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1 INTRODUCTION 

 

Patellar luxation (PL) is one of the many disorders affecting purebred dogs. Mainly small 

sized dog breeds are affected but some large sized dog breeds may develop PL as well. A 

typical symptom is pain in the stifle joint which leads to lameness. A few surgical 

treatments are described to treat PL. PL is considered hereditary because of the vastly 

varying prevalence between different breeds. It is speculated that for instance weak 

angulation i.e. straight pelvic limb might predispose a dog to PL. Also, other 

morphological features are thought to increase the risk of PL. 

 

The patella, the largest canine sesamoid bone, is located between the femur’s craniodistal 

trochlear ridges i.e. in the trochlear groove. The patella is stabilized with strong ligaments 

and fasciae. Normally the patella can only move dorsoventrally, and its purpose is to 

transmit the contraction force from the quadriceps muscle to the tibia and lessen the 

friction between the quadriceps tendon and the stifle joint. In a few breeds, there is a 

mandatory patellar luxation evaluation for stud dogs. There is one evaluation standard, 

the so-called Putnam’s scale, which is used both in the FCI (Fédération Cynologique 

Internationale) countries - such as Finland - and in North America. 

 

2 LITERATURE REVIEW 

2.1 Patellar luxation 
 

The stifle joint consists in fact of several joints: the femorotibial, the femoropatellar and 

the tibiofibular joints (Dyce et al. 1996, p. 91-92). In a dog there are also plantar joints 

between the femur, and the lateral and the medial flabellae, and between the tibia and the 

popliteal sesamoid bone (Spencer and Tobias 2018, p. 2512-2513). The patella is the 

body’s largest sesamoid bone (Spencer and Tobias 2018, p. 2512) which lays in the 

trochlear groove and normally can only move dorsoventrally (proxo-distally). Its purpose 

is to transmit the force produced by the contracting quadriceps muscle to the tibia and to 

the rest of the distal limb. The quadriceps muscle consists of four muscle units: m. vastus 

lateralis, m. vastus medialis, m. vastus intermedius and m. rectus femoris (Dyce et al. 

1996, p. 96). Distally these four muscles combine and form the quadriceps tendon.  
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The tendon passes cranially the femorotibial joint and the patella and transforms into the 

straight patellar ligament (patellar tendon). The patellar ligament eventually inserts into 

the tibial crest cranially (Dyce et al. 1996, p. 96). The patella is extended by bilateral 

parapatellar cartilages (Hwittick; W. I. 1974, p. 310, Dyce et al. 2010, p. 88; Spencer and 

Tobias 2018, p. 2512,). The patella is stabilized to the trochlear groove lateromedially by 

the lateral and medial femoropatellar ligaments which originate in the parapatellar 

cartilages and insert into the femoral fasciae (Spencer and Tobias 2018, p. 2512 and p. 

2515). These ligaments are crucial to preventing PL (Spencer and Tobias 2018, p. 2512). 

The femoropatellar ligaments, the femoral fasciae and the joint capsule compose the 

patellar retinaculum (Hwittick, W. I. 1974, p. 310). The most relevant structures of the 

stifle joint are shown in the Figure 1. 

 

If not caused by a trauma, PL is congenital and considered to be a consequence of 

conformational defects in the stifle joint and the coxofemoral angle. The trochlear groove 

can be too shallow which allows the patella to dislocate medially or laterally. There may 

also be looseness in the attachment ligaments which makes dislocation possible while 

various forces affect the joint during movement. The patellar ligament attaches to the 

tibial crest which may be located so that the line from the quadriceps tendon to the tibial 

crest is not vertically straight. This causes the patella to press either side of the trochlear 

groove’s ridges (Hwittick, W. I. 1974, p. 315). Also, deformations in the limb angulation 

such as coxa vara and coxa valga (Bound et al., 2009, Kalff et al., 2014), and the rotation 

Figure 1. Stifle joint anatomy and ligaments. Picture modified 

from Evans, H.E. and de Lahunta, A. 2016. Guide to the Dissec-

tion of the Dog, 8th edition. Elsevier, St. Louis.p. 74. 
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of the distal femur are thought to expose the stifle system to harmful forces which can 

lead to PL (Hwittick, W. I. 1974, p. 315). Coxa vara signifies a decreased angle of the 

femur and the femoral neck, whereas coxa valga means an increased angle between the 

two (MOT dictionaries 2019). 

 

Already back in 1963, patellar luxation was described to affect mainly small sized 

pedigree dogs. The top five breeds especially at risk were found to be the Poodles (Toy, 

Miniature and Standard), the Yorkshire Terrier, the Cairn Terrier, the Chihuahua and the 

Pomeranian (Hodgman, S. F. J. 1963). Priester (1972) investigated the risk factors of PL, 

concluding that females and small dog breeds indeed are more prone to get the condition. 

The most affected breeds were the Pomeranian, the Yorkshire Terrier, the Chihuahua, the 

Miniature and Toy Poodles and the Boston Terrier (Priester 1972). Bound et al. (2009) 

also found females to be at greater risk of developing PL than males. However, Vidoni et 

al. (2006) and Nganvongpanit et al. (2011) did not find significant differences between 

sexes in developing PL. In the study of Nganvongpanit et al. (2011), two breeds had a 

significantly increased (The Poodles, Miniature and Toy) and decreased (the Jack Russell 

Terrier) risk of PL. Later on, numerous studies have shown that small and miniature dog 

breeds are at the highest risk of developing PL (Hayes et al., 1994, LaFond et al., 2002, 

Vidoni et al., 2006, Nganvongpanit et al., 2011). 

 

The patella can either luxate medially or laterally and it is repeatedly observed that the 

medial patellar luxation (MPL) is by far a more common type of luxation compared to 

the lateral patellar luxation (LPL) (Gibbons et al.,  2006, Vidoni et al.,  2006, Alam et al.,  

2007, Bound et al.,  2009, Nganvongpanit et al.,  2011). However, large breed dogs seem 

to have LPL more often than small breed dogs (Hayes et al 1994, Alam et al., 2007, Kalff 

et al., 2014). It is also reported that both MPL and LPL can occur in the same stifle, even 

though this is rare (Vidoni et al., 2006). 

 

Some studies have found a connection between PL and concomitant cranial cruciate 

ligament changes or complete ruptures (Gibbons et al., 2006, Nganvongpanit et al., 2011). 

The underlying reason for cranial cruciate ligament injuries is speculated to be a cause of 

abnormally directed forces in subclinical or clinical PL stifles that eventually strain and 

even rupture the cranial cruciate ligament (Willauer and Vasseur, 1987). For instance, 

Campbell et al. (2010) discovered that dogs with the worst grade of MPL were more 
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likely to have cranial cruciate ligament ruptures than dogs with milder grades of MPL. 

