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Abstract

Urban populations are becoming highly diverse, or “super-diverse”, through increas-
ing globalization and international mobility. Super-diversity implies diversity that oc-
curs across multiple variables such as language, ethnicity, religion, gender, age, country
of origin, mobility, employment, and housing career. Language provides a useful, but
underexplored perspective to super-diversity, as languages mediate every social inter-
action in urban areas and constitute a central part of individual and group identity.
Superdiverse populations increase the diversity in urban areas also through their ac-
tivities related to leisure, work, and everyday errands, all of which also vary across
geographical space and time. I use the term urban diversity, by which I mean the diver-
sity which emerges from the presence of super-diverse populations and their activities.
Urban diversity exhibits spatio-temporal variation due to people’s everyday mobility
and the change of their residential areas. In this thesis, I concentrate two variables of
urban diversity: languages and activities. Social media and population registers capture
information about urban diversity, such as languages and activities, to different degrees.
To better understand spatio-temporal urban diversity, the use of several sources of data
and interdisciplinary approaches are necessary, as this understanding enables urban
planners and decision-makers to support social cohesion and social sustainability in our
cities.

In this thesis, I explore urban diversity from the perspectives of languages and activ-
ities using social media and population register data, focusing on Finland and especially
the Helsinki Metropolitan Area (HMA). As urban diversity is a complex phenomenon,
my work draws conceptually and methodologically on several fields of research: geo-
graphic information science, urban geography, and research on urban multilingualism,
which also covers linguistic landscapes research. This thesis is strongly methodological in
nature. I use diversity metrics originally developed in the fields of ecology and informa-
tion science to assess the diversity of languages in population registers and social media
content across Finland and the Helsinki Metropolitan Area. I apply computer vision
techniques to extract information on activities from visual social media content. Finally,
I use techniques from spatial analysis and statistics to examine the spatio-temporality
of urban diversity across geographical scales from the national to local level.

I report the results of my research results in four articles. Article I explores the
spatio-temporal diversity and richness of languages used by Finnish Twitter users from
regional and user-based perspectives. The article shows how language use and linguistic
diversity on Finnish Twitter varies across Finland, and characterizes the diversity of
the linguistic repertoires of the users. Article II shows how to extract information on
activities and visual preferences with several computer vision techniques from Flickr
photographs taken in Finnish national parks. The focus on visual social media content
circumvents challenges arising from multilingual and textually limited content. The ar-
ticle shows how the activities and landscape preferences of domestic and international
visitors in the parks differ across the parks. Article III examines the variation in lin-
guistic diversity in the Helsinki Metropolitan Area from population registers and social
media during 2015. The article demonstrates how linguistic diversity derived from first
language information in the population register and the linguistic repertoires of social
media users can be used to assess where encountering a language other than one’s own is
likely. The article also explores what the background characteristics influencing linguis-
tic diversity are. Article IV examines the spatio-temporal patterns of linguistic diversity
in residential areas of the HMA between 1987–2019 and the integration of two sizeable
local minority groups, Somali and Estonian speakers, to the Finnish society from the
perspective of languages. The article reveals that while linguistic diversity is rising in
all neighbourhoods, speakers of Somali and Estonian are exposed to it differently. The
article also shows how linguistic diversity has changed in terms of the languages that
constitute it and the locations where it is concentrated. Finally, article IV demonstrates
that linguistic diversity in moderately diverse neighbourhoods is more likely to change,
whereas monolingual and multilingual neighbourhoods are highly likely to remain as
they are.

My results show that urban diversity is a spatio-temporal phenomenon and lan-
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guage is a useful variable for bringing out spatio-temporal patterns in urban diversity.
My data shows the HMA has diversified rapidly from a monolingual area to a multilin-
gual one. Moreover, the languages spoken in the HMA and the locations of multilingual
neighbourhoods have changed, and changes in linguistic diversity in residential areas are
influenced by their spatial surroundings. Furthermore, my results show that social me-
dia data reveals a more diverse spatio-temporal linguistic view of the HMA compared to
what population registers demonstrate. Such a dynamic view provides more understand-
ing of where and when urban populations encounter diversity. These results emphasize
the importance of understanding the emerging spatio-temporal and social patterns of
urban diversity, which provide vital information for policies fighting segregation, social
tensions and social polarization. My work demonstrates the value of combining several
sources of data, analysing them using interdisciplinary methods, while drawing concep-
tually on several fields of study to better understand urban diversity. As urbanization
continues globally, and is accelerated by the climate crisis and increasing global instabil-
ity, it draws more people into cities, interdisciplinary approaches to examining diversity
in urban areas have become necessary for supporting inclusive, socially sustainable, and
resilient urban futures.
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Tiivistelmä

Kaupunkiväestöt muuttuvat alati monimuotoisemmiksi, tai “supermonimuotoisik-
si”, kasvavan kansainvälisten muuttoliikkeiden ja globalisaation myötä. Supermonimuo-
toisuus näkyy väestön kielten, etnisyyksien, uskontojen, sukupuolen, iän, lähtömaiden,
työllisyyden, asuntouran ja laillisen statuksen kirjon kautta. Näistä muuttujista erityi-
sesti kieli muodostaa käyttökelpoisen, mutta vähän tutkitun näkökulman supermoni-
muotoisuuteen. Kielet ovat kaupungeissa tapahtuvan sosiaalisen kanssakäymisen kes-
kiössä ja muodostavat yksilö- ja ryhmäidentiteetin keskeisen osan. Supermonimuotoi-
nen väestö lisää kaupunkien monimuotoisuutta myös vapaa-aikaan, työskentelyyn ja
arkipäivän askareisiin liittyvien aktiviteettien kautta, jotka ilmenevät eri tavoin maan-
tieteellisesti ja ajassa. Käytän tässä työssä termiä kaupunkidiversiteetti, jolla kuvaan
supermonimuotoisen väestön ja heidän aktiviteettiensa kautta kaupunkitilaan syntyvää
spatiotemporaalista monimuotoisuutta. Kaupunkidiversiteetin maantieteellinen ja ajal-
linen vaihtelu syntyy ihmisten jokapäiväisen liikkumisen ja heidän asuinalueiden muu-
toksen kautta. Sosiaalisen median aineistot ja väestötietorekisteri tarjoavat mahdolli-
suuden tutkia kaupunkidiversiteettiä monipuolisesti, sillä ne kuvaavat kaupunkidiversi-
teettiä eri lähtökohdista ja eri tavoin. Kaupunkidiversiteetin parempi maantieteellinen
ja ajallinen ymmärtäminen vaatii usean eri aineistolähteen käyttöä ja poikkitieteellisiä
lähestymistapoja, koska ne mahdollistavat kaupunkialueiden sosiaalisen yhteenkuulu-
vuuden ja kestävyyden tukemisen kaupunkisuunnittelussa.

Tässä väitöskirjassa tutkin kaupunkidiversiteettiä kielten ja aktiviteettien näkökul-
masta hyödyntämällä sosiaalisen median ja väestötietorekisterin aineistoja keskittyen
Suomen ja erityisesti pääkaupunkiseudun tarkasteluun. Kaupunkidiversiteetti on moni-
tahoinen ilmiö, jonka vuoksi työni ammentaa metodologisesti ja käsitteellisesti usealta
tieteenalalta: geoinformatiikasta, kaupunkimaantieteestä ja kaupunkien monikielisyyden
tutkimuksesta, johon myös kielimaisemallinen tutkimus kuuluu. Analysoin väestörekis-
tereissä ja sosiaalisen median aineistoissa olevan kielitiedon rikkautta ja kirjoa ekolo-
giassa ja informaatiotieteissä kehitetyillä mittariluvuilla arvioidakseni kielidiversiteetin
maantieteellistä vaihtelua läpi Suomen ja pääkaupunkiseudun. Sovellan konenäköteknii-
koita aktiviteettien tunnistamiseen visuaalisesta sosiaalisen median sisällöstä. Näiden
lisäksi käytän spatiaalisen analyysin ja statistiikan menetelmiä kaupunkidiversiteetin
spatiotemporaalisten piirteiden tutkimiseen niin kansallisella kuin myös paikallisella mit-
takaavatasolla.

Esitän tutkimukseni tulokset neljän artikkelin kautta. Artikkeli I tutkii Suomes-
sa asuvien Twitter-käyttäjien käyttämien kielten diversiteettiä ja rikkautta aluetasolla
ja käyttäjäkohtaisesti. Artikkeli osoittaa kuinka Twitter-käyttäjien kielten käyttö ja
kielidiversiteetti vaihtelevat alueellisesti läpi Suomen. Artikkeli myös kuvaa käyttäjien
henkilökohtaisia kielirepertuaareja. Artikkeli II näyttää miten aktiviteetteihin ja vi-
suaalisiin mieltymyksiin liittyvää tietoa pystyy louhimaan konenäkömenetelmin Flickr-
valokuvista. Tulokset demonstroivat kuinka visuaaliseen sisältöön keskittymällä voidaan
välttää tekstuaalisen sisällön monikielisyydestä tai rajallisuudesta kumpuavat haasteet.
Artikkelin tulokset osoittavat myös kuinka eri väestöryhmien aktiviteetit tai mielty-
mykset eroavat toisistaan. Artikkeli III selvittää pääkaupunkiseudun kielidiversitee-
tissä ilmeneviä muutoksia sosiaalisen median ja väestörekisteritietojen avulla vuodelta
2015. Artikkeli osoittaa miten eri tietolähteiden kielitietoa voi hyödyntää selvittääkseen
missä ja mihin vuorokaudenaikaan kielidiversiteetin kohtaaminen on todennäköisintä
pääkaupunkiseudulla. Artikkelin tuloksen kuvaavat myös mitkä sosioekonomiset ja ym-
päristötekijät vaikuttavat sosiaalisen median kielidiversiteettiin. Artikkeli IV selvittää
kielidiversiteetin spatiotemporaalisia muutoksia pääkaupunkiseudun asuinalueilla vuosi-
na 1987–2019, sekä kahden paikallisesti merkittävän kieliryhmän, somalin- ja vironkielis-
ten, kotoutumista suomalaiseen yhteiskuntaan kielten näkökulmasta. Tulokset osoitta-
vat miten pääkaupunkiseudun kielidiversiteetti on muuttunut alueellisesti ja sisällöllisesti.
Artikkeli IV näyttää myös, miten kielidiversiteetti muuttuu herkimmin keskitasoisesti
monikielisillä alueilla, kun taas yksikieliset ja erittäin monikieliset alueet eivät ole alt-
tiita kielidiversiteetin muutoksille.

