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Abstract

Vast amounts of molecular data are being generated every day. However,
how to properly harness the data remains often a challenge for many bi-
ologists. Firstly, due to the typical large dimension of the molecular data,
analyses can either require exhaustive amounts of computer memory or
be very time-consuming, or both. Secondly, biological problems often have
their own special features, which put demand on specially designed software
to obtain meaningful results from statistical analyses without imposing too
much requirements on the available computing resources. Finally, the gen-
eral complexity of many biological research questions necessitates joint use
of many different methods, which requires a considerable expertise in prop-
erly understanding the possibilities and limitations of the analysis tools.

In the first part of this thesis, we discuss three general Bayesian classi-
fication/clustering frameworks, which in the considered applications are
targeted towards clustering of DNA sequence data, in particular in the
context of bacterial population genomics and evolutionary epidemiology.
Based on more generic Bayesian concepts, we have developed several sta-
tistical tools for analyzing DNA sequence data in bacterial metagenomics
and population genomics.

In the second part of this thesis, we focus on discussing how to recon-
struct bacterial evolutionary history from a combination of whole genome
sequences and a number of core genes for which a large set of samples are
available. A major problem is that for many bacterial species horizontal
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gene transfer of DNA, which is often termed as recombination, is relatively
frequent and the recombined fragments within genome sequences have a
tendency to severely distort the phylogenetic inferences. To obtain compu-
tationally viable solutions in practice for a majority of currently emerging
genome data sets, it is necessary to divide the problem into parts and
use different approaches in combination to perform the whole analysis. We
demonstrate this strategy by application to two challenging data sets in the
context of evolutionary epidemiology and show that biologically significant
conclusions can be drawn by shedding light into the complex patterns of
relatedness among strains of bacteria. Both studied organisms (Escherichia
coli and Campylobacter jejuni) are major pathogens of humans and under-
standing the mechanisms behind the evolution of their populations is of
vital importance for human health.

General Terms:
Bacteria, Metagenomics, Genomics, Population genetics

Additional Key Words and Phrases:
Classification, Clustering, BAPS, BratNextGen, BEBaC, DNA, Sequence
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Chapter 1

Introduction

When James D. Watson and Francis Crick first discovered the double helix
structure of DNA, the secret of life could be written in a mathematical form
for the first time. However, until recently, it has remained a challenge to
measure the bases in DNA sequences in an efficient, robust and relatively
cheap manner from large collections of samples. With the emergence of
novel sequencing technologies, especially those called the next generation
sequencing technologies, scientists are able to read the DNA sequences in
a much greater detail than ever before. Still, the secret of life is far from
being totally deciphered yet, and vast amounts of biological data wait to
be analyzed on the road towards increasingly detailed insights about how
living organisms do function and evolve.

With the ever accumulating masses of sequence data, bioinformatics
has established its position as the branch of computational and statisti-
cal sciences which acts as a powerful and necessary propeller of biological
research. Modern bioinformatics related research can be divided into two
broad categories. One category leans toward “informatics”, which aims to
develop new methods to solve specific problems in biology, i.e. formulate
the problems in mathematical terms. For example, software packages such
as BEAST [I], FastTree [2], MEGA [3] and RAxML [4] all provide useful
tools for studying molecular evolution by a phylogenetics based approach,
where the underlying methods are based on a multitude of important algo-
rithmic, mathematical and statistical formalisms and insights that together
make daunting analysis tasks possible to complete without access to nearly
unlimited computing power. The other category leans more towards “bi-
ology”, where one often combines different existing bioinformatics tools to
provide an answer to a biological question, or make new discoveries.

This thesis, focusing on applications in the area of bacterial popula-
tion genomics, will summarize my research work from the above two per-
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4 1 INTRODUCTION

Figure 1.1: The hierarchy of biological classification’s eight major taxo-
nomic ranks [5]. Intermediate minor rankings are not shown.

spectives. Chapter 1 gives a simple introduction to bacterial population
genomics; Chapter 2 focuses on clustering/classification methods in dif-
ferent scenarios; Chapter 3 introduces an application to retrieve bacterial
evolutionary history despite recombination.

1.1 Brief introduction to bacterial domain

Organisms are categorized into different hierarchical taxonomic ranks by
biologists, as shown in Figure A common understanding [6] categorizes
all living organisms into three domains: Bacteria, Archaea, and Eucaryota.
It is suggested in a recent study [7] that Eukaryotes originate from a fusion
of an achaebacterium and a eubacterum.

Bacteria are closely related with human health. There are trillions of
bacteria within the human body cavities, such as nose, skin, gut and so
on. Hence bacteria and human are actually cohabiting with each other
[8]. Changes in the microbial environment of the human body may lead to
diseases. Gill et al. [9] find that the bacterial composition of the gut of
newborn babies represents the key factor to stimulate the development of
human immune systems. Given the wide range of threats to human health
caused by infectious diseases, it is important to understand how bacterial
populations are evolving and how disease-causing agents are related to each
other, in particular in terms of horizontally transferred genetic material.

The first step to exploring the mysterious world of bacteria was to clas-
sify or categorize them using physical appearances. Later on, taxonomists
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Figure 1.2: Schematic structure of 16S rRNA gene [11]. 16S rRNA gene
consists of 9 variable regions (grey) and the rest (green) are universally
conserved regions. The conserved regions are used as binding sites for
PCR primers and the variable regions are used as fingerprints for bacterial
species and genera.

started to use biochemical tests to classify bacteria at different taxonomic
ranks. However, due to limitations of biochemical tests and morphological
characteristics, these methods cannot usually separate different strains of
bacteria representing the same species, while they may have enormous dif-
ferences in terms of virulence and resistance to antibiotics. Also, in many
cases the collected samples represent a mixture of many different bacte-
ria, which can not be easily separated and grown for biochemical testing
purposes.

Given that bacterial taxonomy based on physical appearance and simple
biochemical properties is riddled with problems, it is not surprising that
DNA sequencing represents the most promising approach to understanding
and characterization of variation in the bacterial domain. The most widely
used approach to DNA based classification is to sequence the 16S rRNA
gene [10], which appears almost universally in all bacteria. Figure
provides a schematic description of the 16S rRNA gene. The 16S rRNA gene
has an approximate length of 1500 bp, which contains 9 variable regions
flanked by universally conserved regions. The conserved regions of 16S
rRNA gene (green parts in Figure are so well conserved that they are
virtually identical for all bacteria, while the other variable regions (grey
parts in Figure display variation across the bacterial species. Thus
the green fragments are used as binding sites for PCR primers and the
grey fragments are used as fingerprints of bacterial species and genera.
Therefore, this structure makes the 165 rRNA gene an attractive target for
classification purposes.

Although the 16S rRNA gene provides a fairly good resolution to dis-
tinguish different bacterial species, outside metagenomics applications it is
most often necessary to separate different evolutionary lineages of bacte-
ria at the species level (Figure [1.1)). To identify evolutionary relationships
among bacterial strains of a single species, multi locus sequence typing



6 1 INTRODUCTION

(MLST) [12] was introduced to provide a novel tool for infectious disease
epidemiology. MLST genotypes refer to concatenated allelic profile of a bac-
terial strain at several housekeeping genes found universally within a genus.
By definition, housekeeping genes are necessary for maintenance of the ba-
sic cellular functions. Hence, nearly all DNA variation occurring within
the MLST loci represent neutral, i.e. synonymous mutations, which can be
used to trace back the ancestry of strains in a spatio-temporal setting on a
fairly large geographical scale. The choice of housekeeping genes depends
on the bacteria under investigation, although it has been observed that
many different bacterial species do harbour partly the same housekeeping
genes such that some of the MLST loci in use are not species-specific.