The group of dogs having both MPL and cranial cruciate ligament rupture were also older 

than dogs with only MPL. This finding might suggest that the cranial cruciate ligament 

problems are indeed developmental and secondary to MPL. 

 

PL is treated either conservatively or surgically. Usually a grade one condition with no 

lameness is treated conservatively (Spencer and Tobias 2018, p. 2646). Surgery aims to 

realign the extensor mechanism and to stabilize the patella into the trochlear groove 

(Spencer and Tobias 2018, p. 2647). Depending on the conformational deformities, one 

or more techniques of the following are used: 

- Trochleoplasty where the trochlear groove is reshaped i.e. deepened 

- Tibial crest transposition where the insertion of straight patellar ligament to the 

tibia is relocated 

- Soft tissue reconstruction where the patellar retinaculum is loosened from the side 

of luxation and tightened with sutures from the opposite side 

(Hwittick, W. I. 1974, p. 319, Spencer and Tobias 2018, p. 2647-2656). 

 

2.2 Genetic background of patellar luxation 
 

PL is considered to have a complex genetic background since it is commonly bilateral 

and appears already in young dogs lacking history of trauma (Hayes et al. 1994). 

Moreover, some breeds have a significantly higher risk for the condition than others 

(Hayes et al. 1994, LaFond et al., 2002). The published heritability estimates of PL are 

from low to intermediate (0.03 < h2 < 0.44) (Lavrijsen et al., 2013, Nilsson et al., 2018, 

Wangdee et al., 2014, Wangdee et al., 2017, Zanders 2014). Zanders (2014) found in her 

MSc thesis that in all breeds the veterinarian who evaluated the stifle had highly 

significant (p-value < 0.0001) effect on PL scores. As there are numerous qualified 

veterinarians for the official PL evaluation, Zanders (2014) treated the grading 

veterinarian as a random effect in the statistical models. A model which separated 

different PL scores (Y = 0-4) gave heritability estimates of 0.25 (±0.023), 0.21 (±0.062), 

0.08 (±0.058) and 0.03 (±0.033) for Chihuahua, Bichon Frisé, Pomeranian, and French 

Bulldog, respectively. Later, Nilsson et al. (2018) published Zanders’ results for the 

Chihuahua and the Bichon Frisé but changed the PL scores from a linear trait to a binary 



10 

 

 

trait (affected/unaffected). Using the binary data, the estimated heritabilities were 0.22 

(±0.02) for Chihuahua and 0.18 (±0.04) for Bichon Frisé. 

 

With a threshold model, as high as 0.44 (±0.04) heritability estimate was obtained for a 

Thai Pomeranian population (Wangdee et al., 2017). The estimated heritability of PL for 

the Dutch Kooikerhondjes population was 0.27 (±0.07) (Wangdee et al., 2014) and for 

the Flat-Coated Retrievers 0.17 (±0.03) (Lavrijsen et al., 2013). 

 

An explanation for the different estimations might be the varying genetic background 

between populations, the statistical model applied and the validity of PL scoring system. 

As Zanders (2014) noticed, the effect of the evaluating veterinarian on the scores is 

important. This raises the question of whether the current scoring protocol is the best for 

the PL evaluation purposes. Also, in statistical analysis it is not ideal that there are many 

graders since the human component is always prone to errors. A summary of the 

published heritabilities is given in Table 1. 

 

Table 1. Published heritability estimates of PL. 

Publication Breed h2 (±SE) 

Lavrijsen et al. (2013) Flat-Coated Retrievers 0.17 (±0.03) 

Nilsson et al. (2018) Chihuahua 0.22 (±0.02) 

 Bichon Frisé 0.18 (±0.04) 

Wangdee et al. (2014) Kooikerhondje 0.27 (±0.07) 

Wangdee et al. (2017) Pomeranian 0.44 (±0.04) 

Zanders (2014) Chihuahua 0.25 (±0.023) 

 Bichon Frisé 0.21 (±0.062) 

 Pomeranian 0.08 (±0.058) 

 French Bulldog 0.03 (±0.033) 

 

As a solution to phenotyping errors, some researchers of veterinary medicine have studied 

whether different radiographic measurements could replace or complement the current 

scoring. Mortari et al. (2009) suggested that the quadriceps angle could be useful when 

evaluating the PL grade 3 stifles. On contrary, they noticed that for severe luxation (grade 

4) it was problematic to obtain good radiographies. In her master’s thesis, Marttinen 

investigated the correlation of MPL (grades 1-2) between eight different femoral angles 
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in Lancashire Heelers. Three measurements were found to be statistically significant: 

FVA (femoral varus angle, p-value = 0.002), IFA (inclination of the femoral head angle, 

p-value = 0.008) and aLDFA (anatomical lateral distal femoral angle, p-value = 0.028). 

Sample size in the study was 75 hind limbs.  

 

Recently, also quantitative trait locus (QTL) mapping studies have been conducted for 

PL (Chase et al., 2009, Chomdej et al., 2014, Lavrijsen et al., 2014, Wangdee et al., 2014, 

Wangdee et al., 2017) but only a few candidate genes have been named for this complex 

disease. Chase et al. (2009) used across-breed mapping approach to find QTLs affecting 

different behavioral and morphological traits. They first found that longevity and size 

associated with a region on CFA15 (Canis lupus familiaris chromosome 15) where one 

of the candidate genes was IGF1 (insulin-like growth factor 1). IGF1 encodes a protein 

that has a high growth-promoting activity, for instance by regulating glycogen synthesis 

in osteoblasts and stimulating glucose transport and DNA synthesis (UniProt 2019). As 

PL incidence correlates with body size, Chase et al. (2009) also tested the correlation of 

IGF1 and PL disease frequency finding a significant association (p-value < 0.01). This 

suggests that selection for body size has influenced the incidence of PL. 

 

Soontornvipart et al. (2013) studied linkage of PL phenotype and five different 

microsatellite markers that were chosen by their location close to five different collagen 

genes. No association was found. The same research group also did a GWAS with 1536 

SNPs for a sample of n=46 Thai Pomeranians where 37 were cases and 9 controls. One 

SNP (BICF234J1226) in CFA07 was found promising (Soontornvipart et al. 2013). 