Väitöskirjani tulokset antavat uudenlaisen näkökulman kaupunkidiversiteetin spa-
tiotemporaalisuuteen. Tulokset myös osoittavat kielen olevan hyödyllinen kaupunki-
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diversiteetin spatiotemporaalisuuden ilmi tuomiseen. Käyttämäni aineistot osoittavat
pääkaupunkiseudun nopean muutoksen yksikielisestä alueesta monikieliseksi. Lisäksi
pääkaupunkiseudulla puhutut kielet ja monikielisten asuinalueiden sijainnit ovat muut-
tuneet, sekä asuinalueiden maantieteellinen ympäristö vaikuttaa asuinalueiden kieli-
diversiteetin muutoksiin. Sen lisäksi sosiaalisen median analyyseihini liittyvät tulok-
set paljastavat vieläkin kirjavamman urbaanin kielimaiseman kuin mitä rekisteriai-
neiston tarjoama näkökulma demonstroi. Tämä sosiaalisen median aineistojen tarjoa-
ma dynaaminen näkökulma tarjoaa mahdollisuuden parantaa ymmärrystämme siitä,
missä ja milloin kaupunkiväestöt kohtaavat monimuotoisuutta. Nämä tulokset koros-
tavat uusien kaupunkidiversiteetistä kumpuavin spatiotemporaalisten ja sosiaalisten
rakenteiden ymmärtämisen tärkeyttä tietolähteinä kaupunkisuunnittelulle, joka pyrkii
vähentämään segregaatiota, sosiaalisia jännitteitä ja polarisaatiota. Työni myös demon-
stroi usean aineistolähteen, poikkitieteellisten menetelmien, sekä usealta tieteenalalta
yhteen sovitettujen käsitteiden muodostaman lähestymistavan arvoa kaupunkidiversi-
teetin tutkimukselle. Jatkuva kaupungistuminen houkuttelee väestöä alati kasvavissa
määrin kaupunkeihin, jonka vuoksi poikkitieteellisestä lähestymistavasta kaupunkialuei-
den monimuotoisuuden tutkimiseen on tullut välttämätöntä sosiaalisesti kestävien ja
yhteenkuuluvuutta edistävien kaupunkien tulevaisuuden takaamiseksi.
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1 Introduction

Cities are becoming increasingly diverse at an unprecedented scale due to accelerating growth
of urbanization, and international migration and mobility. In 2022, 56% of the world’s
population lives in urban areas, and by 2050 this number is expected to be nearly 70% (United
Nations, 2022). Not only are cities becoming more populous, but the populations living in
cities are becoming more diverse. Contemporary urban populations can be characterized
as being “super-diverse” (Vertovec, 2007), that is, they are diverse across multiple variables
such as language, ethnicity, religion, gender, age, country of origin, mobility and access to the
labour market and housing. Each of these demographic variables unfold in distinct spatio-
temporal patterns across population groups and urban space, but also create complex and
intersectional local and regional configurations that are difficult to quantify, visualize, and
capture with conventional methods and data sets (Vertovec et al., 2022). The increasing
diversity of population in urban areas poses a challenge for sustainable development goals
pertaining to social issues in cities, but also an opportunity to increase social cohesion,
resilience, well-being, and a sense of unity (Chriost & Thomas, 2008; Schroedler et al., 2023;
United Nations, 2022; Wessendorf, 2014). In this work, I focus on the diversity of urban
populations from the perspective of languages and activities. Moreover, I focus on “urban
diversity” instead of super-diversity, because activities are not included in the original super-
diversity variables, but activities of diverse populations arguably play a part in making an
area diverse.

In the Finnish context, the rapidly increasing diversity is especially true in the Helsinki
Metropolitan Area (HMA). In recent decades, cultural and linguistic diversity has increased
in the HMA considerably (City of Helsinki, 2022; Dhalmann, 2013; Saukkonen, 2021b; Vaat-
tovaara & Joutsiniemi, 2018), and the HMA has become what Pisarevskaya et al. (2022)
describe as a “New Diverse” city. In a “New Diverse” city, the recent high increase in the
diversity of population is caused by immigrants making up a relatively small, but growing,
proportion of the total population, and who come from a wide variety of backgrounds. This
increase of diversity in the HMA challenges and puts political pressure on urban planners
and decision-makers in the region to evaluate and adjust their policies regarding housing,
education, languages, and immigrant integration (Kraus, 2011; Saukkonen, 2021b), but also
necessitates improving the understanding about the dynamic and structural spatio-temporal
patterns to enable urban planning and decision-making to support sustainability and social
cohesion (Kandt & Batty, 2020; United Nations, 2022; Vaattovaara & Joutsiniemi, 2018;
Vertovec et al., 2022).

Simultaneously with the diversifying population, the amount of data about people and
places generated by public entities, corporations, various sensors, Internet-of-Things (IoT)
devices, mobile devices carried by private individuals, or big data, is increasing rapidly (Good-
child, 2013; Kitchin, 2013; Lansley et al., 2018). These novel data sources provide continuous
information on people and places that was previously scarce or difficult to obtain, enabling
finer-grained analyses of urban diversity. Big data is traditionally described through the
concept of four V’s: volume, velocity, variety, and veracity, which describe the large amount
of data being generated at fast speeds, in a variety of formats and with varying levels of
noisiness and certainty (Goodchild, 2013; Kitchin & McArdle, 2016). Accompanying this ex-
plosion of big data, tools and methods to analyse the vast volumes of data are becoming more
efficient and accessible (Toivonen et al., 2019). Much of this big data contains geographical
and temporal information (Goodchild, 2016), which has spawned concepts like digital twins
and smart city (Batty, 2018), but also entire fields of study like urban informatics and city
science (Batty, 2012; Shi et al., 2022; Singleton et al., 2018). Out of the varieties of big data,
social media data in particular has received wide attention from geographers over the past
ten years (Martı́, Serrano-Estrada, et al., 2019; Martin & Schuurman, 2020; Toivonen et al.,
2019). The sheer variety of data types and sources of big data necessitates interdisciplinarity
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to become the core for geographical analysis on big data (Kitchin, 2013).

Figure 1: A framework for conceptualizing urban diversity from the point of view of geographical research. In
addition to variables proposed by Vertovec (2007), there is an added variable about activities, which together
constitute urban diversity. This thesis studies urban diversity from the perspective of languages and activities using
traditional and big data sources. Big data sources reveal spatio-temporal patterns that reflect the dynamic side of
urban diversity, whereas traditional data sources reflect the structural side.

The increased diversity in urban areas has led to a growing need to examine and under-
stand the spatio-temporal configurations of urban diversity from novel perspectives (Vertovec,
2007), and the simultaneous proliferation of big data provides a data source for such endeav-
ours (Arribas-Bel, 2014; Martı́, Serrano-Estrada, et al., 2019; Vertovec et al., 2022). The
framework of this study combines various variables of urban diversity and sources of data,
but also how these unfold as particular dynamic and structural spatio-temporal patterns,
which can be studied with various data, tools, and methods (Figure 1). The various data
sources, such as official statistics and social media data, capture different aspects of urban
diversity to varying degrees and at various scales. For instance, mobile phone data might
reflect the presence of population across urban space as it captures the daily mobility of
people fairly accurately and can indicate which population groups are present in the same
area at the same time, but can not capture what people are doing there nor why they are
there (Ahas et al., 2010; Toivonen et al., 2019). To understand reasons why people spend
time in one area over the other, additional data sources, like social media data, are needed
(Di Minin et al., 2015; Heikinheimo et al., 2020; Müürisepp et al., 2022). This underscores
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the necessity of using multiple data sources and methods (Martı́, Serrano-Estrada, et al.,
2019; Toivonen et al., 2019), so that findings from one big data source can be contextualized
with or even verified by another big data or traditional data source (Arribas-Bel, 2014; Kandt
& Batty, 2020; Tenkanen et al., 2017). However, gaining a comprehensive view into urban
diversity is difficult, as the number of variables, scales, and sources of data that need to be
visualized simultaneously might make any such visualizations uninformative or impossible to
do (Vertovec et al., 2022). This reality has guided my choices throughout this work, which
is why I am not attempting to combine multiple urban diversity variables into a “one-stop-
shop” variable that would describe the diversity in its entirety, as that be antithetical to
the intersectional nature of urban diversity (Vertovec, 2007). Instead, I am advocating for a
focus on one or a couple of variables at a time and selecting variables that make most sense
in the geographical and socio-spatial context of the analysis.

Figure 2: This thesis is an interdisciplinary work and draws from the research traditions of geographic information
science (GIScience), urban geography and linguistic landscapes.

In this thesis, I am focusing on two perspectives on urban diversity: languages and activi-
ties. I focus on these for two reasons. First, languages are an often underexplored variable for
understanding urban diversity (El Ayadi, 2021; Gorter, 2006; Johnston et al., 2021; Valentine
et al., 2008). Not only do languages mediate all social interactions in urban areas and enable
sharing of information in various social, cultural, political and communal contexts, but their
connection to individual and group identities, and value to social cohesion and sustainable
development are well known (Saarikivi & Toivanen, 2015; Schroedler et al., 2023; Tabouret-
Keller, 2017; Zenker, 2018). Furthermore, the traditional variables used to analyse diverse
areas and populations, country of origin and ethnicity, can be monolithic and obscure a large
degree of additional diversity within (Johnston et al., 2021; Vertovec, 2007). Regardless, lan-
guages are often overlooked in describing the diversity of population groups or areas (Chriost
& Thomas, 2008; El Ayadi, 2021; Johnston et al., 2021). Second, the activities various pop-
ulation groups engage in across geographical space also contribute to diversity. The mere
co-presence of people of various backgrounds might not reveal intergroup contacts. Under-
standing which activities are taking place, when, where, and by whom thus provides much
needed contextual information about what is happening across the geographical space (Di
Minin et al., 2015; Heikinheimo et al., 2022; Toivonen et al., 2019). As a result, to examine
a complex and multivariate issue like urban diversity (Figure 1) interdisciplinary approaches
are necessary (Kitchin, 2013; Vertovec, 2007). In this work I draw methodologically from
spatial analysis, machine learning, natural language processing, and biodiversity assessment
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(Figure 4), and conceptually from the fields of geographical information science (GIScience),
urban geography and linguistic landscapes (Figure 2). I use both traditional and big data
sources, such as population registers and social media data, to understand spatio-temporal
patterns in the diversity of languages at several spatio-temporal scales ranging from local to
regional, and daily to several decades long.

1.1 Objectives

By examining languages and activities using social media and population register data from
Finland and the Helsinki Metropolitan Area, I aim to pursue several objectives in this thesis
to advance the study of urban diversity in the field of geography. The objectives of this thesis
are as follows:

1. Reveal the urban diversity of the Helsinki Metropolitan Area and its dynamism using
social media and population register data.

2. Explore the potential of applying both traditional and novel sources of data with inter-
disciplinary methods to the study of urban diversity through languages and activities.

3. Advance the methodological framework for studying linguistic diversity and activities
in GIScience.

I address these objectives with this synopsis and four distinct articles, which constitute
the thesis. The articles address the first two objectives in varying degrees, but the third
objective is addressed by each article equally.

Article I addresses objective 2 and 3 by analysing the spatio-temporal linguistic diversity
and richness of Finnish Twitter users from locational and user-based perspectives. Using
geotagged and non-geotagged Twitter content from Finnish Twitter users, Article I identifies
the languages used by Finnish Twitter and quantifies the diversity of languages with metrics
originally developed in ecology and information sciences, to explore the spatio-temporal
patterns of linguistic diversity and language use across Finland.

Article II addresses objective 2 and 3 by applying computer vision techniques on visual
social media content to understand differences in activities and visual preferences between
domestic and international visitors to Finnish national parks from geotagged Flickr con-
tent. To detect the activities and visual preferences, Article II uses openly-available and
off-the-shelf computer vision models trained to perform object detection, instance segmen-
tation, and image classification. The article shows that identifying user activities based on
the photographs they have shared is a useful way to circumvent challenges arising from poor
textual content, how activities vary across user groups and geographical regions, and how
using several distinct computer vision techniques together provides complementary perspec-
tives to understanding differences in activities and visual preferences between visitors. Even
though the user data is from Finnish national parks, this article illustrates the feasibility of
using computer vision techniques to enrich spatial social media content with information on
activities and visual preferences derived from the visual content.