Despite of the fact that MLST provides a powerful tool for infectious
disease epidemiology, there are a lot of settings where MLST sequences
do not harbour enough variation to be useful for discriminating between
lineages that have important phenotypic differences or to reveal multiple
separate transmissions of strains into a host population. When one wishes
to study the evolution and transmission of bacteria at a highly detailed
level, it is necessary to use whole genome sequence data since very closely
related strains often have identical alleles at MLST loci, even if they can
differ substantially elsewhere in the genome, e.g. due to frequent horizontal
gene transfer. With the help of the whole genome sequence data, scientists
are able to detect gene flow and recombination events for instance in the
pathogen transmission processes. In a typical epidemiological study us-
ing the whole genome sequence data, scientists will carefully select a set
of isolates of the same bacterial species, and then sequence their whole
genomes. Since bacterial genomes do evolve very rapidly for most species
due to phages and also by transformation for many species, even in the
whole-genome setting it is typically necessary to restrict the evolutionary
analyses to core genes present across all sequenced samples. Genes outside
this set, often termed as accessory genes, can also be analyzed, however, it
is much more challenging to put forward statistical models that trace their
evolutionary dynamics compared to the core genes.

It is far from trivial to assign strains to evolutionary lineages and to
estimate the levels of their relatedness using standard phylogenetic methods
due to the traces of horizontally transferred genetic material. In standard
phylogenetic models neutral evolution is described in terms of independent
substitutions occurring in DNA at a specific rate [13]. Since horizontal
transfer of DNA breaks the assumptions behind such models, resulting
estimates of phylogenies can be severely distorted. Recombination events
often tend to introduce many single-nucleotide polymorphism (SNP) sites,
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which can obscure the true clonal relationships and distort attempts to
dating evolutionary events using statistical methods such as BEAST [I].
Croucher et al. [14] show an excellent example about this phenomenon in
pneumococcal evolution.

1.2 Concepts about bacterial population genomics

The term “population genomics” is a fairly new term in the field of pop-
ulation genetics. Below we will discuss the two terms “population” and
“genomics” separately.

It is relevant to ask what a “population” actually represents in mathe-
matical and biological terms. Waples and Gaggiotti [15] list many different
definitions of a population. Here we use this definition: “A group of in-
dividuals of the same species living in close enough proximity that any
member of the group can potentially mate with any other member”. How-
ever, “population” is sometimes used to mean “Operational taxonomic unit
(OTU)” in bioinformatics, which actually refers to a cluster given by some
clustering software.

“Genomics” generally means the study of genomes, including sequenc-
ing of the genomes, study of the genome structure and analysis of the
function of genome. It can also refer to the study of recombinations in
genomes, i.e. traces of the past, interactions between ancestral organisms
that gave rise to the observed genomes.

In a nutshell, bacterial population genomics focuses on how bacteria
populations interact with each other, how to discover the interactions by
statistical analysis of genomic data and what are the evolutionary routes
underlying the data. The genomic analyses are typically involving also
rich meta data on samples, representing both phenotypic characteristics of
the bacteria (e.g. virulence and antibiotic resistance) and ecological con-
ditions under which samples were acquired, in addition to spatio-temporal
information about them.
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Chapter 2

Bayesian clustering and
classification methods

Bayesian methods are very popular in many different research areas due to
their capability to quantify uncertainty in complex systems. In the tradi-
tional frequentist statistical approach one usually assumes that there exist
a true population value of every parameter in a model, which is estimated
from observational or experimental data (or from both data types). In
Bayesian statistics inferences are made from a distribution over the pa-
rameters, which is learned from data by updating the prior probability
distribution of the parameters.

In modern research it is common to use parameter-rich complex mod-
els, while the observed data can be very limited compared to the level of
model complexity. Under such circumstances it is usually challenging to de-
rive accurate point estimates of the target parameters if uncertainty about
latent variables and auxiliary parameters in a model is not appropriately
accounted for. In Bayesian statistics inferences about target parameters
are sought from the marginal posterior distribution, obtained by integrat-
ing out auxiliary parameters and latent variables from a joint model for the
data and all unknowns. However, this operation is in general very difficult
to do, and various types of approximations are often necessary for practical
applicability.

A general Bayesian model includes three key parts: prior, likelihood
and posterior, which are abbreviations for the prior probability distribu-
tion of the unknowns included in a statistical model, the likelihood function
of the model and the posterior probability distribution of the unknowns,
respectively.

The prior refers to the distribution p(6) of the parameters 6 before
gaining access to data z related to the chosen statistical model. Hence, the
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10 2 BAYESIAN CLUSTERING AND CLASSIFICATION METHODS

prior distribution reflects the background information about the modelled
phenomenon. If only very sparse background information is available, then
a non-informative, reference type prior [16] is often used. Such a prior dis-
tribution can be interpreted like a default setting, say, in a image-processing
software which has a number of parameters determining color saturation,
contrast, brightness, etc. Even for complex models it is often possible to
use reference conjugate priors for many of the auxiliary parameters condi-
tional on other latent variables or target parameters included in the model.
Since analytical integration can be used for conjugate priors, they offer
huge computational advantages for fitting the models to data.

The likelihood p(z|0) specifies how the data are generated under the
considered statistical model, which is usually the most central part of the
modelling process. In many applications a statistical model can be con-
sidered as an approximation to the mechanism causing stochastic variation
among the observables, often due to both natural variation and measure-
ment errors. The likelihood function is then usually the most relevant part
of the model which captures characteristics of the underlying mechanism.
The maximum likelihood (ML) method estimates the model parameters by
maximizing the likelihood function. When extensive data are available, ML
estimates usually agree with Bayesian estimates.

The posterior p(f|z) is the conditional distribution of the parameter
given the data, which combines information from the prior and the likeli-
hood. According to Bayes’ rule, the posterior is given by

p(0)p(x|0)
p(z)

The estimate 6p74p, which maximizes the posterior distribution p(6|z), is
known as the maximum & posterior probability (MAP) estimate. For many
inference problems it is more appropriate to use instead posterior mean as
an estimate, arising from a squared error loss function in contrast to the
absolute error loss which leads to the MAP estimate. Calculations of both
estimates require typically efficient methods to explore the parameter space,
where Markov Chain Monte Carlo methods (MCMC) and other stochastic
simulation methods are often used.

For most modern applications of statistics there are nuisance parame-
ters in the model, which are auxiliary parameters not of primary interests.
The common approach for handling these parameters is to integrate them
out, which usually leads to a more realistic quantification of the uncertainty
about other parameters compared for instance to maximization of the joint
posterior. This approach can be viewed as model averaging, where models
with different configurations of the nuisance parameters are averaged.

p(0]z) = : (2.1)
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This sections below provide an introduction to the general classifica-
tion and clustering problems, as well as further details for the practical
applications in population genomics. In general, classification problems
can be divided into the following three categories: unsupervised classifi-
cation (clustering), supervised classification and semi-supervised classifica-
tion. Unsupervised classification means we assign the data items to differ-
ent clusters solely based on the data, without any access to training data.
Supervised classification refers to the situation where we have the training
data assigned into K classes and we want to assign each of the test data
items to one of the K classes. Semi-supervised classification lies between
these two extremes and assumes that some test items can have their origins
outside of the K classes or clusters for which training data are available.
The presentation of Bayesian solutions to these three problems follow the
scenarios presented in articles I-IT1.

Each of the following sections describing the classification problems is
organized according to the three key parts mentioned above: prior, like-
lihood, posterior. The basic notation is introduced in the unsupervised
classification subsection.

