR methods. The E. coli strains were also screened phenotypically for the production of extended-spectrum β-lactamase (ESBL) and the susceptibility of 48 potential ExPEC isolates for nalidixic acid and ciprofloxacin was tested. Results: E. coli was isolated from 207 (94.5%) of 219 poultry meat products. The most common phylogenetic groups were D (50.7%), A (37.7%), and B2 (7.7%). Based on virulence factor gene PCR, 23.2% of the strains were classified as ExPEC. Two ExPEC strains (1%) belonged to [O1] B2 svg+ (specific for virulent subgroup) group, which has been implicated in multiple forms of ExPEC disease. None of the ExPEC strains was resistant to ciprofloxacin or cephalosporins. One isolate (2.1%) showed resistance to nalidixic acid. Conclusions: Potential ExPEC bacteria were found in 22% of marinated and non-marinated poultry meat products on the Finnish retail market and 0.9% were contaminated with E. coli [O1] B2 svg+ group. Marinades did not have an effect on the survival of ExPEC as strains from marinated and non-marinated meat products were equally often classified as ExPEC. Poultry meat products on the Finnish retail market may have zoonotic potential.
  • Gindonis, Gindonis.; Taponen, S.; Myllyniemi, A.-L.; Pyörälä, S.; Nykäsenoja, S.; Salmenlinna, S.; Lindholm, L.; Rantala, M. (2013)
    Background: Methicillin-resistant staphylococci (MRS) are increasingly being isolated in bovine mastitis. The aim of our study was to evaluate the occurrence of MRS in Finnish mastitis milk samples and characterize the MRS isolates using molecular methods. Results: Methicillin-resistant S. aureus (MRSA) was a rare finding in bovine mastitis in Finland. Only two out of 135 (1.5%) S. aureus isolates were positive for mec genes. One of these carried mecA and was of spa type t172, SCCmec type IV and ST375, and the other harboured mecC, being spa type t3256, and ST130. MRSA ST375 is common among human MRSA isolates in Finland, but this is the first report in the country of bovine mecC MRSA. In coagulase-negative staphylococci (CoNS) originating from bovine mastitis, methicillin resistance was more common. In the two CoNS collections studied, 5.2% (17/324) and 1.8% (2/110) of the isolates were mecA positive. Eighteen of these were methicillin-resistant S. epidermidis (MRSE), which were divided into 6 separate PFGE clusters. One pulsotype was detected in different parts of the country, indicating clonal spread. Most MRSE (13/18) were of SCCmec type IV, one was of type V and four were non-typeable. Comparison with a human staphylococcal database indicated that bovine MRSE strains were not closely related to human MRSE isolates. Conclusions: The occurrence of MRS, especially MRSA, in bovine mastitis in Finland was low. Most methicillinresistant bovine CoNS are MRSE, and we found evidence of a bovine MRSE strain that may spread clonally. This is the first report of a Finnish bovine isolate of MRSAmecC ST130. The study provides a baseline for further MRS monitoring.
  • Bagcigil, F.; Taponen, S.; Koort, J.; Bengtsson, B.; Myllyniemi, A.-L.; Pyörälä, S. (2012)
    Background: The blaZ gene encoding penicillin resistance can be located either chromosomally or on plasmids. The aim of this study was to investigate the genetic relationships and to determine the location of the blaZ gene in S. aureus isolated in bovine mastitis in Finland and Sweden. Methods: Seventy-eight β-lactamase positive S. aureus isolates from bovine mastitis (34 from Finland and 44 from Sweden) were included in the study. The localization of blaZ gene was determined by Southern blotting. The blaZ genes of the isolates were sequenced and the sequences were translated to beta-lactamase proteins and further grouped as different protein signatures. The isolates and, as control, 33 Swedish and 36 Finnish beta-lactamase negative isolates were typed with pulsed-field gel electrophoresis (PFGE). Results: In 26 out of 34 Finnish isolates (76.5%) and in 25 out of 44 Swedish isolates (56.8%) the blaZ gene was localized on a plasmid. Six different protein signatures were found. One signature was found only in four Swedish isolates, but all other signatures were found both in Finnish and Swedish isolates. The PFGE results revealed a diversity of S. aureus clones. The protein signatures were not clearly associated with certain pulsotypes. Conclusions: The plasmid location of the blaZ gene was not statistically significantly more common in Finland than in Sweden, and hence does not explain the higher proportion of penicillin-resistant isolates of S. aureus causing bovine mastitis in Finland compared to Sweden.
  • Nokireki, T.; Laine, T.; London, L.; Ikonen, N.; Huovilainen, A. (2013)
    Background: Swine influenza is an infectious acute respiratory disease of pigs caused by influenza A virus. We investigated the time of entry of swine influenza into the Finnish pig population. We also describe the molecular detection of two types of influenza A (H1N1) viruses in porcine samples submitted in 2009 and 2010. This retrospective study was based on three categories of samples: blood samples collected for disease monitoring from pigs at major slaughterhouses from 2007 to 2009; blood samples from pigs in farms with a special health status taken in 2008 and 2009; and diagnostic blood samples from pigs in farms with clinical signs of respiratory disease in 2008 and 2009. The blood samples were tested for influenza A antibodies with an antibody ELISA. Positive samples were further analyzed for H1N1, H3N2, and H1N2 antibodies with a hemagglutination inhibition test. Diagnostic samples for virus detection were subjected to influenza A M-gene-specific real-time RT-PCR and to pandemic influenza A H1N1-specific real-time RT-PCR. Positive samples were further analyzed with RT-PCRs designed for this purpose, and the PCR products were sequenced and sequences analyzed phylogenetically. Results: In the blood samples from pigs in special health class farms producing replacement animals and in diagnostic blood samples, the first serologically positive samples originated from the period July–August 2008. In samples collected for disease monitoring, < 0.1%, 0% and 16% were positive for antibodies against influenza A H1N1 in the HI test in 2007, 2008, and 2009, respectively. Swine influenza A virus of avian-like H1N1 was first detected in diagnostic samples in February 2009. In 2009 and 2010, the avian-like H1N1 virus was detected on 12 and two farms, respectively. The pandemic H1N1 virus (A(H1N1) pdm09) was detected on one pig farm in 2009 and on two farms in 2010. Conclusions: Based on our study, swine influenza of avian-like H1N1 virus was introduced into the Finnish pig population in 2008 and A(H1N1)pdm09 virus in 2009. The source of avian-like H1N1 infection could not be determined. Cases of pandemic H1N1 in pigs coincided with the period when the A(H1N1)pdm09 virus was spread in humans in Finland.