Article III addresses objectives 1, 2, and 3 through examining the variations between
linguistic diversity in the Helsinki Metropolitan Area from population registers and social
media during 2015, and exploring which background variables have an effect on linguistic
diversity from social media. Article III uses geotagged Twitter and Instagram, population
register, and mobile phone data to examine the spatio-temporal patterns of linguistic diversity
in the HMA. The results show that everyday mobility and language use on social media
reveals a more diverse and dynamic linguistic landscape compared to the more monolingual
linguistic landscape from the population register data, and how various background variables
influence spatio-temporal patterns of linguistic diversity from social media with spatial and
non-spatial regression analyses.
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Article IV addresses objectives 1, 2 and 3 by exploring the changing spatio-temporal
patterns of linguistic diversity in the HMA with population register data from 1987 until 2019.
It focuses on two locally important language groups: Somali and Estonian speakers, and
examines their integration into Finnish society from the perspective of languages and several
socio-economic variables. The article also explores the spatio-temporal stability of linguistic
diversity across different types of neighbourhoods to understand how the likelihood and types
of changes in linguistic diversity differ across neighbourhoods and spatial contexts. From the
point of view of this thesis, Article IV provides a contextual backdrop for observations from
social media in Articles I and III as it explores the diversifying population in the HMA and
by extension in the Finnish society.

1.2 Positionality

I approach these objectives from the perspective of geography, and more specifically through
the methodological and conceptual lenses of GIScience and urban geography. These analyses
enable examining various spatial and social phenomena at multiple spatio-temporal scales,
statistical testing of patterns, and modelling of relationships. However, this approach cap-
tures only one side of the phenomenon. For instance, the “emotions, values, beliefs and
opinions; the varied, contextual, rational and irrational ways in which people interact and
make sense of the world” (Kitchin, 2013, p. 265) are not captured in the register or social
media data nor by the methods I use. Moreover, my focus on analysing spatio-temporal
patterns in urban diversity from the perspectives of languages and activities constitute sep-
arate perspectives on a multivariate issue (Figure 1). Diversity in urban areas is inherently
complex and intersectional (Putnam, 2007; Vertovec, 2007), and thus an interdisciplinary
approach to questions about the topic is necessary. I believe the interdisciplinarity of this
work strengthens it, as the work has been conducted from the perspective of several disci-
plines (Figure 2) with a diverse selection of methods and sources of data (see Section 3).
My work demonstrates useful methods for analysing the spatio-temporal patterns of urban
diversity on the scales of neighbourhoods, cities and regions, and by using large datasets,
whereas for more ethnographical perspectives the reader is advised to seek out the work of
Pienimäki et al. (2023).

2 Background

2.1 Urban diversity

Diversity plays a major role in making cities socially vibrant, and appealing places to live as
well as nurturing innovation hubs, that boost economic development (Florida, 2003; Putnam,
2007). The diversity of urban populations has traditionally been assessed through the lenses
of ethnicity, country of origin, and socio-economic status, however the increasing international
mobility of people, things, and information over the past few decades (OECD, 2018; Sheller &
Urry, 2006; United Nations, 2022) pose a challenge to the traditional monolithic descriptors
of population (Johnston et al., 2021; Putnam, 2007; Vertovec, 2007). By coining the term
“super-diversity”, Vertovec (2007) made the claim that contemporary urban societies are not
merely diverse, but super-diverse, due to increasing numbers of migrants and refugees from
diverse backgrounds, and that the long-standing variables such as country of origin obscure
much of the additional, potentially more meaningful, diversity within.

Vertovec (2007) called for more attention to be placed on other variables as well, such
as language, gender, age, religion, and immigration status to examine the emerging pat-
terns of socio-cultural diversity. Through examining and acknowledging this new diversity,
urban policies and planning can better meet “the needs and conditions of immigrants, eth-
nic minorities and the wider population of which they are inherently part” (Vertovec, 2007,

15



p. 1050). This acknowledgment and meeting of needs will enable urban policies and planning
to better support social cohesion and sustainability, by also addressing how the in-group is
defined (Putnam, 2007). Consequently, the concept of super-diversity has been adopted by
numerous fields of research, from sociology and linguistics to gender studies and geography
(Beebeejaun, 2022; Blommaert, 2014; Cadier & Mar-Molinero, 2014; Lazar, 2022; Lehtonen,
2016; López Peláez et al., 2022; Vertovec, 2019). However, the way in which researchers
have used or adapted the concept of super-diversity varies considerably (Vertovec, 2019),
and its most fruitful use has been identified to be the examination of new social complexities
(Vertovec, 2019; Vertovec et al., 2022). Furthermore, much of the work focusing on super-
diversity has not considered the role of activities, whereas the role of people’s activities in
urban diversity is well-established in research on urban morphology (Crooks et al., 2015;
Kang et al., 2021; Niu & Silva, 2021; Sayyar & Marcus, 2011). However, super-diversity
and the diversity of people’s activities have not been brought together to understand the
spatio-temporality of urban diversity, as I aim to do in this thesis.

Urban diversity is an intensely local experience and unfolds as varying spatio-temporal
patterns across urban space (OECD, 2018; Syrett & Sepulveda, 2012; United Nations, 2022;
Vertovec et al., 2022). Exposure to diversity is thus largely seen as a useful way to reduce
tensions between population groups belonging to various social, cultural, and ethnic strata,
because exposure can increase understanding, dialogue, and generate a sense of community
in highly diverse urban areas (Amin, 2002; Chriost & Thomas, 2008; El Ayadi, 2021; Powers
et al., 2022; Syrett & Sepulveda, 2012; Valentine et al., 2008; Wessendorf, 2014; Ye, 2019).
Social mixing policies are considered a policy tool that supports social cohesion and integra-
tion in a society through exposure to diversity, and simultaneously mitigates neighbourhood
segregation and marginalization (Bolt et al., 2010; Fincher et al., 2014; Syrett & Sepulveda,
2012). That said, solely passing encounters with diversity or co-presence in the same resi-
dential neighbourhood might not be sufficient for generating understanding or a meaningful
dialogue with ‘others’ (Amin, 2002; Blommaert, 2014; Fincher et al., 2014; Valentine et al.,
2008; Ye, 2019), although encounters in communal places like parks, courtyards, or corner
stores, and in more formal spaces with organized activities are more likely to lead to positive
outcomes (Ho et al., 2021; Hoekstra & Pinkster, 2019; Pienimäki et al., 2023; Powers et al.,
2022; Valentine et al., 2008; Wessendorf, 2014). To summarize, we need more knowledge
about the spatio-temporal patterns of urban diversity across various types of places, such as
home, work, and third places, to understand its impacts on social sustainability and cohesion
(Putnam, 2007; Vertovec et al., 2022; Wessendorf & Farrer, 2021).

Increasing diversity can also pose a challenge to urban areas (Amin, 2002; Chriost &
Thomas, 2008; Fincher et al., 2014; Vertovec, 2019; Ye, 2017). Increasing diversity can also
result in socio-culturally homogenous neighbourhoods due to the concentration of ‘others’
and the local (majority) population moving out (Hoekstra & Pinkster, 2019; Matejskova &
Leitner, 2011; Putnam, 2007; Vilkama et al., 2013). Recent studies from Europe, however,
challenge these claims and indicate that cities are more likely to have increasingly socially
and culturally mixed neighbourhoods despite growing population diversity due to immigra-
tion (Catney et al., 2023; Zwiers et al., 2018). Moreover, some studies indicate increasing
ethnic diversity causes segregation and lack of trust between residents initially, but can after
a while materialize as increased well-being and social cohesion (Pisarevskaya et al., 2022;
Putnam, 2007). Complicating matters further, policies aimed to support diversity can si-
multaneously and inadvertently reinforce differences while also celebrating them (Fincher
et al., 2014; Hewidy & Lilius, 2022; Matejskova & Leitner, 2011). Much depends on the
socio-spatial contexts whether encounters with diversity occur and how sustained these con-
tacts are (El Ayadi, 2021; Matejskova & Leitner, 2011; Valentine et al., 2008; Wessendorf,
2014). Furthermore, there are some critiques towards super-diversity as a concept as well.
For instance, Beebeejaun (2022) claims the concept obscures and preserves social and racial
hierarchies as it views population groups through what separates them, instead of how they
are similar.
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2.2 The role of languages in urban diversity

All forms of interaction in the city are mediated by language. Language has a key role
in social interactions as it may be used to include or exclude individuals (El Ayadi, 2021;
Putnam, 2007), but also as one of the main components of and a method to express individual
and group identity (Alexander et al., 2007; Järv et al., 2015; Saarikivi & Toivanen, 2015;
Tabouret-Keller, 2017; Zenker, 2018), which also makes it a potentially powerful marker
of urban diversity, especially when compared to country of origin and country of birth.
To exemplify, an origin country merely indicates where the individual migrated from, and
the country of birth where they were born. These are monolithic background descriptors
that aggregate potentially more meaningful information away and disregard whether the
individual was already an immigrant in the origin country (Abascal & Baldassarri, 2015;
Anniste & Tammaru, 2014; Catney et al., 2023; Gesthuizen et al., 2009; Johnston et al.,
2021; Kandylis et al., 2012; Vertovec, 2007; Zwiers et al., 2018). For example, a single
country can have speakers of numerous languages and each individual language can signify
widely different cultures and social statuses (Christopher, 2004; Kumar, 2019; Mustapha,
2014). Similarly, a focus on ethnicity can obscure potentially more relevant background
information. For instance, the Kurds constitute an ethnic group whose members speak many
languages, only some of which are interrelated, and are spread out across multiple countries.
That said, languages can also be equally monolithic and reductive descriptors. Depending on
how information on language is recorded, it might not indicate the individual’s competency
in the language, the varied ways the individual might use the language in the real world,
if the person is multilingual, or how the society values competencies in different languages
(Artamonova & Androutsopoulos, 2019; Latomaa, 2012; Saukkonen, 2016; Schroedler et al.,
2023).

The HMA has implemented some policies to deal with increasingly diverse and multilin-
gual populations in recent decades. The social mix housing policy adopted by the city of
Helsinki is largely seen as successful in reducing residential segregation in the city (Torpan
et al., 2022), even though there are some challenges, such as the continuing concentration of
low-income and ethnic minority households to eastern Helsinki (Hyötyläinen, 2019; Vilkama,
2011). In this regard, calls for more detailed information on the diverse populations in the
HMA has been raised by Saukkonen (2021b). The approach of Helsinki to increasing multi-
lingualism has also garnered some attention from researchers (Kraus, 2011; Nuolijärvi, 2015).
For instance, Kraus (2011) describes this as “integrative multilingualism” whereby educa-
tion services stress the need for immigrants to acquire Finnish skills, while also supporting
the first language skills of the immigrant children. This is done by providing two hours of
language instruction weekly. However, Nuolijärvi (2015) points out that these two hours are
likely not enough for actual development and maintenance of these languages if they are not
used daily. In fact, policies that safeguard minority cultures and languages have a long po-
litical and institutional history in Finland and Helsinki (Nuolijärvi, 2015; Saukkonen, 2018).
In this regard, Finland is considered to be one of the most multicultural-friendly countries in
Europe in terms of policies that safeguard cultural and language rights of minorities (Saukko-
nen, 2018, 2021a). However, these policies stand at odds with the general Finnish public as
there is a “widely shared idea of the Finnish nation and society, or Finnish national identity”
as an ethnically and culturally homogeneous Finland (Saukkonen, 2018, p. 69).