2.1 Unsupervised classification (clustering)

We start by assuming that there are n data items, each of which is denoted
by x;, where ¢ = 1,2..n. Each data item x; is a d-dimensional vector,
which can be written as x; = (i1, %1, ...7;q). Here we denote samples in
the whole dataset by a set N = {1,2...n} of integers. A subset of data
items s C N is represented by x(*) = {x; : i € s}. Hence the whole dataset
is represented by the matrix xV) = (x1,xs, ...,x,)7, shown as follows:

X1 i1 12 - Tid
X2 Tol To2 v Tad

<M== 7 . (2.2)
Xn Tnl Tp2 - Tnd

Equation shows that each data item x; has d features, i.e. each
column corresponds to the observed values of a variable. For example,
if a data item represents an individual, then the features could be age,
sex, height, weight and so on. The observed value z;; for the jth feature
of data item i can be either continuous or discrete. In the population
genomics applications considered in this thesis, we assume all the features
are discrete and there are r; discrete values for feature j. This restriction
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arises from the fact that DNA sequence data are discrete and only such
data are considered throughout the thesis.

The aim of unsupervised classification (clustering) is to find a partition
S = (s1, 52, ..., 5) of the whole set of samples N such that U*_,s. = N and
5¢N s = 0, for all pairs of ¢, ranging between 1 and k. In other words,
the partition S assigns n data items to k mutually exclusive clusters. Here
we denote the number of data items in a cluster s, by its cardinality |s.|,
from which we can easily deduce that Zlgzl |sc| = n. All eligible partitions
constitute the partition space S§. In the application of Bayesian clustering
we want to find the optimal partition S in the space S which maximizes
the posterior probability p(S|xV)).

Clustering of data items is generally based on the similarities between
data items, either in a deterministic fashion or in probabilistic terms as
in the case of Bayesian clustering. The basic intuition is that data items
within a cluster are assumed to be more similar to each other than to data
items outside the cluster. Many different clustering methods have been in-
troduced in the statistical and computer science literature, such as K-means
[17], Expectation Maximization (EM) [18], hierarchical clustering [19] and
so on. These methods usually require the number of clusters or a cutoff to
define a cluster, which are most often unknown in advance. The methods
introduced in this thesis, however, only necessitate the specification of the
maximum number of clusters, which is denoted by Kaz.

Both K-means and EM algorithms require the number of clusters K¢
as an input and use a similar optimization process. K-means algorithm
assumes that each data item is generated by its own cluster, while EM
algorithm assigns probabilities of belonging to different clusters for each
data item. In some sense, K-means algorithm is a simplified version of EM
algorithm. Both algorithms change the labels of the data items according
to their own optimization processes, such that the final partition is optimal
under pre-defined loss functions. However, partitions with unequal num-
ber of clusters are not comparable, which makes it difficult to choose an
appropriate K¢.

Hierarchical clustering algorithm requires a cutoff as an input. It first
calculates a distance matrix for all pairs of data items. Then the data items
are agglomerated sequentially from the pair with the shortest distance,
during which a tree is constructed. It then uses the input cutoff to split the
tree into clusters such that distances between data items within a cluster
are less than the cutoff. The difficulty lying here is how to set a proper
cutoff.
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Partition space for n = 4, K0, = 3

k=3 k=2 k=1
1,2 (3)(a 1,23 4 1,2,3,4
12,4 ) (3
1,3 (2)(a
1,34 ) (2
1,4 (2)(3
234 )1
23 (1)(a
1,2 ) 34
24 (1)(3
1,3 ) 2,4
3,4 1 2 1’4 2’3

Figure 2.1: The partition space for n =4 and Kpqr = 3

2.1.1 Prior

We now specify the prior p(S) for a partition S, with the maximum number
of clusters denoted by K,,q:. To provide an intuitive description about the
partition space, we illustrate it for n = 4 data items and K., = 3, as
shown in Figure[2.1] The total number of eligible partitions is a sum of the
number of partitions with £k = 1--- K,,,4,, where k denotes the number of
clusters in S.

Perhaps the simplest possible prior for clustering purposes is to assign
equal probability to each partition in the partition space, which leads to
the uniform prior shown in equation ([2.3)).

Kma.r

p(S) =1/ S(n,k), (2.3)
k=1

where S(n, k) is the Stirling number of second kind [20], which is the number
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Number of partitions for n
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[}
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Figure 2.2: The number of partitions for n =50 and £k =1,2,---,50. The
maximum value is attained at k = 16. Note that the Y-axis is in log;
scale.

of ways to partition a set of n objects into & non-empty subsets.

The uniform prior considers each candidate partition equally, which can
be considered plausible when comparing any two partitions and there is no a
priori information to favor one partition over the other. However, the prior
does not lead to an uniform prior on the number of clusters of the partitions,
which is simple consequence of the behaviour of the Stirling number of
the second kind. To again provide some intuitive characterization of this
behaviour, the number of partitions for £k = 1,2,--- ,50 and n = 50 are
shown in Figure This distribution is unimodal and the mode is located
at k = 16. It tells us that the prior distribution prefers partitions with
around 16 clusters.

Although the distribution over k implied by a uniform prior on S is
non-uniform, it may still lead to reasonable inferences when the data are
sufficiently high-dimensional to prevent unwanted effects from the accumu-
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lation of prior probability mass to higher values of k.
As an alternative prior, we consider a uniform prior over k, which re-
sults in higher prior probabilities for partitions with smaller k, as shown in
equation .
1
Kaz x S(n,|S|)’

p(S) = (2.4)
where |S| denotes the number of clusters in partition S. However, for many
of the population genomic applications considered in this thesis, the DNA
sequence data are informative enough to lead to identical partitions as MAP
estimates.

2.1.2 Likelihood

Next we consider calculation of the marginal likelihood p(x(\)|S) given
a partition S with k clusters. An assumption in our model is that the
data items of each cluster are generated by an independent process. This
means the probability of generating a data item is only related with the
parameters of the cluster it belongs to. Another general assumption is
that the features are conditionally independent of each other, although we
also consider Markovian type of dependence among the features in some
cases. Both assumptions enable us to calculate the likelihood of a cluster by
multiplication of the likelihoods over the sequence of all observed features.

Under the above assumptions, we introduce a set of nuisance param-
eters 0 = {0u;]1 < c < k,1 <i<d, 1 <j <} toderive an explicit
expression of the likelihood function p(x(N )|0, S), where 6,;; is the proba-
bility of observing the jth value of the ith feature (sequence position) in
cluster ¢. In the specific models we assume that the values correspond to
the DNA bases, which are usually written in the order of {*A’,*C’,*G’,‘T"}
and indexed by 1,2,3,4 (thus r; = 4 here), respectively. Therefore, gener-
ating the data for column ¢ of cluster ¢ corresponds to drawing |s.| balls
with replacement from an urn containing balls labelled by ‘ACGT’ with
the probabilities specified by 0. = (0ci1, Ociz, Ocis, Ocia). The likelihood is
then given as follows:

k

kK d 7
p(X(N)’H, S) — Hp(X(SC)’07 S) = H H l_J[ QZCJZJ’ (25)

=1 c=1i=1j=1

where n.;; is the observed count of the jth base in the ith feature (sequence
position) of the cluster c¢. However, since the nuisance parameter 6 is not of
interest, in the current application, it should be integrated out when making
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inferences about the partition S. This leads to the marginal likelihood as
follows:

p(x™15) = [ o(x10,5)p(0]5)as. (2.6)

A computationally convenient standard choice [16] as a prior for the
parameters 6 is Dirichlet distribution, which enables analytical integration
for calculation of the marginal likelihood. The probability density function
for Dirichlet distribution Dir(«), where o = (a1, ..., i), can be written as
follows:

plala) = pe1, o wxlors, o age) = di=1 %)
Hizl F(ai) i=1

where x1,...,zx > 0 and 1 + ... + vx = 1. In the DNA sequence case,
we assume 0. ~ Dir(aq, a9, as, aq), where o; = 0.25,4 = 1,2,3,4. Note
that 6.;. satisfies the requirements that the sum of random variables is 1,
ie. Z?:l 0.5 = 1, as well as that each random variable is greater than 0.
Thus, the prior for feature i of cluster c is explicitly written as:

