Evolution of migration rate in a spatially realistic metapopulation model.

Show simple item record

dc.contributor.author Heino,-M; Hanski,-I en
dc.contributor.other Division of Population Biology, Department of Ecology and Systematics, University of Helsinki, Box 17, FIN-00014 Helsinki, Finland. en
dc.date.accessioned 2007-06-12T15:03:32Z en
dc.date.accessioned 2009-06-17T14:02:42Z
dc.date.available 2007-06-12T15:03:32Z en
dc.date.available 2009-06-17T14:02:42Z
dc.date.issued 2001 en
dc.identifier.citation American-Naturalist. 2001; 157(5): 495-511 en
dc.identifier.issn 0003-0147 en
dc.identifier.uri http://dx.doi.org/doi:10.1086/319927 en
dc.identifier.uri http://hdl.handle.net/1975/5157
dc.description.abstract We use an individual-based, spatially realistic metapopulation model to study the evolution of migration rate. We first explore the consequences of habitat change in hypothetical patch networks on a regular lattice. If the primary consequence of habitat change is an increase in local extinction risk as a result of decreased local population sizes, migration rate increases. A nonmonotonic response, with migration rate decreasing at high extinction rate, was obtained only by assuming very frequent catastrophes. If the quality of the matrix habitat deteriorates, leading to increased mortality during migration, the evolutionary response is more complex. As long as habitat patch occupancy does not decrease markedly with increased migration mortality, reduced migration rate evolves. However, once mortality becomes so high that empty patches remain uncolonized for a long time, evolution tends to increase migration rate, which may lead to an "evolutionary rescue" in a fragmented landscape. Kin competition has a quantitative effect on the evolution of migration rate in our model, but these patterns in the evolution of migration rate appear to be primarily caused by spatiotemporal variation in fitness and mortality during migration. We apply the model to real habitat patch networks occupied by two checkerspot butterfly species (Melitaea cinxia and M. diamina) for which sufficient data are available to estimate rigorously most of the model parameters. The model-predicted migration rate is not significantly different from the empirically observed one. Regional variation in patch areas and connectivities leads to regional variation in the optimum migration rate, predictions that can be tested empirically. en
dc.language English en
dc.publisher Chicago, USA: University of Chicago Press. en
dc.subject Nymphalidae- en
dc.subject Melitaea-; Melitaea-cinxia; Melitaea-diamina en
dc.subject Melitaea-; Nymphalidae-; Lepidoptera-; insects-; arthropods-; invertebrates-; animals- en
dc.subject.other effective-population-size; estimation-; evolution-; extinction-; habitats-; mathematical-models; migration-; mortality-; spatial-variation en
dc.title Evolution of migration rate in a spatially realistic metapopulation model. en
dc.type Journal-article en
dc.identifier.laitoskoodi B571151 fi
dc.creator.corporateName Metapopulaatiobiologian tutkimusryhmä (Bio- ja ympäristötieteiden laitos. Ekologia ja evoluutiobiologia) fi
dc.creator.corporateName Metapopulation Research Group (Department of Biological and Environmental Sciences. Ecology a nd Evolutionary Biology) en
dc.creator.corporateName Metapopulationsbiologi, Forskningsgruppen för (Institutionen för bio- och miljövetenskaper. Ekologi och evolutionsbiologi) sv

Files in this item

Total number of downloads: Loading...

Files Size Format View
AmNat 2001 Heino & Hanski.pdf 430.9Kb PDF View/Open

This item appears in the following Collection(s)

Show simple item record