The increasing diversity of population groups present in urban areas has led to an intensi-
fied multilingualization of the society (Roberts, 2010; Schroedler et al., 2023) and increasing
interest towards language from researchers (Gorter, 2006). As the role of language is central
in social interactions (Artamonova & Androutsopoulos, 2019; El Ayadi, 2021; Putnam, 2007;
Valentine et al., 2008) and constitutes a central component of individual and group identity
(Chriost & Thomas, 2008; Saarikivi & Toivanen, 2015; Segrott, 2001; Tabouret-Keller, 2017;
Zenker, 2018), it is a good variable to use when studying urban diversity. Although language
has gained some attention in the field (Farber et al., 2012; Kellert & Matlis, 2022; Müürisepp
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et al., 2022; Väisänen et al., 2022), its potential is largely underexplored in GIScience and
geography. Calls to use language as an important trait for characterizing diversity of pop-
ulations and to explore its spatio-temporal patterns (e.g. Johnston et al., 2021; Vertovec,
2007) has also generated interest in a subfield of sociolinguistics, linguistic landscape studies
(Blommaert & Maly, 2019; Vertovec, 2019).

2.3 Linking linguistic landscapes and geography

Linguistic landscapes is a subfield of sociolinguistics concerned with examining the presence
of languages in public space, and their social, cultural and political implications (Black-
wood, 2015; Landry & Bourhis, 1997). Connecting the study of linguistic landscapes to the
study of super-diversity has been highlighted as being a natural next step to examine the
contemporary socio-cultural patterns of urban areas (Vertovec, 2019).

In the seminal study by Landry and Bourhis (1997), linguistic landscapes were originally
concerned in documenting the languages visible in public and commercial signs in urban
space to examine their “symbolic” and “informational” functions. These functions inform
passers-by which language communities are present in the area, who the area caters to, but
also about the vitality of a language group in demographic and political terms, and whether
the use of one’s own language is encouraged (Blackwood, 2015; Landry & Bourhis, 1997). The
field has since broadened to become more interdisciplinary and thus includes more diverse
geographical settings, methods, sources of data, types of language use, languages in virtual
spaces, and has in some cases moved beyond language into semiotics (Barni & Bagna, 2015;
Biró, 2018; Blackwood, 2015; Gorter & Cenoz, 2015; Hiippala et al., 2023; S.-Y. Hong, 2020;
Ivkovic & Lotherington, 2009; Lazar, 2022; Moshnikov, 2016; Peukert, 2013). Not only
have massive digital data sets, such as Google Street View images (S.-Y. Hong, 2020), social
media content (Biró, 2018; Hiippala et al., 2019; Koskinen, 2013), and other digital sources
(Chun, 2014; Ivkovic & Lotherington, 2009; Keles et al., 2020; Moshnikov, 2016, 2022)
become more common sources of data enabling the coverage of large urban areas initially
doubted by Blackwood (2015), but also the methods have diversified from quantitative to
more qualitative such as in-depth interviews and ethnographies (Blommaert & Maly, 2019;
Lazar, 2022; Pienimäki et al., 2023). Furthermore, linguistic landscape studies have long
been focused on providing analyses depicting the situation at some frozen point in time
and recently more emphasis on recognizing the spatio-temporal dynamism of the linguistic
landscape has been called for (Blommaert & Maly, 2019; El Ayadi, 2021; Pennycook &
Otsuji, 2015).

Linguistic landscapes are linked to geography in several ways. First, just the name lin-
guistic landscape is linked to a central concept in geography, landscape. Research in human
geography has explored the relationship between landscapes and people extensively (Cos-
grove, 1985; Jones, 2003; Sauer, 1925; Schein, 1997; Wylie, 2009). Second, and following
from the first, the implicit relationship between geography and linguistic landscapes have
been acknowledged several times in linguistic landscape studies (Aboelezz, 2015; El Ayadi,
2021; Gorter, 2006; Hiippala et al., 2019; Leeman & Modan, 2009). To exemplify, Leeman
and Modan (2009) pointed out that by focusing linguistic landscape research on language
policies, the field has largely disregarded that languages in public space are impacted by
urban planning policies and the socio-spatial practices in the area, which are studied pre-
dominantly by geographers. Furthermore, El Ayadi (2021) calls for applying concepts from
human and urban geography to better conceptualize the linguistic landscape and broaden its
scope, but also to support geographers in their research of linguistic diversity. More broadly,
Derungs et al. (2020) shows that even dialectometry, a field focused on studying the geo-
graphical distribution of languages and dialects, does not use methods from spatial analysis
and statistics as widely as it could, reifying a much earlier call for more methodological and
conceptual cooperation between linguists and geographers (Trudgill, 1974). Finally, as urban
diversity is encountered and experienced on the local level (Amin, 2002; Syrett & Sepulveda,

18



2012; United Nations, 2022), languages and linguistic diversity unfold as interesting local
patterns (Vertovec, 2007) and reveal larger patterns of diversity underneath (Gorter, 2006),
the application of geography and spatial methods in studying linguistic diversity at various
geographical and temporal scales is a natural next step (Derungs et al., 2020).

2.4 Big data in geographical research

Big data has become a popular source of data in geography and GIScience in particular (Ash
et al., 2018; Boyd & Crawford, 2012; Goodchild, 2013; Janowicz et al., 2015; Kitchin, 2013;
Lansley et al., 2018; Singleton & Arribas-Bel, 2021; Tasse et al., 2017). Big data refers to the
data that is continuously generated by people, their mobile devices, sensors in the environ-
ment, and IoT (Internet of Things) devices (Arribas-Bel et al., 2015; Batty, 2012; Kitchin,
2013; Miller & Goodchild, 2015). For example, this data can consist of mobile phone call
records, social media content, travel card and customer card data, and smartphone applica-
tion use data (Järv et al., 2014; Lansley et al., 2018). Big data is commonly distinguished
from traditional data through the concept of three Vs: volume, velocity, and variety (Good-
child, 2013; Kitchin, 2013), that correspond to the amount of data being generated, the speed
of data generation, and the variety of data types. Some scholars have added additional Vs
to the original three, such as variability, value, and veracity, which correspond to the vari-
ability in meaning or structure of the data, the value generated by the data, and the data’s
reliability or truth value (Goodchild, 2016; Lansley et al., 2018; S. Li et al., 2016). Some
have also described the era of big data through availability of data: previously research data
was rare and difficult to obtain, but with the ubiquity of computers, mobile devices, sensors,
IoT devices, and people who use them, data has become more abundant and relatively easy
to obtain (Poorthuis & Zook, 2017; Townsend, 2013). As much of big data is georeferenced
or has a spatial component, there have been numerous discussions on the role of big data
in geography (Goodchild, 2013; Kitchin, 2013; Lansley et al., 2018) and even proposals of a
new geographic subfield: geographic data science (Singleton & Arribas-Bel, 2021).

2.4.1 Strengths of using big data in research

Big data has brought about a new era of geographical urban research (Arribas-Bel et al.,
2015; Batty, 2012; Kandt & Batty, 2020; Kitchin, 2013; Martin & Schuurman, 2020; Miller
& Goodchild, 2015; Poorthuis et al., 2021; Shelton et al., 2015), as it provides information on
people and places not available in more traditional data sources at an unprecedented scale
and resolution (Kitchin, 2013; Lansley et al., 2018; Shelton et al., 2015). Unlike traditional
sources of data that have been created specifically for research or governmental purposes, big
data has no such agenda, but it comes about “accidentally, as a byproduct” (Arribas-Bel,
2014, p. 45) of other activities, like social media use. Big data thus enables urban research to
be performed outside of their traditional “spatial and temporal boundaries” (Müürisepp et
al., 2022, p. 11). The usefulness of big data for studying and understanding cities, particularly
“as a complementary alternative to those already in wide use (such as population censuses or
surveys)” (Arribas-Bel, 2014, p. 45) is recognized quite widely (Arribas-Bel et al., 2015; Ilieva
& McPhearson, 2018; Martı́, Serrano-Estrada, et al., 2019; Niu & Silva, 2020). Moreover, the
amount of big data generated about urban areas and urban populations by people, devices,
and sensors has led to the concepts of smart cities and digital twins (Batty, 2012, 2018).
The concepts of smart cities and digital twins are used to describe how urban planners and
city governments can leverage the data for modelling urban processes, making decisions,
governing, and drafting policies (Batty, 2012, 2018; Kandt & Batty, 2020; Shi et al., 2022;
Townsend, 2013).

Geotagged social media data is a unique source of in situ information on human presence
and activities in urban and natural areas, and is increasingly used in geographic research
(Ilieva & McPhearson, 2018; Kitchin, 2013; Lopez et al., 2019; Martı́, Serrano-Estrada, et al.,
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2019; Martin & Schuurman, 2020; Miller, 2020; Miller & Goodchild, 2015; Tenkanen et al.,
2017; Toivonen et al., 2019). Social media content typically consists of either textual or visual
content or both, which can be georeferenced either through coordinate or place information
(Di Minin et al., 2015; Toivonen et al., 2019), or by deriving the location from place names in
the content with geoparsing (Leppämäki, 2022; Middleton et al., 2018). Particularly among
geographers, social media data has received a lot of attention and several overviews have been
written on the applicability, prospects and challenges of using social media data in urban
studies (Arribas-Bel, 2014; Ilieva & McPhearson, 2018; Martı́, Serrano-Estrada, et al., 2019;
Martin & Schuurman, 2020), conservation science (Di Minin et al., 2015; Toivonen et al.,
2019), environmental research (Lopez et al., 2019), and geospatial analysis (Niu & Silva,
2020; Owuor & Hochmair, 2020).

Through georeferenced social media content, the connections between digital activities to
the physical location have been used to understand population dynamics in cities (Arribas-
Bel et al., 2015; Heikinheimo et al., 2020; Hochman & Manovich, 2013; Silva et al., 2014). For
example, social media data has been used to study where people spend their free time (Adelfio
et al., 2020; Heikinheimo et al., 2020; Martı́ et al., 2017; Silva et al., 2014), how they perceive
different areas (Boy & Uitermark, 2017; Jenkins et al., 2016; Martı́ et al., 2020; Vasquez-
Henriquez et al., 2020; Zukin et al., 2017), and how neighbourhoods interact (Cvetojevic &
Hochmair, 2021; Garcı́a-Palomares et al., 2018; Martı́, Garcı́a-Mayor, & Serrano-Estrada,
2019; Shelton et al., 2015). This explicit connection of digital content to a real location
through coordinate information has also led to theorizations about the intertwined digital
and physical spaces, such as “double space” (Kellerman, 2014) or “hybrid space” (de Souza
e Silva, 2006), which assume digital activities reflect actual activities in physical spaces, and
through which researchers study how urban and digital spaces are affected by each other
(Croitoru et al., 2015; Ferreira & Vale, 2021; Rose, 2022).

Mobile phone data is another source of big data used widely to study the mobility and
activities of various population groups in urban areas (Ahas et al., 2010; Bergroth et al., 2022;
Järv et al., 2021; Müürisepp et al., 2023). The drawback with mobile phone data compared
to social media data is the information is largely based on the presence of a mobile device in a
spatial unit, often without detailed contextual information about the users or their activities
(Ahas et al., 2010; Silm, Jauhiainen, et al., 2021). Some contextual information can be at
least partially derived from contract details, land use, or depending on the type of mobile
phone data, the applications used (Farber et al., 2015; Järv et al., 2014; Müürisepp et al.,
2022; Silm, Mooses, et al., 2021).