P(Oci.|at) = p(Ocit, ..., Ocial o, ..., o)
4
_ F(§]=1 Oé]) ﬁ 9047'—1
1= T(ey) j=1 !
4

_ 1 a;—1
=1 Ty L% =

j=1 j=1

Note that Z;l‘:1 a; = 1and I'(1) = 1. The above prior leads to the following
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analytical form of the marginal likelihood:

p(x™)|3) = /@ p(x™]0, 8)p(0)do
- [ XTI g 10

c=1i=1 j=1

Lt T

c=1i=1
k

_ d 1 HJ [(neij + o)
-1l H T(a;) PO

c=11i=1 J 1 (nCij+aj))

I'(
/ {F(Zj 1(ncz]+a])) e(nm]—i-a]) 1
®C'L

o +dO.;.
H? 1 D(neij + O‘J) ’
_ H H ) H?:l F(nCij + aj) (2.9)
c=1i= 1 j) F(Z?:l Neij + 1)

After marginalization over the nuisance parameters, the marginal like-
lihood only depends on the hyperparameters a and the data xV),

2.1.3 Posterior

According to Bayes’ theorem, the posterior probability of a partition is
given as follows:

N
(1) = PEIIS) 05 (2.10)
p(x(M))
where p(X(N )) is a constant which does not depend on S. When using a
uniform prior (equation ), the posterior probability p(S|x(M) is fur-
ther simplified since it is directly proportional to the marginal likelihood
p(xN)|S). This means it is not necessary to calculate the posterior proba-
bility directly to compare any two given partitions S and S’. Instead, the
comparison can be carried out through comparing the marginal likelihood

(equation (2.9)).
2.1.4 Inference algorithm using a stochastic optimization
process

Given the ability of comparing any two partitions in an analytic form, we
need to design an algorithm to identify the partition .S which maximizes the
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posterior probability (equation ) However, the partition space S is so
large that it is in practice impossible to enumerate all possible partitions.
Thus, we need to resort to MCMC methods or other stochastic process
based methods to explore the partition space. Efficient MCMC methods
are very challenging to design for large-scale clustering applications and
the resulting algorithms could be very slow if the proposal operators are
not chosen appropriately (see [21]). We will focus on using a stochastic
optimization process to do the inference, which can be interpreted as a
“greedified” version of the non-reversible MCMC algorithm introduced in
[22]. The greedy stochastic algorithm is defined as follows:

Input : the input data x) and the maximum number of clusters K, nqz
defined by the user.

Initialization : calculate the pairwise Hamming distance between the
data items, cluster IV into K4, clusters using complete linkage al-
gorithm [19], set the resulting partition S as the initial partition.

Stochastic search : apply each of the four search operators described
below to the the current partition S in a random order. Then, if
the resulting partition leads to a higher marginal likelihood (equa-
tion ), update the current partition S, otherwise keep the current
partition. If all operators fail to update the current partition, then
stop and set the best partition S as the current partition S.

i In a random order relocate a data item x; to another cluster that
leads to the maximal increase in the marginal likelihood (equa-
tion ) The option of moving the data item into an empty
cluster is also considered, unless the total number of clusters ex-
ceeds Kpan-

ii In a random order, merge the two clusters which leads to the max-
imum increase in the marginal likelihood (equation ) This
operator considers also merging of singleton clusters (only one
data item in the cluster) that might be generated by the other
operators.

iii In a random order, split each cluster into two subclusters using
complete linkage clustering algorithm, where the Hamming dis-
tance is used. Then try reassigning each subcluster to another
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cluster including empty clusters. Choose the split and reassign-
ment that lead to the maximal increase in the marginal likeli-

hood (equation ({2.9)).

iv In a random order, split each cluster into m subclusters using
complete linkage clustering algorithm as described in operator
(iii), where m = min(20, [|s.|/5]) and |s.| is the total number of
data items in the cluster. Then try to reassign each subcluster to
another cluster; choose the split and reassignment that leads to
the maximal increase in the marginal likelihood (equation )

Output : an estimate of the best partition S, leading to the highest
marginal likelihood p(x(¥)|S)

The above greedy stochastic algorithm uses heuristics to visit the high
probability areas in the partition space S. Operator i exchanges data items
between clusters to optimize the current partition; operator ii merges sim-
ilar clusters together to reduce the number of clusters; operator iii and iv
split out heterogeneous data items to optimize the current partition. Al-
though the algorithm does not guarantee global optimality of the solution,
it searches the high probability areas very efficiently according to our in-
tensive experiments. In practice, we have a wealth of empirical evidence
that the estimated partition tends to be biologically meaningful and more
sensible than alternative estimates based on standard methods for Bayesian
computation, such as the Gibbs sampler or Metropolis-Hastings algorithm
using completely random proposals.

Note that other distances between samples rather than Hamming dis-
tance could also be utilized here, depending on specific scenarios. In prac-
tice, the marginal likelihood needs to be calculated on a log scale to avoid
numerical overflow, since the values are in general extremely small.

2.2 Supervised classification

Supervised classification differs from unsupervised classification (clustering)
in that it requires training data, which contain K classes (or groups). The
primary aim is often to assign the unlabeled data items into any of the
K classes, however, also purposes are frequently considered, where one
typically calculates some functionals of the data assigned into each class.
An example of this is the relative contribution of each known source (class)
to the population of unlabeled samples.
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In the context of bacterial population genomics, a popular application of
supervised classification is to classify a new sample to a selected taxonomic
rank (usually species) based on its sequence information. The training data
is usually a sequence database, which is a large collection of sequences and
their labels from various biological projects. The test data usually contain
sequences produced in a new biological project, where assigning labels to
the sequences is very important in understanding the data.

In this subsection, the training data are denoted by z(), where M =
{1,2,--- ,m}. The training data are assumed to be divided into K classes
based on some auxiliary knowledge or an earlier unsupervised analysis,
which are denoted by T' = {T1,Ts, - ,T;n}, where T; € {1,2,--- | K}. The

whole training dataset z(M) = (21, ,2m)" is organized as follows:
z) Z11 Z12 0t Zud
Z2 221 222 "t k2d
M= =" o , (2.11)
Zm Zml  2Zm2 " Zmd

We now assume that there are n data items in the test data x ), where
N ={1,2,--- ,n}. Each test data item is denoted by x; = (x;1, ®i2, - , Tiq)-
Note that the test data items have the same features as the training data
items. The aim is to assign a label S; to each test data item x; based on
its resemblance to the observations within each group of the training data.
The joint labeling of the test data is denoted by S = {S1,S2, - ,Sn},
where S; € {1,2,--- | K}.

A typical assumption is that a test data item is generated from one of
the underlying distributions of the K classes in the training data, where
the parameters of the underlying distributions are learned from the training
data. Thus the test data items are independent given the known param-
eters, such that the labeling of one data item will not affect the others.
The labeling of one data item is solely based on the information of the
training data, which does not borrow any information from other test data
items. When the training data are very sparse, there is a high risk of wrong
labeling of the test data.

The strategy adopted in this thesis, however, does not assume indepen-
dence of the test data items. Instead, we label all test data items simulta-
neously such that the labeling of one test data item also borrows statistical
strength from other test data items. Corander et al. [23] provide a de-
tailed discussion about two classifiers based on the above two classification
principles and another marginalized classifier.
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The posterior probability of the joint labeling S is given by

p(xMzM) T, 8)p(S)2M), T)p(z™), T)
p(x(V), z(M) T)
o p(x ™[0, T, )p(S]2™, T), (2.12)

p(S|x™M, 2, T) =

where p(z™), T) and p(x(N), (M) T') are constants with respect to S. The
aim is to seek a joint labeling S of the test data items which maximizes the
posterior probability, i.e.