Another study with a sample of 39 small breed dogs from Thailand did not find an 

association between CFA07 and PL with a random amplified polymorphic DNA analyses 

method (Chomdej et al. 2014). On the contrary, this study found a linkage between an 

ATP synthase gene in CFA36 and PL. In a rather atypical PL breed, Flat-Coated Retriever 

a GWAS was carried out using two different phenotypes: binary trait (affected / 

unaffected) and EBVs (Lavrijsen et al. 2014). The strongest association was found on 

CFA07 with both phenotypes yielding a candidate gene TNR (tenascin R).  A paralogue 

of TNR in humans is TNXB (tenascin XB) in which a mutation is known to cause a 

connective tissue syndrome. However, Lavrijsen et al. (2014) state that in humans the 

homologous TNR is solely expressed in the brain. Yet the online Expression Atlas (2020) 

search results suggest that there is evidence of TNR expression in other tissues as well. 
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The most recent gene mapping study was done in 2017 by Wangdee et al. In their GWAS 

the sample consisted of Pomeranians (48 cases and 48 controls) genotyped with Illumina 

CanineHD BeadChip (173 K SNPs). Altogether 22 SNPs in 15 different chromosomes 

were further investigated resulting in four possible candidate genes – two on CFA05 

(SORL1, SC5D) and two on CFA32 (BMPR1B, UNC5C). Two of these were considered 

most relevant for further studies: The BMPR1B encodes bone morphogenetic protein 

receptor type-1B protein, a member of protein kinase superfamily that’s biological 

processes include chondrocyte development and negative regulation of their proliferation 

among others (UniProt 2020). The SC5D encodes sterol-C5-desaturase enzyme which is 

part of the cholesterol biosynthetic process (UniProt 2020). Wangdee et al. (2014) also 

tested the association of the 22 loci to PL in Dutch Kooikerhondjes, Flat-Coated retrievers 

and Labrador retrievers and Thai Chihuahuas and Toy Poodles. No association was found. 

 

2.3 Breeding against PL 
 

As a rule, the Finnish Kennel Club has stated that the minimum age to officially evaluate 

PL is 12 months and if a dog is evaluated between 1-3 years of age, the PL score is valid 

for two years. PL evaluation done to a dog aged 3 years or more is valid permanently. If 

there is a breeding restriction considering PL in a breeding plan of a given breed, a stud 

dog’s PL evaluation needs to be valid when mating takes place. Putnam’s scale is used to 

evaluate PL (Table 2) (the Finnish Kennel Club, 2012). 

 

Table 2. Putnam’s scale for grading PL (Orthopedic Foundation for Animals, 2019). 

Grade Description 

0 No abnormalities 

1 Manually the patella easily luxates at full extension of the stifle joint but returns to 

the trochlea when released. No crepitation is apparent. The medial, or very 

occasionally, lateral deviation of the tibial crest (with lateral luxation of the patella) 

is only minimal, and there is a very slight rotation of the tibia. Flexion and extension 

of the stifle are in a straight line with no abduction of the hock. 

2 There is frequent patellar luxation, which, in some cases, becomes more or less 

permanent. The limb is sometimes carried, although weight bearing routinely occurs 

with the stifle remaining slightly flexed. Especially under anesthesia, it is often 

possible to reduce the luxation by manually turning the tibia laterally, but the patella 

re-luxates with ease when manual tension of the joint is released. As much as 30 

degrees of medial tibial torsion and a slight medial deviation of the tibial crest may 

exist. When the patella is resting medially the hock is slightly abducted. If the 
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condition is bilateral, more weight is shifted onto the forelimbs. Many dogs with 

this grade live with the condition reasonably well for many years, but the constant 

luxation of the patella over the medial trochlear ridge of the trochlea causes erosion 

of the articulating surface of the patella and also the proximal area of the medial lip. 

This results in crepitation becoming apparent when the patella is luxated manually. 

3 The patella is permanently luxated with torsion of the tibia and deviation of the 

tibial crest of between 30 degrees and 50 degrees from the cranial/caudal plane. 

Although the luxation is not intermittent, many animals use the limb with the stifle 

held in a semi-flexed position. The trochlea is very shallow or even flattened. 

4 The tibia is medially twisted, and the tibial crest may show further deviation 

medially with the result that it lies 50 degrees to 90 degrees from the cranial/caudal 

plane. The patella is permanently luxated. The patella lies just above the medial 

condyle and space can be palpated between the patellar ligament and the distal end 

of the femur. The trochlea is absent or even convex. The limb is carried, or the 

animal moves in a crouched position, with the limb flexed. 

 

In Finland, national breed clubs can rather autonomically set breeding restrictions and 

recommendations for stud dogs in order to manage hereditary defects in their breeds. In 

2018, 25 different breed clubs had set a mandatory PL screening prior to mating. Some 

of them included a threshold value for PL scores in stud dogs. Clubs that have not done 

so, must follow Kennel Club’s common rule of grade 3 being the worst score accepted 

for stud dogs. PL score for an individual dog is marked for instance “0/0” which means 

that both left and right stifle are healthy. 

 

2.4 Breeds 
 

The breeding rules and recommendations within the studied breeds (Chihuahua, 

Pomeranian, Finnish Spitz and Japanese Spitz) have varied through time. There was at 

least a recommendation on the usage of stud dogs concerning PL in each breed at the time 

of data export (spring 2015). Only in the Finnish Spitz there was a PL score limitation set 

as a precondition to registration of a litter. Below is a presentation of each breed’s 

breeding plan for PL at the time of data export with a brief introduction to the breed. 

 

2.4.1 Chihuahua 
 

The Chihuahua is known to be the smallest purebred dog that exists. According to the 

breed standard, a Chihuahua should weigh less than three kilograms. It is solely a 

companion dog originally from Mexico. There are two coat types of Chihuahuas, a long 



14 

 

 

coated and a smooth coated version. In the breed standard, the following is said about the 

pelvic limbs: “Hind legs well-muscled with long bones, vertical and parallel to each other 

with good angulation at hip, knee and hock joints, in harmony with angulation of 

forequarters” (Breed standard, FCI, 2015). 

An official patellae examination is mandatory for breeding dogs in Finland even though 

no limitations on PL scores are set. The Finnish Chihuahua Breed Club recommends only 

to breed healthy (0/0) dogs. However, with “heavy reasons” it is acceptable to mate a dog 

whose summed patella luxation score is max. 2 with a healthy partner. This means 

breeding 1/1 or 0/2 or 2/0 scored dog to a 0/0 dog (Jalostuksen tavoiteohjelma, 2015). 

 

 

Figure 2. A sample of phenotypic variation in the Chihuahua. ©Titta Lähdesmäki 

 

2.4.2 Pomeranian 
 

The Pomeranian is a miniature sized companion and watch dog originating from Central 

European ancient spitz type dogs that lived there already in the Stone Age. According to 

the present FCI breed standard (2015) “The stifle joint is strong with only moderate 

angulation and is turned neither in nor out in movement.” 

 

The Finnish Pomeranian Breed Club recommends to officially examine dog’s stifles at 

the age of > 12 months. A dog with a score 1 or 2 can be used for breeding if “it is of high 

quality regarding other requirements”. However, the mating dogs’ combined patella score 

should not be more than 2. Breed club also recommends taking into account the patella 

scores of breeding dogs’ parents and siblings because of the complex inheritance 

(Jalostusohjesääntö, 2017). 
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Figure 3. The Pomeranian. ©Pixaday 

 

2.4.3 Finnish Spitz 
 

The Finnish Spitz is an old hunting breed that marks and stops game by barking. The first 

breed standard was established already in 1892 and the Finnish Spitz is now the national 

dog breed of Finland. The Finnish Spitz is a medium sized red colored dog that barks 

mainly at game birds but also at moose and sometimes at bear (Breed standard, FCI, 

2015). 