Analysing the vast amount and variety of data available from social media platforms has
become possible through recent developments in data science and machine learning regard-
ing textual and visual content analysis (Singleton & Arribas-Bel, 2021). This move from
labour-intensive manual classification to processing millions of records automatically have
enabled extensive analyses of content on multiple geographical and temporal scales (Martin
& Schuurman, 2020; Toivonen et al., 2019). Techniques from computational linguistics and
natural language processing have also been used to analyse spatio-temporal patterns from
georeferences social media data. There is a sizeable body of geographical research on mod-
elling spatio-temporal topics (Fu et al., 2018; L. Hong et al., 2012; Lansley & Longley, 2016),
sentiments (Cao et al., 2018; Gruebner et al., 2018; Yan et al., 2020) and lexical change
(Eisenstein et al., 2014; Grieve et al., 2018; Y. Huang et al., 2016) from the textual content.
Simultaneously, computer vision techniques have improved rapidly during the past ten years
and moved from more simple tasks to increasingly complex tasks (Chai et al., 2021; Vanky
& Le, 2023), and are applied across various urban and natural contexts (Biljecki & Ito, 2021;
Ghermandi et al., 2022; Kruse et al., 2021; Wilkins et al., 2022).

As social media data is unstructured and noisy, language information and other metadata
can enrich social media data with information about ethnic, cultural, linguistic identity of
the user and what they are doing (Dunn & Adams, 2020; Herdağdelen, 2013). Peukert (2013)
introduced the idea of estimating linguistic diversity in urban areas using common measures
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from ecology and information sciences. Subsequent work has applied these measures to
analysing diversity at various spatial scales, ranging from specific locations (Hiippala et al.,
2019) to entire cities (Bereitschaft & Cammack, 2015; Jiang et al., 2022) and countries (Dunn
& Adams, 2020; Hiippala et al., 2020).

2.4.2 Challenges of using big data in research

The strength of big data and other novel data sources, is that they provide information
not available from more traditional sources on a massive scale (Boy & Uitermark, 2016;
Lansley et al., 2018), however they are not free of problems. One main issue in big data is
representativeness of the data (Crampton et al., 2013; Hargittai, 2020; Heikinheimo et al.,
2022; Ilieva & McPhearson, 2018; Lansley et al., 2018; Toivonen et al., 2019). Social media
data often lacks background information, such as age, gender, and ethnicity, on the users
(Ilieva & McPhearson, 2018). Furthermore, as users are free to use whichever social media
platform they want for whatever purpose they want, there is a systemic bias stemming from
which population groups are present on various platforms and to what degree (Hargittai,
2020). Additionally, the social media users are more likely to reflect young, more well-off
people that have access to technology and a good level of internet skills (Ash et al., 2018;
Dunn et al., 2020; Hargittai, 2020; Koiranen et al., 2020; Manikonda et al., 2016; Robinson,
Schulz, Blank, et al., 2020; Robinson, Schulz, Dunn, et al., 2020). As a result, there likely are
population groups missing from these data sets, and they likely represent more disadvantaged
population segments (Boyd & Crawford, 2012; Hargittai, 2020; Robinson, Schulz, Blank, et
al., 2020).

Spatial and temporal coverage are also not uniform in big data, and is compounded by
the representativeness issue. There is an abundance of data from densely populated urban
areas, whereas more remote rural and natural areas are very sparse in data coverage, and
similar differences exist between high-income and low-income countries (Boyd & Crawford,
2012; Di Minin et al., 2015; Ilieva & McPhearson, 2018; Lansley et al., 2018; Levin et al.,
2015; Zook et al., 2017). This is a natural product of big data being produced by people,
their devices and various sensors, which are concentrated in urban areas and likely owned
by economically more well-off people. However, it also creates new types of digital divides
between people and areas that are rich or poor in big data, and in the areas where big data is
prevalent, the data might be generated by a small subset of the population making inferences
from such data tenuous (Boyd & Crawford, 2012)

Another challenge is access to data (Boyd & Crawford, 2012; Lansley et al., 2018; Toivo-
nen et al., 2019). Due to the scale and resolution of big data, much of it is not released to the
public in order to safeguard commercial value, individual privacy, or strategic importance
(Hargittai, 2020; Kitchin, 2013; Lansley et al., 2018). In case access is granted, there might
be problems related to how the provided data was collected or sampled, but also strict condi-
tions and limitations on how to use the data (Lansley et al., 2018; Toivonen et al., 2019). For
instance, several APIs (Application Programming Interfaces) that can provide data access
to researchers might provide only a portion of data and with strict guidelines and limits to
how much data can be queried within a given timespan (Lansley et al., 2018; Poorthuis &
Zook, 2017). If a researcher wants a highly specific data set, the cost of acquiring it might
be prohibitively high (Boyd & Crawford, 2012; Poorthuis & Zook, 2017).

Due to these representation and coverage issues, the choice of data sources and careful
consideration of how these issues affect the analysis are imperative in order not to perpet-
uate existing social and spatial inequalities (Martı́, Serrano-Estrada, et al., 2019; Owuor &
Hochmair, 2020; Tenkanen et al., 2017; Toivonen et al., 2019). Explicit discussion on the
limitations and biases of the data is a cornerstone of the scientific process, and this discussion
is increasingly important with big data sources (Goodchild, 2013; Kitchin, 2013; Müürisepp
et al., 2022). Moreover, as social media data can contain highly accurate information on the
individuals, responsible and ethical collecting, analysing, and storing of data, even if the data
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was publicly available is necessary (Di Minin et al., 2021; Zook et al., 2017). Furthermore,
providing open access to the analysis methods and, if possible, data supports responsible,
ethical, and open research (Holbrook, 2019; Nelson et al., 2022; Zook et al., 2017).

Many scholars have also pointed out that big data should be used alongside other data
sources, especially if the research aims to describe phenomena and produce changes in the real
world (Goodchild, 2016; Lansley et al., 2018; Martı́ et al., 2021; Shelton, 2017). Kandt and
Batty (2020) stress the need to “triangulate” findings from big data with more established
and reliable data sources. Echoing this stance, Lansley et al. (2018, p. 551) advise researchers
to consider big data as a “by-product, or ‘exhaust’ from a process that does not have re-use
of data for research purposes at its heart”. Similarly, Tasse and Hong (2017, p. 256) points
out that geotagged content on social media should be considered as “postcards, not ticket
stubs”, due to self-censorship and other social media platform-specific digital behaviours.
Finally, if there is data available from traditional sources on the same topic as from big
data sources, emphasizing the traditional data source over big data would make sense as
traditional data sources have well-established and rigorous sampling frameworks which ensure
the representativeness and reliability of these data sets (Goodchild, 2013; Hargittai, 2020).

Finally, recent developments regarding access to big data from social media companies are
indicating changes to how social media data can or will be used in future research. During the
past few years, the availability and accuracy of social media data has reduced due to several
controversies related to privacy of users, data protection laws, and changes in management
(Brembs et al., 2023; Bruns, 2019; Freelon, 2018; Maurer, 2020). For instance, the Cambridge
Analytica scandal caused several social media companies to limit or cut off access to their
data (Bruns, 2019; Freelon, 2018). As a consequence, there have been fears over social
media companies allowing only research that presents the companies in positive light will
get access to the data, and some scholars have called for more research using techniques like
web scraping to extract digital geospatial information from social media platforms and other
websites (Brenning & Henn, 2023; Freelon, 2018). Furthermore, there has been a general
tendency among social media platforms to move away from geotagging with GPS coordinates
to place-tagging with points-of-interest data (S.-Y. Hong, 2020; Kruspe et al., 2021; Maurer,
2020; Tasse & Hong, 2017), which reduces the spatial granularity of social media data as
more individual posts will share identical geographical coordinates, e.g., the centroid of an
administrative area.

2.5 Previous research on languages and activities using social media
data

2.5.1 Research using language information to study spatio-temporal patterns
of population

Social media is inherently multilingual (Coats, 2019b; Eleta & Golbeck, 2014; Hiippala et al.,
2019; L. Hong et al., 2011; Magdy et al., 2014, 2016; Mocanu et al., 2013), and is considered
a rich resource on spatio-temporal linguistic information (Herdağdelen, 2013). Language has
been shown to affect what is shared on social media (Androutsopoulos, 2014; Artamonova &
Androutsopoulos, 2019; Weerkamp et al., 2011), formation of social ties (Eleta & Golbeck,
2014; Takhteyev et al., 2012), and the likelihood of using geotags (B. Huang & Carley, 2019;
Magdy et al., 2014). Despite the wide use of social media data and the methodological
advancements to identify languages from textual content (Barman et al., 2014; Hiippala
et al., 2019; Jauhiainen et al., 2019; Lui & Baldwin, 2012; Pratap et al., 2023; Zubiaga et
al., 2016), geographical research on social media has rarely used information on languages.
Many geographical studies focusing on analysing the textual content on social media are
concentrated on English content, and either discard content in other languages from the
analysis (see e.g., Cao et al., 2018; Fu et al., 2018; Gruebner et al., 2018; Jenkins et al.,
2016; Karami et al., 2021; Lansley & Longley, 2016) or do not mention the language of the
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content at all (see e.g., G. Andrienko et al., 2013; Chapple et al., 2021; Croitoru et al., 2015;
Crooks et al., 2013; Martin & Schuurman, 2017; Yan et al., 2020). This body of work thus
inadvertently compounds the representation issues of social media by focusing on content
in just one language. Nevertheless, the focus on English is not surprising. English is the
global lingua franca and widely used on social media (Coats, 2019b; Mocanu et al., 2013).
Moreover, English is well-resourced in terms of language technology needed for analysing
large volumes of social media content (Del Gratta et al., 2021). However, the dominance of
English in social media content varies across the globe (Mocanu et al., 2013).

Language has not gone entirely without attention from geographers examining spatio-
temporal patterns from big data sources. For instance, Graham and Zook (2013) explored
languages in Google Maps content in Canada, Israel, Spain, and Belgium, and found con-
nections between language visibility, power relations, and segregation. Heikinheimo et al.
showed that languages on social media can be used to understand who are using urban
green spaces (2020), and to understand who social media users represent (2022). Kellert and
Matlis (2022) found variation in formal and informal use of Spanish on Twitter is connected
to the socio-spatial context. Järv et al. (2015) compared the activity spaces of Estonian and
Russian speakers in Tallinn, Estonia and found differences in the spatial extent and shape
of the activity spaces, which was followed up by Silm, Mooses, et al. (2021), who found the
differences disappear when the social networks of individuals are more interethnic. Adelfio
et al. (2020) examined the social media user activities in several Swedish neighbourhoods and
the neighbourhood with most Twitter activity to have more multilingual geotagged content.

More attention on languages has come from the field dialectometry. Dialectometry is a
subdiscipline of linguistics, which studies the geographical distribution and spread of lan-
guages, dialects, and linguistic features computationally (Donoso & Sanchez, 2017; Wieling
& Nerbonne, 2015; Wieling et al., 2011). The field draws methodologically from GIScience
and spatial statistics (Grieve et al., 2019; Grieve et al., 2017; Wieling & Nerbonne, 2015).
However, the prime focus of the field is on the spatial diffusion of phonology, morphology
and lexical innovation (Donoso & Sanchez, 2017; Grieve et al., 2018; Wieling & Nerbonne,
2015), and not on the spatial distribution and diversity of language use or language speak-
ers. For example, Donoso and Sanchez (2017) explored the geographical variation of Spanish
dialects from geotagged Twitter posts, and Eisenstein et al. (2014) studied the geographical
diffusion of several words in the USA from geotagged Twitter data. Nevertheless, and given
the methodological overlap, geographical information science and dialectometry could benefit
from each other.