S = arg max p(S|x™V), z(M) 1), (2.13)
S

2.2.1 Prior

To place a prior distribution for S, we only need to know the number of
classes K in the training data. Hence it is reasonable to assume that the
prior distribution of S is independent of the training data z™). Since each
test data item could be placed in any of the K classes, the prior of S equals

(82 TY = p(S|T) = ——. (2.14)

Kn

2.2.2 Likelihood

The marginal likelihood in equation does not have an explicit form,
thus we need to introduce nuisance parameter 6 to calculate it. The nui-
sance parameter here is the same as that defined in the previous section
(equation ) With the help of the 8, the likelihood in equation

can be written as follows:
px M|z T gy = / px™0, 20D, T $)p(0]2™), T, §)d6
o

= [ oMo, (o1, 7)o (2.15)
O

where we implicitly assume that the test data depend on the training data
only through the nuisance parameters 6.

The first term in the integral of equation is the likelihood of
generating the test data x() given the nuisance parameter 6 and partition
S, which has an identical expression as equation . The second term is
the posterior probability of # given the training data z™) and partition 7.
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Again we assume the same Dirichlet prior as that in equation (2.8)) for 0,
which leads to a posterior as follows:

p(0|z*) T) o p(z*), T|0)p(0)

K 4 4
o< g ! it
czl_{ }_Il{jnl ci) H§:1 F(Oéj) ]]i[ ci) }
K d 4
o [TTITT o5, (2.16)
c=1i=1j=1

where m.;; is the number of the jth base in the ith column of class ¢ in
the training data z(™). We can easily observe that the posterior of 0. is a
Dirichlet distribution Dir(’mczl + 041, . mcz4 + 044)

By plugging equation (2.5 and ( into ( , we get
p(xMzM) T 9)
K d 4

4
_ / HH Hencij ) F(Zj:l(mcij + O‘j))emmj-i-aj—ldg
- cij 4 cij
O i1 II;

F(mcw + 0‘9)

c=1i=1j=1 j=1
K d 4
_ F(ZJ 1(Meij + ) nm’j+mc¢j+aj*1d9
- H H 4 H cij ci:
ctimt = Tmeig + aj) Je.. 5
K d pyd g . 4 Pl g .
_ H H (Zj:1(mmg + ;) Hj:l (Meij + Meij + ) (2.17)
= - . . )
cmtiz1 =i Dlmeig +a5) - D5 (neij + meij + o))

where the last integration follows from the properties of the product Dirich-
let distribution.

2.2.3 Posterior & Inference

Equation and provide explicit expressions of the prior and the
marginal likelihood in equation . Thus we are able to compare the
posterior probability given any two labelings S and S’ of the test data.
The inference is almost the same as that in the unsupervised classifi-
cation, except that we set K., = K. Therefore, the test data items can
be assigned to maximally K classes and at least 1 class. The algorithm
chooses the partition S which maximizes the posterior (equation )

2.3 Semi-supervised classification

Semi-supervised classification is a hybrid of unsupervised classification and
supervised classification. Like supervised classification, it also requires
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training data which are grouped a priori into K classes. However, the test
data items are not assumed to strictly represent only the K pre-specified
sources, but can either be merged with the existing K classes in the train-
ing data, or form new classes/clusters, similar to unsupervised classifica-
tion. The original biological motivation of semi-supervised classification
comes from [22] and the predictive semi-supervised classification approach
is formally introduced in [23].

Here we use the same notations as the supervised classification case.
The training data z™), where M = {1,2,---,m}, are assumed to be
divided into K classes by the labeling T' = {T1,T5,--- ,T),} and T; €
{1,2,--- ,K}. The test data x(), where N = {1,2,--- ,n}, are labeled
by S ={S51,52,---,5,} and S; € {1,2,--- , K}. Besides the training data
and test data, the inputs to the semi-supervised classification also include
the maximum number of classes K4, in the test data, which is specified
by the user. To allow the discovery of novel clusters formed by test data
items, K4 should be larger than K, i.e. K4 > K.

The posterior probability of the joint labeling S is the same as the
supervised classification case (equation ) The aim is also the same —
try to find a labeling S that maximize the posterior probability, shown by
equation (|2.13]).

2.3.1 Prior

Let us first define the prior p(S|z™), T') for the simultaneous labeling of the
test data items, conditional on the training data and its labeling. Like the
supervised classification, we assume the prior distribution of S depends on
the training data only through the number of classes K in the training data.
We choose an uniform prior for S like in the unsupervised classification
scenario

(51, 7) = p(SIT) = 5. (215)
where S denotes the space of S and |S| is the number of all possible simul-
taneous labelings of the data.

Calculation of |S| has been given in [23] and we use its result directly.
Before giving the formula, we need to introduce several notations in [23]. It
is assumed that there are ky classes (labeled {1,2,--- ,k;}) in the training
data and ko novel classes (labeled {k1 +1,k1 +2,--- , k1 + ko}) are formed
in the test data. It is obvious to see that k&1 = K and k1 + k2 < Koz
We assume r out of n test data items are assigned to the ki classes. The r
test data items can be chosen in (:f) ways and assigned to ki classes in kj
ways. Then the remaining n — r test data items are randomly assigned to
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a stochastic number of urns and form ks novel classes. |S| is obtained by
summing over all possible values of r

s=X (s =X (XS e

r=0 r=0 ko=1

where B,,_, is the Bell number for n — r test data items. The Bell number
B,, is the number of all possible partitions of a set with n items.

Although we show how to calculate |S], it is not necessary to calculate
explicitly in practice since the uniform prior gives equal weight to each
labeling, which will be canceled out when comparing the posterior proba-
bilities of any two labelings.

2.3.2 Likelihood

We now provide an explicit form for the marginal likelihood p(x™)|z(M) T, §),
which is slightly different from the supervised classification case due to the
ko novel classes.

Similar to the supervised classification case, we assume that the test
data depend on the training data only through the nuisance parameters
f, which are defined the sames as equation . For an existing class
ce€{1,2,--- ,ki}, 0. is governed by the posterior Dir(a;i1+meit, -+, Qir, +
Meia), where ¢ € {1,---,d} is an index of a feature and m.;; is the count
of the jth base in the ith feature of class ¢ of the training data (see equa-
tion ) For a novel class ¢ € {k1 + 1,k1 + 2, k1 + ka}, 0. is only
governed by the prior Dir(ay1,- -, a;4). Therefore, the marginal likelihood
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p(xM |z T, 5)
_ / p(x<N>ye,z<M>,T,s>p(e\z<M>,T,S)de
@

4
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sy (1) [1j—1 T(neij + )
. , 2.20
<11 H T(a) TSy (e + 7)) (2:20)

where n.;; is the count of the jth base of feature i of classes ¢ in the test
data x(™). The integrations are derived in the same way as equation li

2.3.3 Posterior & Inference

Similar to the supervised classification case (equation (2.12])), we have the
same derivation for the posterior probability of a labeling S

p(Sx™N), 20, T) o p(x N[z, T, $)p(S|zM, T), (2.21)

where equation (2.20)) and (2.18]) provide explicit forms to the marginal
likelihood and the prior of .S, respectively.

Given equation , we are able to compare the posterior probabilities
of any two labelings of the test data items. Thus, as in the unsupervised
scenario, we can use the stochastic optimization approach to search the
labeling space, with the following modifications to the proposed operators.

i Only test data items are moved here.
ii Never merge two existing clusters in the training data.

iii-iv Never split an existing cluster in the training data.
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2.4 Clustering and classification in practice

The previous sections provide three general frameworks for classification
discrete data. Articles I-III solve real biological problems based on these
frameworks. This section will provide a discussion of the practical issues
encountered in the real biological applications.