 

In order to register a litter to the Finnish Kennel Club’s register, the parent dogs have to 

have PL score 0-1. This is an unconditional precondition. PL score 1 dogs can have scores 

1/0, 0/1 or 1/1. However, this rule does not apply to a dog’s first litter (Jalostuksen 

Figure 4. The Finnish Spitz. ©Päivi Ruotanen 
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tavoiteohjelma, 2016). According to the club’s chairperson (Thommy Svevar, Suomen 

Pystykorvajärjestö, email to the author on October 13th, 2016) the first litter’s exception 

is a compromise: unchecked stud dogs are a risk to breed’s PL health, but in this system 

more different dogs are used for breeding at least once. As a result, the breeding 

population has probably maintained wider which is beneficial from the genetic diversity 

perspective. 

 

2.4.4 Japanese Spitz 

 

The Japanese Spitz is a small white-coated companion dog. According to the breed 

standard, the Japanese Spitz originates from an imported white German Spitz in the 

1920’s. Later, imported white spitz dogs from Canada, USA and China were introduced 

to the early Japanese Spitz breed (Breed standard, FCI, 2015). 

 

The Finnish Japanese Spitz Breed Club recommends not to mate a dog with worse than 

score 1 stifles. However, if a 1/1, 0/1 or 1/0 scored dog is used for breeding the mating 

partner should be healthy (0/0) (Jalostuksen tavoiteohjelma, 2016). 

 

 
Figure 5. The Japanese Spitz © Pekka Uimari 
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3 AIMS OF THE STUDY 

 

The first aim of this study was to estimate the variance components and the heritability 

of PL for all the breeds included in the study. The second aim was to estimate breeding 

values for each animal with an animal model to observe the genetic trends of PL. The 

third aim was to estimate the genetic correlations of PL between left and right stifle and 

between HD and PL in the Japanese Spitz.  

4 MATERIAL AND METHODS 

 

Both the phenotypic and pedigree data was provided by the Finnish Kennel Club. The 

data export from the breeding database KoiraNet was performed in January 2015. The 

original file format was .csv. All data was modified with both Microsoft Office Excel 

(2016 version) and R-program (R version 3.2.2 (2015-08-14)). Pedigree analyses were 

performed with RelaX2 (Strandén and Vuori 2006) and variance component and breeding 

value estimation with the restricted maximum likelihood (REML) method applied in the 

DMU program package (Madsen and Jensen 2013). 

 

4.1 Pedigree data 
 

The original pedigree files included name of the dog, registration IDs for the dog and its 

parents, birth year and the breed code. The original, pruned and final number of dogs in 

the pedigree files are given in Table 3. The pedigree error check was run with the pedigree 

analysis program RelaX2. Errors such as duplicates, or the same animal marked both as 

dam and sire were removed. These criteria lead to “pruned n” in the Table 3. The other 

criterion for the final pedigrees was that only animals who contributed to the variance 

component estimation within four generations were kept in the pedigree data. Also, only 

the largest population for each breed was accepted. This means that all the animals in the 

accepted pedigree had a known relation to each other. These criteria lead to the “final n” 

given in the Table 3. The pedigrees of short- and long-coated Chihuahuas were merged 

because the breeding population is the same. 
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The registration of the Finnish Spitz and the Chihuahua was established already in the 

1950’s which explains the sizes of the original pedigrees. Also, the first Pomeranians 

were registered in the Finnish Kennel Club’s register in the 1950’s but the breed’s 

popularity has not reached the numbers of the Finnish Spitz and the Chihuahua. The 

Finnish Spitz was an extremely popular breed with nearly 2000 registrations annually for 

almost the whole decade of 1990’s. Since 1999, registrations have dropped below 1000 

puppies per year and continue to decrease dramatically. Quite the opposite has happened 

to the popularity of the Chihuahua which has increased steadily breaking the limit of one 

thousand registrations in 2007. The Pomeranian’s annual registration numbers have been 

100-200 for nearly 30 years now. In Finland, the Japanese Spitz is the youngest breed of 

these four. The first registrations date back to the 1970’s. The Japanese Spitz’s annual 

registration number has varied from 160 to 300 over the past 30 years. 

 

Table 3. Number of animals in pedigrees before and after quality control. 

Breed Original n Pruned n Final n 

Chihuahua 26007 17855 8152 

Pomeranian 8065 5977 2088 

Finnish Spitz 48342 42421 5921 

Japanese Spitz 7923 6347 1576 

 

 

4.2 Phenotypic data 
 

The phenotypic data included ID of the dog, its litter ID, ID of the veterinarian that 

performed the PL evaluation, sex of the dog (male=1, female=2), age in months when the 

PL evaluation was done, birth year and month, the postal code and ID of the breeders if 

known, size of the litter the animal was born to, the left and right patella score (either 0, 

1, 2, 3, 4, “no statement” or “operated”), and finally the mean of the previous two. 

Additionally, there was information about the coat types (1=long or 2=short) for the 

Chihuahua. 

 

The age limit for the official patellar luxation examination is 12 months, however, in most 

of the breeds there were some evaluations done for younger dogs. Those records were 

kept in the data because if a young dog is showing symptoms of PL, the cause of PL is 
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more likely genetic than environmental, and the phenotype is severe. Many dogs were 

tested more than once in their lifetime. In these cases, only the worst grade was kept 

because PL is considered congenital. The LPL and MPL scores were combined into one 

numeric PL score. A few PL scores stated “operated”. For further analyses these dogs 

were removed from the data since there was no knowledge of the true reason for operating 

the stifle (could be trauma) and the small number of cases. There were also random “no 

statement” records, i.e. no information was available on what was the reason to this kind 

of a record. Therefore also “no statement” records were removed. The mean PL score for 

each animal was calculated. The structure of the phenotypic data is given in Tables 4 – 7. 

 

Table 4. Descriptive parameters for the data where the variable was mean of the left and 

the right stifles’ PL scores. 

Breed n Average Standard deviation Min value Max value 

Chihuahua 5800 0.29 0.61 0 4 

Pomeranian 780 0.32 0.61 0 3 

Finnish Spitz 3278 0.05 0.24 0 4 

Japanese Spitz 875 0.19 0.45 0 4 

 

 

Table 5. Distribution of mean of the left and right PL scores. 