2.5.2 Research on identifying activities from social media data

Social media has been shown to be a rich resource for study of activities in the real world
(Martı́, Serrano-Estrada, et al., 2019; Toivonen et al., 2019). Activities of social media
users across geographical space have been studied by extracting information either from the
textual or visual content, or by connecting the location of the geotagged content to land
use or a POI (Garcı́a-Palomares et al., 2018; Lopez et al., 2019; Niu & Silva, 2021; Shen
& Karimi, 2016; Toivonen et al., 2019). Using textual content, topic modelling of social
media content has been popular in trying to understand how discussion topics vary across
geographical space and how they might imply the activities of social media users at various
locations (Crooks et al., 2015; Fu et al., 2018; Hasan & Ukkusuri, 2014; Lansley & Longley,
2016; Martı́ et al., 2021; Martin & Schuurman, 2017). Some studies have combined topic
modelling and sentiment analysis to understand whether certain topics are perceived more
negatively or positively (Cao et al., 2018; Gruebner et al., 2018; Hausmann et al., 2020;
Yan et al., 2020). Also, activities related to cross-border mobility of social media users have
been studied through geotagged content shared consistently between two or more countries
(Aagesen et al., 2022; Järv et al., 2022).

Using visual content to derive activities, which is the approach we take in Article II, many
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studies have used computer vision techniques to identify activities or objects commonly asso-
ciated with particular activities. As photographs, such as those on social media, are a visual
medium, they are embedded with information about what is being captured in the photo,
but also implicit information on the values and preferences of the photographer (Moldez &
Gomez, 2022). Consequently, social media photographs have become a popular data source
in research to understand activities and preferences of social media users (Hausmann et al.,
2018; Toivonen et al., 2019). For instance, Chen et al. (2020) used Flickr photographs to
study the popularity and spatial distribution of landscape characteristics in London and
found seasonality to affect activities detected from the images, Ghermandi et al. (2022) ex-
plored which type of human-nature interactions occur in urban green spaces, and Kruse et
al. (2021) identified areas where children are more likely to start playing to inform where
safety interventions ought to be directed to. Also, street view imagery has become a popular
data source for understanding cities (Biljecki & Ito, 2021). Recently, Vanky and Le (2023)
pointed out that many descriptions of activities provided by computer vision techniques do
not perform well in complex urban environments and recommends both fine-tuning training
data with local data and a posteriori manual verification.

From the land use perspective, the activities of social media users have also been modelled
based on the land use surrounding the geotagged content (N. Andrienko et al., 2016; Cao et
al., 2018; Garcı́a-Palomares et al., 2018; Heikinheimo et al., 2020) or based on information on
points-of-interest from the area (Calafiore et al., 2021; Martı́ et al., 2021; Niu & Silva, 2021).
For example, Niu and Silva (2023) enriched Twitter content with user-specific metadata
about gender and age and connected the geotagged content to information on land-use data
to infer potential activities, and found it to perform well in densely populated areas where
gender differences between activities could be distinguished. Similar land-use methods have
been used by Kang et al. (2021) alongside mobile phone data to study activity diversity,
which they derive from the primary function of surrounding the land use (e.g., commercial,
residential, transport etc.). However, the assumption that the land use actually describes
the activities of social media users, while partially true in some cases, might break down in
closer inspection.

3 Data and methods

3.1 Study areas and temporal scales

The works in this thesis have a diverse range of spatio-temporal scales. The study areas
in are located in Finland and span spatial scales from national and regional levels (Figure
3a) down to the level of neighbourhoods (Figure 3b). The analyses in this thesis focus on
temporal scales ranging from times of day and weeks to decades.

Article I presents analysis of regional and municipal level differences in the linguistic
diversity of Twitter content posted by users from Finland. It explores variations in linguistic
diversity and language use across Finland, the linguistic repertoires of Finnish Twitter users,
and the home locations of multi- and monolingual Finnish Twitter users. The temporal
perspective in Article I is focused on changes in various Finnish regions, municipalities and
cities on a weekly level. Article II focuses geographically on national parks located in all four
of the general landscape regions of Finland: Lapland fells, Eastern hills, Forests & lakes, and
Archipelago. The analysis focus in Article II is on the 20 most popular national parks based
on the availability of Flickr photographs (Figure 3a).

Articles III and IV zoom into the Helsinki Metropolitan Area and focus on linguistic diver-
sity on the spatial scale of 250-metre spatial grids that cover the area of Helsinki Metropolitan
Area (Figure 3b). Temporally, Article III is focusing on changes across times of day, while
Article IV is focusing on annual changes between 1987-2019. The Helsinki Metropolitan Area
is the main national hub for political, economic, scientific, and cultural activities. It consists
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Figure 3: The study areas in this thesis. Articles I and II are focused on Finnish national parks and various regions
across Finland (a.), whereas Articles III and IV are focused on the Helsinki Metropolitan Area (b.). The map for
Articles III and IV (b.) shows the population density of the Helsinki Metropolitan Area in 2019 and is adapted
from Article IV.

of Helsinki (pop. 659 000), the capital of Finland, and three surrounding municipalities,
Espoo (pop. 297 000), Vantaa (pop. 239 000), and Kauniainen (pop. 10 000).

3.2 Sources of data

Geographically referenced data are the backbone of all analyses of this thesis. The data can
be roughly divided into two categories: user-generated big data and official demographic
statistics. More specifically, the sources of data used in the thesis are social media platforms,
population registers, and mobile phone operators. Mobile phone and social media data reveal
more about the dynamic side of urban diversity, as they are continuously generated by people
and their devices during their everyday mobility, whereas population register data reveals
more about the structural side of urban diversity, as it is updated annually and based on
home locations (Figure 1). Table 2 shows the distribution of data sources by each articles in
this dissertation.

Table 2: The main sources of data used in the articles that comprise this dissertation.

Source of data Article I Article II Article III Article IV

Big data

Twitter - X X -
Instagram - - X -
Flickr X - - -

Mobile phone data - - X -

Traditional data

Population register - - X X
Statistical grid database - - X X
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The social media data contains geotagged and non-geotagged content from three plat-
forms: Twitter, Flickr, and Instagram. This data was collected through their Application
Programming Interfaces (APIs) using tools written in Python. All social media data were
collected by DGL data contributors (2022), and in the case of Article III by the author with
a purpose-built Python tool (Väisänen, Heikinheimo, et al., 2021). The mobile phone data
used in Article III was provided by the Elisa Oyj mobile network operator and covers the
period from October 2017 to January 2018. The data reflects the dynamic population present
in 250-metre grid cells in the HMA (see Bergroth et al. (2022) for a detailed description of
the mobile phone data).

Twitter is a social media platform focused on microblogging, that is, sharing short written
posts, or Tweets, with the maximum length of 280 characters. Tweets can also be accom-
panied by images and video, but also location information in the form of accurate GPS
coordinates until 2015 or a place tag linked to a point of interest (POI) after 2015 (Hu &
Wang, 2020; Maurer, 2020; Tasse & Hong, 2017). Articles II and III use different types of
Twitter data: Article II is based on both Twitter user timeline data and geotagged Twitter
posts, which then is based on a combination of Twitter data from two separate datasets:
one collected from Finland between 2015-2019 with the public free API by DGL data con-
tributors (2022) and another between 2009-2013 by Poorthuis and Zook (2017). The user
timeline Twitter data contains 3,200 most recent Tweets from users identified to have their
home in Finland. Article III data is based on a Twitter data covering the year 2015, which
was queried by the author in 2021 using the Academic API with a purpose-built Python tool
(Väisänen, Heikinheimo, et al., 2021). Twitter data has been shown to represent population
groups that are numerous and more wealthy (Dunn & Adams, 2020). Recently, Twitter
opened the full archive to academic researchers for free through the Academic API, with
a download quota of 10 million tweets per month (Tornes & Trujillo, 2021). However, the
continuity of Twitter data’s usefulness for academic research has been recently questioned
due to changes in management and data sharing practices. In late 2022, Twitter was bought
by Elon Musk, which likely affects research using data from Twitter (Brembs et al., 2023).

Instagram is a social media platform focused on sharing photographs, and is owned by
Meta/Facebook. The photographs are often accompanied by textual information in the form
of captions. A singular Instagram post can contain numerous photographs, but only one
caption. The post can also be enriched with location information, which is nowadays mostly
based on place tagging based on POIs, but Article III used data from 2015 where accurate
GPS coordinates still were available and the dominant type of location information. The
data used in Article III was collected from the Instagram API in early 2016 before Instagram
changes to the public API and the eventual shutdown of the public API due to the Cambridge
Analytica scandal (Bruns, 2019; Freelon, 2018), but also to comply with GDPR and CCPA
legislation (Owuor & Hochmair, 2020).

Flickr is a platform where the sharing of photographs is the key activity, somewhat similar
to Instagram. In contrast to Instagram, Flickr is highly popular among nature photographers,
making it a good source of data for research on human-nature interactions (Di Minin et al.,
2015; Toivonen et al., 2019). In terms of user numbers, Flickr is the least popular platform
used in this thesis. A post on Flickr contains the photograph, a caption, and metadata about
the geographical location, the time taken, the time shared, and the camera settings. Unlike
with Twitter and Instagram, the geotagged locations on Flickr still reflect the accurate GPS
coordinates of where photographs were taken, making it a good source of spatially fine-
grained content (Hochmair et al., 2018).

The population register is an individual-level database maintained by Statistics Finland,
which contains socio-economic information on every individual living in Finland from 1987
onward on an annual basis, although some variables have records since the 1530s (DVV,
2023). The variables contain individual-level information on education, income, employment,
marital status, home location, and cultural background of every individual residing in Finland
either temporarily or permanently. The articles in this thesis mostly focus on information
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on individuals’ first language, which is recorded in the register as ISO-639-1 language codes
from 1999 onward. Pre-1999 records were harmonized to use the ISO-639-1 scheme by using
observations from 1999 to replace the values for individuals between 1987-1998. Due to this
harmonization, some data loss occurred, as people who had moved abroad or passed away
before 1999 are not present in the data from 1999. Unlike censuses conducted at five or ten-
year intervals, the register is updated continuously as people are born, pass away, or move,
so its accuracy in representing the demographic situation and distribution in Finland is fairly
high. The spatial format of the population register is a spatial square grid that consists of
250-metre by 250-metre square grid cells. As the information in the population register is
highly accurate and sensitive, access to it is not open for everyone. All outputs from the
environment are vetted by officials working for Statistics Finland to ensure privacy laws are
followed.

The Statistical Grid Database is a national standard that covers the area of Finland in
rectangular grids at two spatial scales: 250-metre and 1-kilometre grids, of which we use the
250-metre grids. This database is based on information from the population register, but
is a separate data product. As it is a national standard, the mobile phone data uses it to
provide the percentage of population present in each 250-metre grid cell at hourly intervals
(Bergroth et al., 2022), and was provided to us by the largest mobile network operator in
Finland. The grid database is used in Article III to examine the socio-economic and physical
environment of each neighbourhood, and in Article II to capture an estimate of the dynamic
population presence in the HMA from the mobile phone data as an independent variable.

3.2.1 Data collection

Social media data was collected from Twitter, Instagram, and Flickr with methods developed
by the DGL data contributors (2022), and in Article I’s case, the data was enriched with
another Twitter dataset formed from the full data archive (Poorthuis & Zook, 2017). Data
collection from social media platforms is rather similar regardless of the social media platform.
After registering as a developer and receiving access credentials to use the APIs, the data
is collected by Python scripts that send requests in the form of queries (e.g. all geotagged
posts within a 1-kilometre radius from the city centre of Helsinki) to the API. The API then
responds with a JSON (JavaScript Object Notation) payload containing the queried data.
The JSON response is then parsed to contain only the relevant data, and the resulting dataset
is saved either locally to disk or to a database server running a PostgreSQL database. The
majority of the social media data in Articles I-III is geotagged data, however, in Article I,
we also collected the 3200 most recent Tweets from users, most of which were not geotagged.