Perhaps the most immediate and central arising in these applications is
how to sensibly set the maximum number of clusters K,,,,. Theoretically
we could set it as large as possible. In practice we usually set it to a
sufficiently large number such that the number of clusters K¢ in the derived
partition S is smaller than K. maz- Of course sometimes K ¢ equals K4, and
this indicates that one should try to explore the posterior also for a larger
Kpaz- Compared with other classification algorithms such as Expectation
Maximization and K-means, setting K4, is much easier than choosing the
correct or optimal number of clusters K. In the latter case, it can be
necessary to consider a very large range of values of K¢ and decide which
is the most reasonable choice based on the clustering results. This process
is in general very tedious and also computationally more burdensome than
using an algorithm in which the number of clusters is not fixed.

When collecting bacterial samples, especially in an epidemiology study,
scientists will often also have access to meta information, such as age, gen-
der, symptoms, date, the location and so on. Here we consider utilizing
the location data. The location data are usually stored as Global Posi-
tioning System (GPS) coordinates, which are the latitude and longitude of
the locations. The locations provide in general prior information regarding
the relationships of the samples. In certain applications it is reasonable
to assume that two samples are more likely to be similar to each other if
they are close in the geographic sense. Therefore, it is possible to use a
spatially explicitly prior distribution for the clustering solutions, instead of
a uniform prior on the partition of samples. The spatial prior has been
considered in many applications to population genetics, for details see [24].

Sometimes, the assumption that different sites of the sequence are in-
dependent may lead to unreasonable approximation of the data likelihood
under a given clustering. It is known that coding DNA sequences usually
show dependence between neighboring sites. For instance, some codons
coding the same amino acids are used more frequently than others in a
certain gene. Higher frequencies of these codons could be approximately
described by a second-order Markov property, leading to a model for the
sequence as a second-order Markov chain instead of assuming independent
sites. Figure shows a example of a six letter sequence s15253545586.
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Figure 2.3: 2nd order Markov chain. This is a 2nd order Markov chain for
a six letter sequence.

To calculate the likelihood of this sequence, we need to decompose the
sequence into cliques and separators [25]. The cliques in Figure
are {15283, $25354, S354S55, S4555¢} and the corresponding separators are
{s2s3, $354, s455}. The likelihood of the sequence is given as follows.

[T, p(sisiv1sise)
H?:Q p(5i5i+1)

Equation is factorized into probabilities of the cliques and sepa-
rators, which enables us to use a simple modification of the marginal likeli-
hood formula to obtain an analytic expression for the marginal likelihood of
the data. Based on this idea, article IT implements a semi-supervised clas-
sification method for classification MLST data under the 2nd order Markov
model.

A common characteristic of bacterial population data is that there may
exist substructures in the derived clusters. As an example, assume we
collected a dataset of a pathogen from wide geographical range. We then
use the introduced clustering approach to assign samples into genetically
distinct groups, which could agree with the geographical locations, say at
the level of a single country, due to spatio-temporal restrictions in the
underlying transmission process. If we take out samples from a cluster
which correspond to a specific country, we may find interesting substructure
in this cluster when analyzing the samples separately from others. The
reason for increased power to detect the substructure is that many nuisance
parameters are typically excluded from the model when focusing on a subset
of samples that are genetically distinct from the remaining data. Article ITI
proposed hierarchical clustering strategy to derive biologically meaningful
results in such a setting.

It is common that DNA sequences are aligned before classification.
However, this is not practically possible in some cases. For example, when
aligning large amounts (>100,000) of 16S rRNA sequences, it may takes

p(815253548586) = (2.22)
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several weeks even using the fast alignment tools such as MUSCLE [26] and
MAFFT [27]. In addition, the derived alignments can be very poor due to
the diversity of sequences, which results in a large number of indels in the
alignment. Article I proposed a 2-phase classification strategy to cluster
the 16S rRNA sequences of different lengths. If two sequences are simi-
lar, then their 3-mer count vectors are also similar. Therefore if the 3-mer
count vectors are very different, the two sequences are definitely different.
Based on this idea, we could first cluster the 3-mer count vectors, which
are automatically aligned. Then, we align the sequences within each cluster
and continue with further clustering analysis based on the alignments.

Besides the unequal length problem of the DNA sequences, there are
often missing data in the sequences. As we know, when a sequencing ma-
chine “reads” a base, it actually detects the intensities of the four bases.
Sometimes the signal is so fuzzy that the sequence machine could not de-
cide which base it is. Thus this base is marked as missing data, which is
usually written as “-” or “N”. Handling the missing data depends on spe-
cific applications. When handling MLST datasets, the housekeeping genes
are usually of the same length and there are very few missing data, thus
we can randomly replace the missing data with a random existing base at
that site. When handling 16S rRNA datasets, the sequences are of differ-
ent length and there are lots of missing data, therefore it is also possible
to treat the missing data as a new base, i.e. now the alphabet changes to
{{AC G TN}, instead of considering them as purely missing infor-
mation. Note that the marginal likelihood calculations, as shown in the
previous sections, take missing data explicitly into account when compar-
ing partitions, thus reducing the assignment certainty if a particular sample
has large amounts of missing data.



Chapter 3

Reconstructing bacterial
evolutionary history

This section will mainly discuss how to reconstruct the evolutionary history
of closely related bacteria from whole genome data.

The foundation of molecular evolution is the molecular clock hypothesis,
which assumes that DNA sequences mutate approximately at a constant
rate. Under this assumption, the difference between DNA sequences of two
sampled organisms is roughly proportional to the time of their divergence
from the most recent common ancestor. Based on this idea, if we can
calculate the distances between all considered samples, then we are able
to draw conclusions about their evolutionary history. In some cases it is
more appropriate to consider relaxed molecular clock models, where the
substitution/mutation rate can vary across different evolutionary lineages
.

However, mutation is not the only mechanism that bacteria use to
evolve. Recombination, or horizontal gene transfer, also plays an impor-
tant role in bacterial evolution. There are three generic mechanisms of
recombination in bacteria: conjugation, transformation and transduction.
In conjugation, the donor bacterium transmits DNA fragments to a recip-
ient cell. In transformation, the bacteria reuse DNA fragments from their
environment and incorporate them into their genomes. In transduction, a
virus infecting bacteria called phage, fuses alien DNA fragments into the
host genome. If the DNA sequences between the donor and recipient are
very similar, then the recombination is called homologous recombination,
otherwise it is called non-homologous recombination. The higher similar-
ity between the DNA sequences is, the more efficient the recombination
is. Thus homologous recombination occurs much more often than non-
homologous recombination.

29
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Mutation
AAGATGAAAACGACTGAGATACTTTCAAAAGACAACCAAGTGAGCAGCACAGACTAATGA
AAGATCAAAACGACTGAGATACTCTCAAAAGACAACCAAGTGAGCAGCACAGTCTAATGA

Recombination
AAGATGAAAACGACTGAGATACTTTCAAAAGACAACCAAGTGAGCAGCACAGACTAATGA
AAGATCAAAACGACTGAGATAAAATGTACCAGTGTTTCTGITGAGCAGCACAGTCTAATGA

Figure 3.1: Non-homologous recombination. Short sequences are shown
for two samples where mutations and non-homologous recombination are
involved. The top case only involves mutations, which are indicated by
the red letters. The lower case involves an additional non-homologous re-
combination event present in the second sample. The recombination re-
gions are highlighted by the rectangles. As can be seen from this figure,
non-homolougs recombination is capable of producing many SNPs within
a short region due to the dissimilarity of the alien DNA fragment.