Breed Chihuahua Pomeranian Finnish Spitz Japanese Spitz 

Mean 

PL 

score 

n % n % n % n % 

0 4297 74.1 548 70.3 3099 94.5 687 78.4 

0.5 565 9.74 92 11.8 86 2.62 96 10.9 

1.0 474 8.17 77 9.87 63 1.92 66 7.63 

1.5 188 3.24 26 3.33 15 0.46 16 1.82 

2.0 157 2.71 23 2.95 11 0.34 3 0.34 

2.5 50 0.86 2 0.26 3 0.00 2 0.34 

3.0 51 0.88 12 1.54 0 0.00 3 0.34 

3.5 10 0.17 0 0.00 0 0.00 1 0.11 

4.0 8 0.14 0 0.00 1 0.00 1 0.11 

Total 5800 100 780 100 3278 100 875 100 
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Table 6. Number of PL records by sex. The percentage indicates the proportion of 

animals that had PL score >0. 

 Chihuahua Pomeranian Finnish Spitz Japanese Spitz 

Sex n % n % n % n % 

Male 1924 24 273 24 1213 3 366 17 

Female 3876 27 507 33 2065 7 509 25 

Total 5800  780  3278  875  
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Table 7. Mean of the mean PL scores by birth year and the number of records. 

  Chihuahua Pomeranian Finnish Spitz Japanese Spitz 

Birth 

year 

Mean 

PL score 
n 

Mean 

PL score 
n 

Mean 

PL score 
n 

Mean 

PL score 
n 

1978 - - 0.0 1 0.0 1 - - 

1979 - - - - 0.0 2 - - 

1980 - - - - 0.0 1 - - 

1981 0.0 2 - - 0.1 5 - - 

1982 0.0 2 - - 0.1 15 - - 

1983 - - - - 0.0 13 - - 

1984 0.0 2 - - 0.0 18 - - 

1985 0.3 3 - - 0.0 16 0.0 1 

1986 0.0 2 0.5 1 0.0 38 - - 

1987 0.1 12 1.0 1 0.1 75 0.2 3 

1988 0.2 15 0.5 4 0.0 91 0.1 4 

1989 0.3 26 0.0 5 0.0 85 0.3 10 

1990 0.3 45 1.0 2 0.0 114 0.1 19 

1991 0.2 55 0.3 7 0.0 118 0.3 17 

1992 0.2 76 0.1 7 0.0 112 0.2 25 

1993 0.2 65 0.5 6 0.0 95 0.1 21 

1994 0.2 112 0.1 7 0.0 119 0.3 27 

1995 0.1 111 0.1 7 0.0 86 0.3 24 

1996 0.3 96 0.3 14 0.0 89 0.3 22 

1997 0.2 123 0.5 12 0.0 88 0.2 21 

1998 0.2 139 0.2 19 0.0 115 0.2 30 

1999 0.2 157 0.1 21 0.0 83 0.3 33 

2000 0.2 133 0.3 24 0.1 108 0.0 26 

2001 0.3 132 0.3 27 0.0 110 0.1 39 

2002 0.3 185 0.3 42 0.0 127 0.2 32 

2003 0.3 186 0.2 41 0.0 141 0.1 34 

2004 0.3 234 0.3 48 0.1 167 0.1 48 

2005 0.3 352 0.1 52 0.0 159 0.1 44 

2006 0.3 360 0.3 54 0.0 162 0.2 68 

2007 0.4 471 0.4 58 0.1 189 0.2 35 

2008 0.3 479 0.3 49 0.1 199 0.2 57 

2009 0.4 492 0.4 55 0.1 188 0.1 66 

2010 0.4 497 0.4 77 0.1 123 0.3 61 

2011 0.3 467 0.4 55 0.1 95 0.2 41 

2012 0.3 488 0.2 62 0.1 93 0.1 37 

2013 0.2 281 0.7 22 0.1 38 0.4 30 

Sum - 5800 - 780 - 3278 - 875 
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4.1.1 Chihuahua 
 

The PL observations were available from 1990 to 2014 including 6610 MPL and 30 LPL 

scores for the short-coated Chihuahua. For the long-coated Chihuahua there were 7019 

MPL and 30 LPL scores. In the final pruned phenotypic data, there were altogether 5800 

observations for the Chihuahua (combined). For the statistical analyses the data from 

short- and long-coated Chihuahuas were merged. This was reasonable since the breeding 

populations of both coat types are the same. Age at the time of the patella examination 

was converted to classes (n=12) according to the Table 8. 

 

Table 8. Classification of the age at the time of the patella examination, Chihuahua 

Age when examined [Month] n Numeric format in data file 

<12 32 1 

12-17 3518 2 

18-23 948 3 

24-29 427 4 

30-35 220 5 

36-41 217 6 

42-47 139 7 

48-53 87 8 

54-59 56 9 

60-65 50 10 

66-71 29 11 

>72 77 12 

 

 

4.1.2 Pomeranian 
 

The PL observations were available observations from 1990 to 2014 including 1608 MPL 

and 20 LPL scores. In the final pruned phenotypic data, there were altogether 780 

observations for Pomeranians. Age at the time of the patella examination was converted 

to classes (n=8) according to the Table 9. 
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Table 9. Classification of the age at the time of the patella examination, Pomeranian 

Age when examined [Month] n Numeric format in data file 

<12 15 1 

12-17 377 2 

18-23 183 3 

24-29 65 4 

30-35 41 5 

36-41 28 6 

42-47 17 7 

>48 54 8 

 

 

4.1.3 Finnish Spitz 
 

The PL observations were available from 1989 to 2014 including 7146 MPL and 34 LPL 

scores. Two records were “operated”, and one was “no statement”. In the final pruned 

phenotypic data, there were altogether 3278 observations for the Finnish Spitz. Age at the 

time of the patellae examination was converted to classes (n=12) according to the Table 

10. 

 

Table 10. Classification of the age at the time of the patella examination, Finnish 

Spitz 

Age when examined [Month] n Numeric format in data file 

<12 70 1 

12-17 508 2 

18-23 427 3 

24-29 356 4 

30-35 338 5 

36-41 333 6 

42-47 261 7 

48-53 210 8 

54-59 152 9 

60-65 131 10 

66-71 109 11 

>72 383 12 

 

 

4.1.4 Japanese Spitz 
 

The PL observations were available from 1991 to 2014 including 1751 MPL and 70 LPL 

scores. In the final pruned phenotypic data, there were altogether 875 observations for 
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Japanese Spitz. Age at the time of the patellae examination was converted to classes 

(n=11) according to the Table 11. 