I developed tweetsearcher, a Python tool for downloading Tweets (Väisänen, Hiippala,
et al., 2021), as a dedicated response to Twitter’s decision to provide free and full access
to the Twitter archive of tweets for academic researchers in their then-new second version
of the API (Tornes & Trujillo, 2021). This tool collects geotagged content from Twitter
API using country codes or bounding boxes, but also non-geotagged content from user-
specific timelines. I used tweetsearcher in Article III to download a comprehensive dataset
of all geotagged tweets from Finland posted in 2015, as previously collected data by DGL
data contributors (2022) were collected using Twitter’s public API which provided access to
approximately 2 % of all tweets. The future usability of tweetsearcher is uncertain due to
recent developments at Twitter regarding their APIs (Brembs et al., 2023).

3.3 Methods

The methods in this thesis are interdisciplinary and form one of the main contributions of
the work. Each article of this thesis draws from several fields of study that use different
methods (Figure 4). More specifically, this work combines methods from the fields of spatial

27



analysis, computational linguistics, ecology, and machine learning in both data preprocessing
and analysis proper (see Table 3).

Figure 4: This thesis draws from various fields of study with different methods. Geography as the basis forms the
tree trunk, whereas the branches represent different fields of study and the fruits indicate the articles that have
benefited from the corresponding branch. However, the principles of open research provide the soil without which
much of the work in this thesis would not have been possible.

The articles in this thesis have two methodological backbones. First, spatial analysis
methods are the main analysis methods for all articles in this thesis and ground the work
firmly within geography. Second, diversity measurement techniques originally developed in
ecology and information sciences constitute the other methodological backbone as they are
used in three of the four articles (Articles I, III, and IV). The tweetsearcher data collection
tool (Väisänen, Hiippala, et al., 2021) can be considered as a methodological contribution of
this thesis, albeit a supporting contribution.

Table 3: The main analysis methods used in the articles that comprise this dissertation.

Method Article I Article II Article III Article IV

Data preprocessing

Social media data collection X X X -
Automatic language identification X - X -

User classification X X - -
Home detection X - - -

Analysis methods

Diversity metrics X - X X
Computer vision - X - -

Dimensionality reduction - X - -
Spatial clustering - - X X
Linear regression - - X -
Spatial regression - - X -

Discrete Markov chains - - X X
Matrix similarity metrics - - - X
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3.3.1 Automatic language identification

Language identification is the task of identifying the language a document or a part of
a document is written in with computational tools (Jauhiainen et al., 2019). Automatic
language identification was used to enrich the social media data in Articles I and III with
information on languages used by Twitter and Instagram users. The language identification
performed with fastText (Joulin et al., 2016; Joulin et al., 2017) as it had been recognized to
perform well on social media texts (Hiippala et al., 2019). We performed the identification
on the sentence level to capture the use of multiple languages and the linguistic repertoires of
social media users. As social media texts are free-form in style and length, identification of the
language can be challenging (Barman et al., 2014; Carter et al., 2013). I used threshold values
for inclusion, where the post had to be more than 12 characters long and the identification
confidence higher than 70% following Hiippala et al. (2019). In the case of Twitter, there is
information on the language of the tweet identified by Twitter included in the API response,
but there is little documentation on how the languages are identified, and no confidence
scores provided, which is why we have disregarded this information.

3.3.2 User classification

Classifying users were integral parts of the analyses in Articles I and II. In Article I, we
classified Finnish Twitter users into three groups based on the diversity of their language
use on Twitter with metrics developed in ecology and information sciences (see Section 3.3.4
for more) following Holloway et al. (2012). This enabled us to understand where the more
monolingual and multilingual Finnish Twitter users are from. In Article II, we manually
classified the Flickr users with geotagged content from Finnish national parks into domestic
and international visitors, and further between male and female users. This classification
was performed by myself and Vuokko Heikinheimo using the user profile information of all
users in our dataset.

3.3.3 Home detection

We detected the home locations of Finnish Twitter users in Article I using a home detection
algorithm developed by Massinen (2019). The method uses geotagged tweets and counts the
number of weeks spent within given spatial boundaries, municipalities and regions in the case
of Article I (see Figure 3a), and the municipality with the most user weeks is then assigned
as the likely home location of the user. In case of a tie, we added 0.5 to the user count
for both municipalities to reflect multiple home locations. We used both municipalities and
regions to balance the number of Twitter users and content from each type of administrative
area: a focus on municipalities alone would have rendered many rural municipalities void of
Twitter content, whereas a focus on regions would have omitted finer scale spatio-temporal
patterns. In the end, we chose 25 municipalities with the highest user counts to complement
the 19 regions in Finland. If the user was not predicted to reside within one of the 25
municipalities, their home location was assigned to the region where the predicted home
municipality is located.

3.3.4 Diversity metrics

Diversity metrics are computational tools commonly used in ecology to describe the species-
level properties of a sample (Morris et al., 2014). These metrics are widely used in ecology
(Magurran & Henderson, 2010; Morris et al., 2014; Sherwin & Prat i Fornells, 2019), but also
in segregation studies (Holloway et al., 2012; Massey & Denton, 1988; Reardon & Firebaugh,
2002). Following Peukert (2013), we use these metrics to assess the diversity of languages
of spatial units and social media users. Assessing the diversity of languages with various
metrics have an integral role throughout this work and constitute the basis of analysis in
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Articles I, III, and IV. The language information is based on language codes adhering to the
ISO-639-1 standard in social media data and in the population register. The input for the
metric calculation is a count vector, where each value represents the count of observations
for a particular language in the sample, e.g. all languages used in a certain area or by a
certain user. I used the Scikit-bio (2020) Python library to calculate alpha diversity metrics
for areas and social media users. I will briefly present the three main metrics (Shannon
entropy, Simpson diversity and unique observations) used in this work, the descriptions of
the remaining metrics are presented in the Article I.

Shannon entropy is a widely-used metric originating from information sciences, and
it describes the amount of information required to describe the identities of individuals in
a given sample (Magurran and McGill, 2011, p. 56; Morris et al., 2014). The metric is
sensitive both to rare and abundant observations, and thus provides a well-rounded metric
for estimating diversity (Magurran & Henderson, 2010; Morris et al., 2014). It is bottom-
bounded at 0, representing total lack of diversity (e.g. complete monolingualism), but there
is no top bound, although values rarely exceed 4.5 (Ortiz-Burgos, 2016). Shannon entropy
has a rather long tradition of use in segregation studies as well (Massey & Denton, 1988;
Reardon & Firebaugh, 2002), but it has also been used to describe diversity of languages
in virtual and urban environments (Coats, 2019b; Hiippala et al., 2019; Jiang et al., 2022;
Peukert, 2013). Simpson’s diversity describes the probability that two randomly chosen
samples are not members of the same group (Morris et al., 2014; Peukert, 2013). As it is
a probability distribution, it ranges between 0 and 1, with higher values indicating higher
diversity. Unique observations is the simplest metric as it reports the number of unique
languages regardless of the number of speakers, and is the most commonly applied due to its
intuitiveness, despite its sensitivity to sample size (Morris et al., 2014).

3.3.5 Computer vision techniques

Computer vision methods have an integral role in Article II, where we used several pre-trained
computer vision models to perform instance-level object detection, scene classification, and
semantic clustering on Flickr photographs from Finnish national parks to understand differ-
ences in activities and preferences between domestic and international visitors. Instance-level
object detection detects the instances of objects in images and can thus provide information
on the presence of objects commonly associated with activities, e.g., bicycles. For this we used
Mask R-CNN (He et al., 2017) trained on MS COCO (Lin et al., 2014). Scene classification is
a computer vision task, where the aim is to classify an image to a class representing a scene,
such as “tundra” or “forest path”. We used VGG16 (Simonyan & Zisserman, 2015) trained
on Places365 (Zhou et al., 2018) to perform scene classification. Finally, semantic clustering
(Table 3) is done in two parts. First, the images are passed through a ResNeXt101 model
(S. Xie et al., 2017) pre-trained for the task of object detection with ImageNet (Russakovsky
et al., 2015). However, the final layer in the neural network that performs the classification
is removed, and thus the output from the model is a 2054-dimensional vector of the features
in the image instead of a classification like “backpack” with a confidence score. Second, this
high dimensional feature vector is then used as an input for dimensionality reduction, after
which the clustering becomes possible.

3.3.6 Dimensionality reduction

Dimensionality reduction is a technique that enables visualization and preprocessing of high-
dimensional data (McInnes et al., 2020). As the final part of semantic clustering, we per-
formed dimensionality reduction with UMAP (Uniform Manifold Approximation and Pro-
jection for Dimensionality Reduction, see McInnes et al. (2020)), which is an unsupervised
machine learning technique. UMAP attempts to preserve the local and global structure of
the high dimensional data, and can thus provide an overview of the semantic structure in
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the data. The dimensions of the 2054-dimensional feature vectors are reduced to two dimen-
sions, enabling more intuitive visualizations and interpretations of the data. The resulting
two-dimensional data can be plotted as a splatter plot to show how semantically similar
content, such as pictures of skiing, clusters together (see Figure 2 in Article II). Semantic
clustering thus allows researchers to gain a quick overview of the activities and visual themes
in photographic content.

3.3.7 Spatial and statistical methods

Methods from spatial statistics have a paramount role in Articles III and IV. I performed
univariate Local Moran’s I analyses (Anselin, 1995) in Article IV and the bivariate version
in III to identify statistically significant areas of high and low linguistic diversity at various
points in time. Local Moran’s I is a local indicator of spatial association, which in turn
is a decomposition of the Global Moran’s I, a metric of spatial autocorrelation (Anselin,
1995). The univariate local Moran’s I indicates “the extent of significant spatial clustering
of similar values” of a single variable around an observation (Anselin, 1995, p. 94), whereas
the bivariate version assesses the match between two variables in geographical and attribute
spaces (Anselin et al., 2002). In both cases, I used k-NN (k=8) spatial weights matrices to
formalize the spatial relationships between the rectangular 250-metre grid cells. In Article
III, the bivariate cluster analyses were performed across times of day based on values of
Simpson’s diversity and Shannon entropy to detect spatio-temporal patterns of multi- and
monolingual hotspots, where language contacts are likely to occur.

I performed both spatial and aspatial linear regression analysis in Article III across the
times of day to understand how various socio-economic and environmental variables affect
spatio-temporal linguistic diversity at different times and whether spatial interaction plays
a part in linguistic diversity. For the spatial regression, I used the Spatial Lag Model (SLM)
regression analysis, which uses the spatial lag of linguistic diversity in neighbouring locations
to assess the strength of spatial interaction (Anselin, 2003). I used a k-NN (k=8) spatial
weights matrix to formalize the spatial relationships between the grid cells. For the aspatial
regression, we performed an Ordinary Least Squares (OLS) regression analysis across the
times of day.