Since the DNA sequences between the donor and recipient are very sim-
ilar, homologous recombination usually results in several single-nucleotide
polymorphisms (SNPs) in the recipient DNA sequences, which can not be
discriminated from mutations by looking at the DNA sequences. Non-
homologous recombination, however, introduce considerable changes in the
DNA sequences of the recipient, which might change the function of the
cells dramatically, especially under evolutionary pressure such as antibiotic
treatment or vaccination. In this thesis, we only focus on non-homologous
recombination detection.

For simplicity, we refer recombination to non-homologous recombina-
tion in the following thesis. Recombination can substantially distort the
estimated genetic distances between different samples in terms of DNA
variation that is assumed to be clonally inherited. The genetic distance
between two bacterial samples is usually estimated by the number of SNPs
between sequences obtained from the two samples. A single recombina-
tion event from a distantly related bacterium can introduce many SNPs as
illustrated in Figure [3.I} which makes the molecular clock hypothesis in-
valid. In order to retrieve the genetic distance related to point mutations,
we have to eliminate such recombination fragments from bacterial genomes.
Note, however, that the amount and locations of detectable recombinations
within bacterial genomes are often of considerable interest themselves, since
these quantities can be strongly correlated with phenotypic characteristics
of the bacteria.

Housekeeping genes have been used to track the evolution of tens of
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different human and animal pathogen species over the last 15 years. The
advantage of these genes is that almost all mutations are synonymous due
to high selection pressure, such that the resulting variation is neutral, al-
though in some cases they can be linked to variant in nearby resistance loci.
In addition, the housekeeping genes selected for these typing schemes are
generally chosen to be far from each other in the chromosome, such that
any single recombination events is very unlikely to change the allele at more
than a single locus. However, given that a small number of housekeeping
genes can only provide limited insight into the evolution of the bacterial
populations, whole genome data has become an irreplaceable tool for such
analyses.

This chapter is divided into three sections: sequence alignment, recom-
bination detection and estimation of phylogenetic trees, which are the con-
secutive steps to derive the phylogeny from whole genome sequence data.

3.1 Sequence alignment

This section will first discuss different sequence alignment methods, then
we explain how to apply these methods to different types of sequence data.

DNA sequences produced by any technology are usually of different
lengths. If we want to compare DNA sequences, we have to in general align
them so that the lengths are the same (although alignment-free methods
of sequence comparison also do exist). The alignment makes the sequences
(or parts of the sequences) as similar as possible so that we can quantify
the difference between them.

Two generic types of alignments are the pairwise sequence alignment
(PSA), which only aligns two sequences, and the other is multiple sequence
alignment (MSA), which aligns more than two sequences. Compared with
MSA, PSA is much easier and faster. However, in an MSA one considers all
sequences as a whole, thus it is much more accurate when comparing many
sequences. Figure illustrates the difference between PSA and MSA.

PSA includes two general alignment methods: local alignment and
global alignment. Local alignment, also known as Smith-Waterman al-
gorithm, tries to find out the common similar subsequences of two input
sequences. Global alignment, or Needleman-Wunsch algorithm, tries to
match every base of the two input sequences such that they are as similar
as possible. Figure provides an example which shows the difference
between a local alignment and a global alignment.

Different alignment methods have their own advantages and limitations.
Therefore choosing the appropriate alignment methods, or combinations
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Figure 3.2: Pairwise sequence alignment and multiple sequence alignment.
Three sequences on the left are aligned by MSA, each pair of which are
aligned separately by PSA (global alignment) on the right. The ‘*’ and ‘|’
in the figure mean all sequences share the same base at this site. PSA does
not provide a consistent alignment between all pairs, as can be seen from
the inconsistent locations of the vertical bars ‘|

of alignment methods, is vital in deriving the alignments. Depending on
the input data, which can vary a lot between different research projects,
different alignment strategies are adopted. Here we focus on discussing how
to handle the input data for article IV and V.

The whole genome data in article IV includes 62 Escherichia coli genomes,
each of which represents a different strain. Since bacteria usually have only
one circular chromosome, here the genome means one DNA sequence im-
plicitly. When deriving the whole genome sequence, the genome is broken
into short fragments. Then, each short fragment is sequenced using suitable
technology, such as I[llumina, Solid or 454 high-throughput platforms. After
that the short sequences are assembled into the whole genome sequence.
However, sometimes there are not enough short sequences due to various
technical reasons, which makes the whole genome sequence not available.
Therefore, the genome is replaced by contigs, which are non-overlapping
sub-sequences of the whole genome sequence. In other words, the contigs
are the longest sequences that can be assembled from the short sequences.

The E. coli genomes are relatively long (around 4.6 million bases) in
terms of bacterial genome sizes. The sequences are not suitable to be
aligned by general software such as MUSCLE [26] or MAFFT [27], which
are designed to align large amounts of short sequences. Thus we use a
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Input sequences

ATGAAGAAGT CTCTTCTGT CGGCAGT GGCT|CT GACGGCGAT GGT CGCCTT CAGCGGCAACGCTTGGGCCG
FTGACGGCGATGGTCGCCTTCAGCGGCAACGCTTGGGCCGVTCAGAAGTCTATGCCGAAAACGGCATCCT

Local alignment

CTGACGGCGAT GGT CGCCTTCAGCGGCAACGCTTGGGCCG

FECEEEREEEE e e e e e e e e e e e e e r
CTGACGGCGAT GGT CGCCTTCAGCGGCAACGCT T GGGCCG

Global alignment

ATGAAGAAG-T-CTCTTCTGTCGGCAGTGGCﬁCTGACGGCGAT~GGTCGCCTTCAGCGGCAAC~GCTTGGGCCG

e e e e et el
F‘I’GACGGCGAT GGTCGCCT-TCAGCGGCAACGCTTGGGCCCTI’T CAGAAGT CT AT GCCGAAAACGGCAT - - - CCT

Figure 3.3: Local alignment and global alignment. The input sequences are
70 bp. The last 40 bp of the first sequence is identical to the first 40 bp of
the second sequence, which are indicated by the rectangles. The vertical
bars ‘|” in the middle of the alignments mean matches, i.e. two bases at this
site of the sequences are identical. Local alignment perfectly captures the
identical fragment shared by the input sequences, while global alignment
provides a poor solution since it tries to match every base.

software Mugsy [28], which is specially designed to align relatively closely
related genomes. The software also accepts contigs as input data if the
whole genome sequence is not available.

Mugsy first performs local alignment between all pairs of genomes.
Then, it constructs an alignment graph [29] using the result of previous
step. After that it searches the so called “locally colinear blocks” (LCB)
from the alignment graph. In the end, it calculates the multiple sequence
alignment for each LCB. In simple terms, Mugsy first finds out similar and
large segments between all the genomes. Then it selects those segments that
keeps the same spatial order in the genomes. After that it derives the mul-
tiple sequence alignment for these parts. As a result, large re-arrangement
of the genomes and large non-shared fragments will be eliminated by this
method.

The whole genome data in article V include 480 gene sequences of 128
Campylobacter jejuni isolates. Also we have one reference genome sequence
for C. jejuni, where the start and end positions of the aforementioned 480
genes are known. Note that the lengths of actual gene sequences may be
different from that on the reference genome.

The strategy is straightforward, as shown in Figure [3.4] First we align
the sequences of each gene, which is done by the multialign function in
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Figure 3.4: Multiple sequence alignment of 480 genes, where each row
represents a C. jejuni isolate. Kach aligned gene is then mapped to the
reference genome.

MATLAB software. Then, we derive the consensus sequence for each gene,
where we simply choose the majority base in each site of the alignment
as the base of the consensus sequence. After that, we map the consensus
sequences to the reference genome. In the end, we store the SNP sites infor-
mation and their positions, which is the input for recombination detection
in the next phase.