 

Table 11. Classification of the age at the time of the patella examination, Japanese 

Spitz 

Age when examined [Month] n Numeric format in data file 

<12 7 1 

12-17 448 2 

18-23 158 3 

24-29 95 4 

30-35 45 5 

36-41 44 6 

42-47 20 7 

48-53 12 8 

54-59 13 9 

60-65 12 10 

>66 21 11 

 

 

For the Japanese Spitz there were also an HD examination data available for the 

estimation of genetic correlation between HD and PL. The data originally included 775 

observations from 380 different animals. The HD data included columns of the 

veterinarian that evaluated the x-ray images at the Finnish Kennel Club, the examination 

year and month, age in months when the examination was done (both direct months and 

months converted to classes, Table 12), sex of the dog, birth year and month, and mean 

score of the left and right hip grades. Hip scores were converted from alphabetical into 

numeric format. The same weighting method was used as the Finnish Kennel Club used 

for HD breeding index calculations: grade E (the worst grade) weighted by +0.5 (Table 

13). Originally there were four different veterinarians who had scored the hip X-ray 

pictures. For two of them there were only a few observations. These were removed in 

order to unify the data. For each dog the left and right limbs’ HD scores were combined 

into one mean score. The distribution of the mean HD scores is given in Figure 6. 
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Table 12. Classification of the age at the time of the patella examination, Japanese 

Spitz 

Age when examined [Month] n Numeric format in data file 

12-17 146 1 

18-23 93 2 

24-29 33 3 

30-35 29 4 

36-41 18 5 

42-47 10 6 

>48 25 7 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Distribution of the mean HD scores. 
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Table 13. The numerical values used for the original alphabetical hip 

scores. 

 
Grade Numeric value in data file 

A = normal 1 

B = borderline 2 

C = mild 3 

D = moderate 4 

E = severe 5.5 
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4.2 Statistical model 
 

The fixed effects including sex, evaluation year, age of the dog when the evaluation took 

place, birth year and birth month, were tested with a backward selection method in R. In 

backward selection, the primary linear model includes all fixed effects, which are dropped 

one by one after testing their significance leaving only significant variables. The 

significance level of 0.05 was used. The veterinarians who evaluated the patellae was 

considered as a random effect because there were hundreds of qualified veterinarians in 

the PL data each having a relatively small number of patellae evaluated. On the contrary, 

in the Japanese Spitz’s hip data, there were only two different veterinarians which is why 

these veterinarians were tested as fixed effects (not significant). 

 

The ANOVA-tables (analyses of variance) of the significant variables for the Chihuahua, 

the Pomeranian, the Finnish Spitz and the Japanese Spitz (PL and HD) are presented in 

Table 14, Table 15, Table 16, Table 17, and Table 18 respectively. The definitions for the 

variables are given below the tables. 

 

Table 14. The ANOVA-table for the variables in the final model without random 

effects for the Chihuahua. 

Variablea df SS MS F P-value 

sex 1 2.7 2.72 7.59 0.006 (**) 

year 24 34.8 1.45 4.05 1.15e-10 (***) 

age 11 68.4 6.22 17.4 <2e-16 (***) 

byear 31 34.6 1.12 3.12 1.33e-08 (***) 

residuals 5730 2050 0.358   

 

 

Table 15. The ANOVA-table for the variables in the final model without random 

effects for the Pomeranian. 

Variablea df SS MS F P-value 

sex 1 2.52 2.52 6.96 0.009 (**) 

age 7 9.65 1.38 3.81 0.0005 (***) 

residuals 771 279 0.362   
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Table 16. The ANOVA-table for the variables in the final model for PL without random 

effects for the Finnish Spitz. 

Variablea df SS MS F P-value 

sex 1 0.25 0.25 4.42 0.04 (*) 

residuals 3270 1889 0.06   

 

 

Table 17. The ANOVA-table for the variables in the final model for PL without random 

effects for the Japanese Spitz. 

Variablea df SS MS F P-value 

sex 1 1.81 1.81 9.00 0.003 (**) 

age 10 4.78 0.48 2.38 0.009 (**) 

residuals 866 173 0.20   

 

 

Table 18. The ANOVA-table for the variables in the final model for HD without 

random effects for the Japanese Spitz. 

Variablea df SS MS F P-value 

age 6 12.2 2.03 2.80 0.01 (*) 

residuals 319 231 0.72   

 

Signif. codes:  0: ‘***’, 0.001: ‘**’, 0.01: ‘*’, 0.05: ‘.’, 0.1: ‘ ’ and 1 

 

Where 

df = degrees of freedom 

SS = sum of squares 

MS = mean square 

F = F-value 

sex = sex of the animal 

byear = animal’s birth year 

age = animal’s age in months (categorized) in the PL (HD) evaluation 

year = the year of the evaluation 

 

Summary of the mixed models is given in the Table 19. Variables sexi, yearj, agek, and 

byearl were treated as fixed effects, an is a breeding value of animal n, a ~ N(0,Aσ2
a), vetm 

is a random effect of a veterinarian m, vet ~ N(0,Iσ2
vet), and eijklmn is the residual, e ~ 
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N(0,Iσ2
e). I is a diagonal matrix and A is the relationship matrix. Variance components 

σ2
a, σ

2
v, and σ

2
e correspond to the effect of breeding values, veterinarians, and residuals, 

respectively. 
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Table 19. Summary of the mixed models for each studied breed. 

Breed y = mean PL score y = right PL score y = left PL score y = Mean HD score 

Chihuahua yijklmn = µ+ sexi + yearj + agek + 

byearl + vetm + an + eijklmn 

yijklmn = µ+ sexi + yearj + agek + 

byearl + vetm + an + eijklmn 

yijklmn = µ+ sexi + yearj + agek + 

byearl + vetm + an + eijklmn 

- 

Pomeranian yijklmn = µ+ sexi + agek + vetm + an + 

eijklmn 

yijklmn = µ+ sexi + agek + vetm + an + 

eijklmn 

yijklmn = µ+ sexi + agek + vetm + an + 

eijklmn 

- 

Finnish 

Spitz 

yijklmn = µ+ sexi + vetj + an + eijklmn yijklmn = µ+ sexi + vetj + an + eijklmn yijklmn = µ+ sexi + vetj + an + eijklmn - 

Japanese 

Spitz 

yijklmn = µ+ sexi + agek + vetm + an + 

eijklmn 

yijklmn = µ+ sexi + agek + vetm + an + 

eijklmn 

yijklmn = µ+ sexi + agek + vetm + an + 

eijklmn 

yijklmn = µ+ agek + an 

+ eijklmn 

 

 

Where 

y = dependent variable (see column header) 

µ = overall mean 

sex = sex of the animal 

byear = animal’s birth year 

age = animal’s age in months (categorized) 

year = the year of the evaluation 

vet = veterinary ID 

a = EBV of the animal 

e = residual 
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5 RESULTS 

5.1 Heritability estimates 
 

The heritability (h2) indicates proportion of the additive genetic variation from the total 

phenotypic (observed) variation within a population. The random effect of veterinarian 

was not included in the formula because it is not an animal-based source of variation. 