However, the mapping step is a bit tricky. Since the consensus sequences
are usually slightly longer than the genes on the reference genome, we an-
chor each consensus sequence on the reference genome by the start position
of the corresponding gene. A new problem arising from this operation is
that two consecutive genes may overlap, i.e. the end of the previous gene
falls into the latter gene. There also exist overlapping genes on the refer-
ence genome, but the overlapping regions are very short compared with the
gene length. Therefore we cut off the tail of the previous gene that falls
into the latter gene.

3.2 Recombination detection
In the previous section, we discussed how to derive reliable alignments

under different scenarios. This section will discuss how to detect recom-
bination events from the alignment. There exist various methods for re-
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combination detection. Here we will not discuss the pros and cons of these
methods. Instead, we focus on using the software BratNextGen [30], which
is newly developed method for recombination detection from large popula-
tion samples.

As can be seen from Figure a recombination event can introduce
many SNPs in a short region if the donor sequence is not highly similar to
the recipient. BratNextGen models this problem using a hidden Markov
model (HMM). For each sequence, BratNextGen tries to label each site
into two hidden states: non-recombination state and recombination state.
Based on different states, the sequence bases are emitted according to dif-
ferent probability distributions. Therefore we detect the recombination
fragments in each sequence by picking out the sites which are marked as
recombination.

BratNextGen assumes that all input sequences are closely related, i.e.
all samples belong to an evolutionary lineage of a single species. However,
using large-scale experimentation on several data sets, we have concluded
that the approach works highly accurately also on multi-lineage data, pro-
vided that the sequences are not too dissimilar across lineages. Also it
assumes that there are sufficiently many non-recombinant regions in the
genomes to find the clonally evolving core genome.

BratNextGen uses a HMM to infer recombination events, but the state
space of the hidden variables is not assumed to be known in advance. First,
the method splits the input whole genome alignment into 5 Kb segments,
from which it extracts the SNP sites information and their locations in
the alignment. Then, it clusters each 5 Kb segment of the alignment into
maximum K clusters using the software BAPS [31]. The biggest cluster
in each segment is initially labeled as non-recombination state, while the
others are all labelled as recombination states. The classification results
facilitate the construction of transition matrix, which is a K x K matrix.
The transition probabilities between two SNP sites are then specified by
multiplying the transition matrix d times, where d is the sequence distance
between the two SNP sites. BratNextGen then performs a MCMC-like
iterative approach to optimize the initial labeling of hidden states and the
parameters underlying the HMM.

The necessary information for BratNextGen to detect recombination
events is provided by the SNP variants and their locations in the align-
ment. The SNP variants (alleles) are easy to extract from the alignment.
Their locations, however, require careful thinking. Sometimes, the input
alignment is not the alignment of whole genome sequences. For example, in
the case of article I'V, the alignment is derived from contigs, which means
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Figure 3.5: Locations of 480 genes in article V, where white color indicates
the gene regions and black means the missing parts.

many parts of the genomes are missing in the alignment. Should we take
these missing parts into account when deciding the locations of the SNPs?
The answer depends on the specific scenario.

In the case of article IV, the missing parts are very long compared with
the alignment. If we take the missing parts into account, then it means
we have not observed any mutations in these parts. It violates the hidden
assumption by BratNextGen that the mutations are randomly scattered
around the genomes, i.e. there should be at least some mutations in the
missing parts instead of none. Since this could influence negatively the
parameter estimation procedure in BratNextGen, we discard the missing
parts, which means we assume implicitly that the mutation rate in the
missing parts is the same as that in the alignment.

In the case of article V, each of the missing parts is relatively short
compared with the whole alignment, as shown in Figure |3.5] which means
the expected number of mutations is small. It also can be seen that the
480 genes are randomly scattered around the genome, as indicated by the
white color. Hence here it is more reasonable to use the actual locations
of the SNPs, i.e. keep the missing parts. Of course we implicitly assume
no observed mutations in the missing parts, which might slightly affect
the results. On the contrary, if we discard these missing parts, one side
effect is that non-existing recombination fragments might be detected due
to shortened distances between the SNPs.

3.3 Estimation of phylogenetic trees

After eliminating the recombinant fragments from the alignment, a main
target of the analysis is to reconstruct the phylogenetic tree from the re-
maining alignment. The phylogenetic tree is the most universally accepted
way to represent levels of relatedness among the studied samples.

There are various methods available for constructing a phylogenetic
tree, among which the maximum likelihood approach [32] is the most pop-
ular. The standard maximum likelihood approach assumes independence
between all sites in the alignment, i.e. each site mutates independently. It
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also excludes recombination when modelling molecular evolution. It works
by proposing a tree topology first, then calculating the likelihood of the
data given the proposed topology. The process is repeated many times and
the topology with the highest likelihood is then selected. After that, the
branch lengths are optimized until the tree is fully specified.

It is obvious that the number of tree topologies grows exponentially as
the number of samples increases. Thus it can take a long time to construct
the maximum likelihood tree. We use the software FastTree [2] to calculate
an approximately-maximum-likelihood tree from the alignment. FastTree
runs much faster than other popular software such as PhyML [33] and
RAxML [4], while it has been shown to produce accurate results for large
and challenging data sets.

When running the FastTree software, we used the options “-gtr” and
“-gamma”. The “-gtr” option uses the general time reversible substitution
parameters, which allows the most flexible modelling of the substitution
matrix. The “-gamma’” option allows site heterogeneous mutation rates,
which means the different mutation rates over the sites are assumed to be
distributed according to a gamma distribution.

After estimation of the tree, it is usually necessary to visualize and
annotate the tree using available metadata about the samples. Popular
software for this purpose is MEGA [3] and FigTree [34].

¢



38

3 RECONSTRUCTING BACTERIAL EVOLUTIONARY HISTORY



Chapter 4

Conclusions

Modern biology is almost entirely dependent on bioinformatics, since vast
amounts of different biological data are waiting to be “digested” every day.
In this thesis, we discussed how to analyze DNA sequence data, especially
in the field of bacterial genomics.

We introduced three general Bayesian frameworks for analysis of DNA
sequences: unsupervised classification, supervised classification and semi-
supervised classification. One of the most significant advantages provided
by these frameworks is that the user does not need to specify the exact
number of clusters in the data. These approaches are also generic enough
to be applied in many different contexts.

Based on the Bayesian unsupervised classification (clustering) frame-
work, we proposed a novel method for classification large amounts of 16S
rRNA sequences, which helps to estimate the composition of a sampled
bacterial community. An important aspect of this method is that we avoid
the huge burden of aligning all the sequences by first classification the 3-
mer count vectors and only then continue clustering each derived cluster
using an alignment. A minimum description length (MDL) criterion is also
adopted to determine the final number of clusters, which helps to reduce
sequencing errors and accurately discern closely related bacteria.

We also developed a method for simultaneously assigning several novel
sample sequences into either existing or novel bacterial lineages, based on
the semi-supervised classification framework. The most important contri-
bution is to allow the sequences to form new clusters of their own. Also
modelling the sequences as a second-order Markov chain increases the sen-
sitivity of the classification the sequences.

Some special considerations are included article ITI, where we combine
the spatial prior and second-order Markov chain ideas to provide a sta-
tistical tool for various application areas such as spatial infectious disease

39
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epidemiology. Also we implemented a hierarchical clustering approach to
allow for automated discovery of substructures in the data.

We discussed an biological application in which we try to reconstruct
the bacterial evolutionary history in the presence of recombination events.
It is necessary to remove the recombination fragments to appropriately
estimate the degree of clonal relatedness among the samples. In articles
IV and V, it was shown that important biological insights to the evolution
of pathogen populations can be obtained by a combined application of some
of the methods developed in this thesis. However, since the size of a typical
bacterial genome data set is rapidly increasing, there is a considerable room
to continuously develop further the methods to allow for less extensive
computation times and to maintain the accuracy of the inferences.
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