The general formula for heritability is: 

 

ℎ2 =
σ𝑎

2

σ𝑝
2      (1) 

 

Where: 

σ𝑎
2

  = additive genetic variance 

σ𝑝
2

  = phenotypic variance 

 

 

For both PL and HD heritability the following variance components were used: 

 

ℎ2 =
σ𝑎

2

σ𝑎
2 +σ𝑒

2     (2) 

 

Where  

σ𝑎
2

  = additive genetic variance 

σ𝑒
2

  = residual variance 

 

The estimates of variance components and heritabilities and heritability standard errors 

are given in the Table 20. 

 

 

 

 

 

 



31 

 

 

Table 20. The variance components and the heritability estimates for different traits. 

 σ²a σ²vet σ²e h2 S.E. 

CHIHUAHUA      

Left PL 0.06 0.02 0.41 0.12 0.02 

Light PL 0.06 0.02 0.36 0.14 0.02 

Mean PL 0.06 0.02 0.28 0.18 0.02 

POMERANIAN      

Left PL 0.01 0.04 0.46 0.02 0.05 

Light PL 0.02 0.06 0.35 0.05 0.05 

Mean PL 0.01 0.05 0.32 0.03 0.05 

FINNISH SPITZ      

Left PL 0.01 0.03 0.06 0.14 0.02 

Light PL 0.00 0.01 0.07 0.03 0.02 

Mean PL 0.01 0.02 0.05 0.17 0.02 

JAPANESE SPITZ      

Left PL 0.02 0.02 0.24 0.08 0.05 

Light PL 0.01 0.04 0.19 0.05 0.04 

Mean PL 0.01 0.02 0.17 0.06 0.04 

Mean HD 0.27 - 1.19 0.18 0.09 

 

 

5.2 Genetic correlations 
 

The genetic correlations between left and right sided PL scores (rleft,right) were calculated. 

When rg = -1 the selection to increase one trait leads to same amount of decrease in the 

other trait. Whereas, if rg = 1 selecting one trait leads to a similar genetic change in the 

other trait and the two traits are therefore outcomes of the same genes. The following 

formula was used: 

 

𝑟𝑔 =
𝜎𝑔𝐿𝑅

𝜎𝑔𝐿· 𝜎𝑔𝑅 
     (3) 

 

Where 

𝜎𝑔𝐿𝑅  = genetic covariance of left and right PL scores 

𝜎𝑔𝐿  = standard deviation of left PL scores (additive genetic) 

𝜎𝑔𝑅  = standard deviation of right PL scores (additive genetic) 
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The genetic correlations, the standard errors and the phenotypic correlations are given in 

Table 21. The results for the Japanese Spitz could not be obtained because of convergence 

problems. As the genetic correlation in the Chihuahua, the Pomeranian and the Finnish 

Spitz is 1, the left and right patellae health is most likely one trait with a common genetic 

background. The observation that bilateral PL is more common than unilateral PL 

supports this conclusion. 

 

The genetic correlations for mean HD and mean PL scores in the Japanese Spitz was 

calculated using formula (4). A low negative genetic correlation of -0.05 (±0.46) between 

PL and HD was observed. The phenotypic correlation was 0.20 

 

𝑟𝑔 =
𝜎𝑔𝐻𝐷,𝑔𝑃𝐿

𝜎𝑔𝐻𝐷· 𝜎𝑔𝑃𝐿 
     (4) 

 

Where 

𝜎𝑔𝐻𝐷,𝑔𝑃𝐿  = genetic covariance of mean HD and PL scores 

𝜎𝑔𝐻𝐷  = standard deviation of mean HD scores (additive genetic) 

𝜎𝑔𝑃𝐿  = standard deviation of mean PL scores (additive genetic) 

 

 

5.3 EBVs and genetic trends 
 

An estimated breeding value (EBV) was obtained for animal that were included in 

variance component estimation (both animals with observations and their ancestors). In 

order to control the reliability of EBVs only the animals that had their stifles checked 

were chosen for further inspection. As the phenotype is graded from 0 to 4, the smaller 

Table 21. Genetic correlation (rg), standard error (S.E.) and 

phenotypic correlation (rp) between left and right sided PL. 

Breed rg S.E. rp 

Chihuahua 1.00 0.02 0.57 

Pomeranian 1.00 0.88 0.62 

Finnish Spitz 1.00 0.08 0.56 

Japanese Spitz - - - 
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the EBV corresponds to better patellae health. The minimum, median, mean, standard 

deviation and maximum value of EBVs in each breed are given in Table 22. 

 

 

 

 

To visualize the genetic trend in patellae health, the mean EBVs were calculated by their 

birth years. At the chronological beginning of the data there were only a few observations 

per year (Table 7) which caused vast variation to the age group’s mean EBV scores. For 

this reason, the years where the number of observations was <10, were excluded. Figures 

7, 8, 9, and 10 show genetic trends for the Chihuahua, the Pomeranian, the Finnish Spitz, 

and the Japanese Spitz, respectively. The trend is beneficial in the Chihuahua and 

Japanese Spitz. The genetic trend in the Finnish Spitz is close to neutral and in the 

Pomeranian the development is going towards worse patellae health. 

 

 

Figure 7. The genetic trend of PL in the Chihuahua. 

Table 22. Descriptive parameters of EBV of PL based on animals with own 

observations. 

 Min. Median Mean Standard 

deviation 

Max. 

Chihuahua -0.39 -0.08 -0.06 0.14 0.76 

Pomeranian -0.08 -0.01 -0.00 0.03 0.15 

Finnish Spitz -0.09 -0.02 -0.01 0.04 0.35 

Japanese Spitz -0.06 0.02 0.02 0.04 0.21 
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Figure 8. The genetic trend of PL in the Pomeranian. 

 
Figure 9. The genetic trend of PL in the Finnish Spitz. 
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Figure 10. The genetic trend of PL in the Japanese Spitz. 

 

 

5.4 Effect of sex 
 

On average the males had better EBVs of patella health than females in all studied breeds. 

However, only in the Pomeranian the difference was statistically significant. Also, in the 

phenotypic data it was seen that a larger proportion of females were affected with PL than 

in males (Table 6). The effect of the sex to the mean PL score of left and right stifle are 

given in the Table 23. 

 

 

 

Table 23. The effect of sex.   

Breed Gender n BLUE S.E. t P-value 

Chihuahua Male 1923 -0.05 0.02 
-0.49 0.35 

Female 3876 0.00 0.00 

Pomeranian Male 272 0.56 0.09 
4.44 0.00 

Female 507 0.96 0.09 

Finnish 

Spitz 

Male 1213 0.10 0.03 
0.67 0.32 

Female 2065 0.12 0.03 

Japanese 

Spitz 

Male 366 0.23 0.10 
0.8 0.29 

Female 508 0.31 0.10 
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6 DISCUSSION 

 

In a breeding program one must set breeding goals, collect phenotypic information, 

estimate breeding values, disseminate the genetic gain and finally follow up and evaluate 

the progress (Oldenbroek and van der Waaij 2014, p. 41-43). For that reason, it is 

important to know the heritabilities of the traits that are under selection. In general, the 

breeding of dogs differs a great deal from production animal breeding practices. While 

the maintenance of production animals’ breeding programs is centralized to only a few 

breeding organizations or companies, the responsibility of dog breeding is spread to many 

individual breeders. In Finland, the national breed clubs collect health, mental, and trial 

information on the breed and based on this data make breeding recommendations and 

even regulations. However, individual breeders have great freedom of interpreting the 

breed standard and putting their own view of ideal dog into action. A common force 

affecting the selection of stud dogs and development of a breed is success in dog 

conformation shows. Conformation titles can be valued higher than patellae health. 

Moreover, the economic value of different traits is hard or impossible to define for dogs, 

thus there are no financial pressure to develop certain traits in dogs, at least not to same 

extent as in production animal breeding. 

 

Putnam’s PL scoring protocol was introduced to the kennel community in the 1960’s. 

First PL observations date back to the late 1970’s in the data of this study. By now, there 

is a vast awareness of patellar health problems among pedigree dog breeders. One could 

think that tens of years of patellae examinations and increased knowledge would have led 

to improved patellae health even despite the lacking PL score regulation. Yet, only in the 

Chihuahua and the Japanese Spitz a positive genetic trend could be seen (Figure 7 and 

10). The Pomeranian’s genetic trend seems to go up which means that the patellae health 

is degenerating (Figure 8). The Pomeranian is a tiny dog with a profuse coat which might 

make it the most challenging breed to score for PL. In the Finnish Spitz the genetic trend 

seems rather neutral (Figure 9). As in the Finnish Spitz’s breeding practices it is allowed 

to mate a dog once without a patellae check, this result can be considered decent. 

 

This study’s heritability estimates are in line with the previous results of other similar 

studies (Tables 1 and 20). PL is a complex disorder in which the environmental factors 
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have a great impact. One possible source of bias in PL scores is the evaluating 

veterinarian. One could speculate that the differences in heritability estimates between 

left and right patellae (Table 20) could be explained by sidedness of veterinarians (i.e. 

either right- or left handed) since the genetic correlation estimates (Table 21) suggest that 

the same genes are involved. In Finland, all veterinarians graduate from the same 

university faculty. In order to be officially approved to evaluate patellae, the veterinary 

students need to attend an optional orthopaedics course. At this course, the students 

practice the scaling of a few live animals’ patellae according to the Putnam’s protocol. 

After these exercises all students are approved as official examiners. This practice might 

require re-evaluation. What is more, the importance of accurate phenotyping should be 

emphasized to students since a PL score of an animal plays a big role not just for the dog 

(owner) in question but for the whole breed. Another approach could be to abandon the 

Putnam’s scale and turn to X-ray images. Mortari et al., (2009) and Marttinen (2016) got 

promising results for grading PL from various angulations. The downside of X-ray 

pictures for some dog owners though is the price and the need for anaesthesia. Also, a 

new protocol should be carefully studied, validated, and established first. 

 

For some breeds the obtained heritabilities were low. This could be due to genetic 

background of the trait (genetic variation is small in the breed) or it could be due to 

phenotyping problems. In addition, the applied statistical model may not encounter all 

systematic factors that may have an effect on PL scores. Phenotyping could be improved 

by decreasing the number of the scoring veterinarians and collecting more data from more 

animals. In addition, as described on chapter 4.2, the LPL and MPL scores were combined 

into one PL score. Afterwards it seems that MPL and LPL should have kept apart since it 

is possible that they are genetically two different traits. As soon as these problems are 

tackled, the selection should be based on breeding indexes. This is what also Wangdee et 

al. (2014) and Lavrijsen et al. (2013) recommended based on their work and results. 

Currently the selection is based on phenotypes. It is well known that this practice is not 

the best for traits with a low heritability (Oldenbroek and van der Waaij 2014, p. 162-

163). Also, PL is a developmental disorder that might show symptoms only after a dog is 

already used for breeding. 

 

In earlier studies, there has been a discussion on whether or not sex has an effect on the 

risk of getting PL. In this study, the effect of sex was significant for all breeds (Tables 
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14-17) in the phenotypic data. The estimated effect of the sex to EBVs are given in the 

Table 23. The BLUE values in each breed indicates that females have slightly worse 

patellae health than males that is in line with the earlier studies (Priester 1972, Bound et 

al. 2009). Some breeders consciously avoid taking their female dogs to patellae check 

during the dogs’ estrus (personal communications with dog breeders). They have an idea 

that a dog in heat tends to get worse patella scores. To the author’s knowledge, this matter 

has not been studied in dogs. However, the biochemical connection between female 

hormones and tendon laxity has indeed been studied and shown both in humans and in 

rats (Lee et al. 2013, Dehghan et al. 2015 and Leblanc et al. 2017). This suggests that 

there could be a connection between worse PL scores and estrus in dogs as well. Yet, 

further studies are needed to make practical conclusions on the matter.  

 

There is no doubt that PL is a serious welfare problem for several dog breeds and as a 

consequence a burden for the dog owners. PL is a problem that could be solved with 

sophisticated breeding plans. Before action some challenges remain: how to make the 

diagnostics more accurate, reliable and objective? How to accomplish this without the 

expenses rising beyond the tolerance limit of dog owners? The more observation data 

there is, the higher the rating reliability gets. Therefore, not only stud dogs ought to be 

screened but also the ordinary family dogs. This should indeed be emphasized to all puppy 

owners. There is also a concern that clinically affected, worst cases do not end up in the 

breeding database. An unofficial survey for the Pomeranian owners in spring 2019 

suggested that surgical PL operations seem more common than the breeding database 

indicates (unpublished data). Perhaps breed clubs could more actively try to spread the 

knowledge about genetic health issues and the value of comprehensive breeding 

databases. 

 

 

7 CONCLUSIONS 

 

In this study, the heritability of PL was studied in four dog breeds: the Chihuahua, the 

Pomeranian, the Finnish Spitz and the Japanese Spitz. To the author’s knowledge there 

has not been similar studies made in the Finnish Spitz and the Japanese Spitz before. The 
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results revealed new information on the additive genetic component and the genetic trend 

of PL. Based on the results, a new approach to breeding against PL and a development of 

a better phenotyping protocol is recommended. The author concluded that decades of PL 

examinations have not solely led to improved patellae health in the studied breeds and 

since PL is a complex trait, the breeding selection should not be based on phenotypes. 

The author would find it beneficial if the diagnostics of PL could be improved in the 

future and if the breeding indexes would be introduced to the breeding practices to make 

the selection more accurate and efficient. 
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