In Article IV, I performed a spatially explicit Markov Chain analysis (Rey, 2001) to
explore the spatio-temporal dynamics of linguistic diversity in residential areas. This anal-
ysis shows how likely linguistic diversity is to change across residential neighbourhoods of
various population groups in the HMA, and how these probabilities change when a grid
cell is surrounded by grid cells with differing levels of linguistic diversity. The outputs are
probability matrices, which I then compared with Jensen-Shannon distances to understand
differences in the change probabilities between neighbourhoods. I used k-NN (k=8) spatial
weights matrices to formalize the spatial relationships between the statistical grid cells here
as well. Furthermore, I assessed how the spatial concentration of various population groups
has changed in the HMA between 1987-2019 with the Delta concentration index (Massey &
Denton, 1988).

3.3.8 Software and scripts used in this thesis

The software used by researchers to perform their analyses has an integral role in the re-
search, however, software development is an underappreciated and often unrewarded side of
academic work (Arribas-Bel et al., 2021; Merow et al., 2023). I want to encourage citing
the tools, especially the free and open-source tools I have used to perform the analyses in
this dissertation. Without open availability of such tools, the works in this thesis would look
markedly different or not have been even started in the first place.

I performed all analyses with Pandas (Reback et al., 2021), GeoPandas (Jordahl et al.,
2021), PySAL (Rey & Anselin, 2010), Scikit-learn (Pedregosa et al., 2011), Scikit-bio (Scikit-
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bio, 2020), Statsmodels (Seabold & Perktold, 2010), NumPy (Harris et al., 2020), and NLTK
(Bird et al., 2009) Python libraries, and GeoDA (Anselin et al., 2006). I visualized all
maps with QGIS (QGIS Development Team, 2021), and all graphs and plots with Seaborn
(Waskom, 2021) and matplotlib (Hunter, 2007) Python libraries.

In accordance with the principles of open science (UNESCO, 2021), the Python scripts I
have written to perform all analyses of every article, besides those done in GeoDA in Article
III, are freely and openly available at the following Zenodo repositories:

• Article I: https://doi.org/10.5281/zenodo.4279402

• Article II: https://doi.org/10.5281/zenodo.4282145

• Article III: https://doi.org/10.5281/zenodo.8054821

• Article IV: https://doi.org/10.5281/zenodo.8054946

4 Results and discussion

As the articles that constitute this thesis present their results in detail, in this section I
will stay on a more general level and summarize the broader results and implications of this
thesis. I will do so through eight claims. For each claim, I present my results supporting the
claim, how the results fit in with existing literature, what considerations there might be, and
give suggestions for future research.

4.1 The Helsinki Metropolitan Area is becoming linguistically di-
verse

My results show how the number of spoken languages in the HMA has doubled in the past
35 years. During the same period, the number of languages and linguistic diversity has
nearly quadrupled across the neighbourhoods (IV). Furthermore, the number of speakers
per each language, except Finnish and Swedish, have increased considerably. For instance,
Russian speakers have increased from 915 speakers in 1987 to nearly 34 000 in 2019. My
results further reveal large changes in the composition of languages and speakers. In the late
1980s the most common first languages were mostly European languages, whereas in 2019
the composition of languages had gained a more global character with several languages
from Africa, the Middle East, and Asia present. While the linguistic diversity overall and
across neighbourhoods in the HMA has more than tripled, the relative differences between
neighbourhoods have started to reduce.

Moreover, language use across the times-of-day on social media platforms reveal a more
diverse linguistic landscape than the population register initially indicated (III). This result
shows how social media data that reflects everyday mobility and language use can complement
the residential perspective on linguistic diversity by providing a perspective based on language
use on social media across times-of-day. As social media users can draw on their full linguistic
repertoires and through geotags and timestamps, the location and time of each language use
can be mapped. This reflects real-life language use to some extent, as each social media
user has the potential to choose a different language depending on the context and intended
audience.

Previous research in linguistics has observed that Helsinki has always been multilingual,
which contrasts to my findings (IV). However, this observation is not based on register data,
but on actual language use and historical documents (Lehtonen, 2016; Nuolijärvi, 2015;
Tervonen, 2014). Language use on social media (III) seems to reflect the earlier observations
of linguists. The population registry shows the HMA has changed from a monolingual urban
area to an increasingly diverse one during the past three decades (IV). Regardless of this
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change, the HMA remains the least diverse of the Nordic capital city regions (Karlsdottir
et al., 2018). Furthermore, much of previous research on multilingualism in the HMA has
focused on specific situations and population groups, with a focus on a single year instead
of many (Kraus, 2011; Lehtonen, 2016; Nuolijärvi, 2015). Purely a continuous time-series
analysis thus addresses a gap in knowledge (IV), but it also illustrates the underexplored
nature of linguistic diversity in the HMA. Reflecting the finding about the increasing global
character of the popular first languages in the HMA and the languages used on social media
(III, IV), Lehtonen (2016) found the “new” slang used by youths to have more influence from
Somali and Arabic compared to the “old” slang influenced by Swedish and Russian. Similarly,
the composition of languages in social media for the HMA (III) reflect the observations by
Hiippala et al. (2019) about social media content being dominated by English and the locally
dominant language, Finnish. Finally, these changes in composition of languages and the
diversity are in line with the prediction that by 2030 one in four inhabitants in the HMA
will speak a language other than Finnish or Swedish as their first language (City of Helsinki,
2022). However, this does not mean the inhabitants would not speak Finnish or Swedish as
a second language.

My results showed the relative differences in linguistic diversity are lessening between the
neighbourhoods in the HMA (IV). Research has shown that Somali speakers are much more
marginalized compared to Estonian speakers, however, the marginalization lessens with time,
although prejudice hinders integration (Dhalmann, 2013; Kemppainen et al., 2022; Skovgaard
Nielsen et al., 2015), which is also reflected in my results (IV). Estonians have been integrating
into society quicker, partly due to less prejudice and fewer socio-cultural barriers (Anniste &
Tammaru, 2014). However, the geographical, linguistic, and cultural proximity have rendered
this integration only partial as many Estonian speakers live transnational lives in Estonia
and Finland (Anniste et al., 2017; Torpan et al., 2022), which is likely represented in the
relative differences in linguistic diversity between neighbourhoods with Estonian and native
language speakers (IV).

As the HMA is becoming increasingly diverse in terms of languages, more research is
needed to better understand the connection of languages to broad social issues like segrega-
tion, education and employment trajectories, and housing careers, to name a few (Andersson
et al., 2017; City of Helsinki, 2022; Latomaa, 2012; Lehtonen, 2016; Torpan et al., 2022).
To this end, information regarding multilingualism and urban diversity in the HMA and
Finland has to become more comprehensive. The underlying register data needs to be im-
proved. First, moving from the ISO-639-1 standard to ISO-639-3 would increase the coverage
of languages exponentially, from 184 to 7893. To exemplify, the language code for unknown
languages describes nearly 8000 inhabitants in the HMA in 2019 and only one Sámi language,
Northern Sámi, has a code, whereas speakers of nearly all Sámi languages are likely present
in Finland, if not the HMA. It is not known if speakers of other Sámi languages are included
under the “se” language code or under the unknown category. Second, including informa-
tion on the bi- or multilingual individuals and the corresponding skill level would improve
the data immensely and provide an improved basis for future research into urban diversity,
segregation, integration and migration in Finland (Latomaa, 2012). These deficiencies in
the register data have been known about for over a decade (Latomaa, 2012) and reiterated
more recently by Saukkonen (2016; 2021b), but at the time of writing they have not been
addressed.

Finally, as the increasing linguistic, ethnic, and cultural diversity in the HMA and Finland
has been identified in previous research (Kraus, 2011; Lehtonen, 2016; Nuolijärvi, 2015;
Saukkonen, 2018, 2021b; Tervonen, 2014; Vilkama, 2010; Vilkama et al., 2013), some have
consequently called for societal discussions on what being “Finnish” constitutes (Lehtonen,
2016; Saukkonen, 2018; Tervonen, 2014). My work does not directly contribute to this
discussion, but given the trends and degree of linguistic diversity (I, III, IV), questions about
Finland’s status as either a bilingual and monocultural or a multilingual and multicultural
country can be explored.
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4.2 Linguistic diversity varies across space and time in the Helsinki
Metropolitan Area

My results reveal changing spatio-temporal patterns of linguistic diversity in the HMA from
several perspectives (III, IV). The linguistic diversity in social media content reveals a spatio-
temporal distribution that stands in stark contrast to that in the population register data
(III). Furthermore, linguistically diverse areas are located in largely different areas between
the data sources, indicating the locations where exposure to linguistic diversity happens
change throughout the day. Second, there are two spatio-temporal patterns in linguistic
diversity between 1987 and 2019 (IV). Firstly, the locations where linguistic diversity is con-
centrated geographically have completely changed. In the late 1980s, these concentrations
were in areas with a large proportion of Swedish speakers or with several foreign embassies,
whereas by 2019 the concentrations have shifted to highly multilingual suburban neighbour-
hoods. Secondly, the probability that linguistic diversity in a grid cell changes in the HMA is
generally rather low, but the geographical context of the grid cells influence the change proba-
bilities, especially for moderately diverse grid cells. To exemplify, if a moderately diverse grid
cell is neighboured by highly diverse grid cells, the moderately diverse grid cell is more likely
to turn into a highly diverse grid cell, whereas, grid cells that are either highly monolingual
or multilingual are not likely to change, but to remain as they are. This spatio-temporal sta-
bility of highly monolingual and multilingual neighbourhoods likely reflects varying moving
patterns of the inhabitants, and potentially spatial polarization.

Previous research on the spatio-temporal patterns of linguistic diversity in the HMA is
sparse, but the patterns reflect similar findings about socio-economic changes from the HMA
and elsewhere. For instance, some suburban neighbourhoods in the HMA have a larger share
of disadvantaged population groups because the neighbourhoods have not fully recovered
from a recession in the 1990s and the areas have a lot of social housing, which often are
the only options for refugees and immigrants from low-income level countries (Dhalmann &
Vilkama, 2009; Kauppinen, 2002; Tornes & Trujillo, 2021; Vaattovaara & Bernelius, 2010;
Vilkama, 2010; Vilkama et al., 2013). The changing locations of linguistically diverse areas
and socio-economic analyses (III, IV) indicate the high linguistic diversity in these areas is
likely connected to these broader patterns. The temporal stability of linguistic diversity in
residential areas (IV) are similar to general demographic stability of neighbourhoods (Zwiers
et al., 2018), but also the moving patterns and neighbourhood preferences (Dhalmann, 2013;
Torpan et al., 2022; Vilkama et al., 2013). To exemplify, the stability of linguistic diversity in
Somali neighbourhoods shows a strong divergent pattern, meaning that the neighbourhoods
are more likely to become either increasingly monolingual or multilingual (IV). This pattern
resembles the observation of “white flight” moving patterns identified in Helsinki (Vilkama
et al., 2013). The finding of Somali speakers being increasingly exposed to linguistic di-
versity, but decreasingly to Finnish and Swedish speakers (IV), supports the observation of
“white flight” as well. However, the moving patterns are not purely dictated by increased
diversity, but a mix of socio-economic issues is at play (Catney, 2016; Kemppainen et al.,
2022; Skovgaard Nielsen et al., 2015; Torpan et al., 2022; Vilkama et al., 2013), as is evident
in the finding that the linguistic diversity is increasing in all neighbourhoods regardless of
the language group (see Figure 4 in IV).

There are some considerations to these findings. First, the register data is spatially
based on home locations, which can over-emphasize the linguistic diversity in densely built
areas and exaggerate the lack of diversity in sparsely populated areas. Second, as the di-
versity metrics only consider the language observations within the current grid cell, the low
linguistic diversity in less densely populated grid cells might obscure a more multilingual
reality, as different languages might be present in neighbouring grid cells. This could be
mitigated by alternating the grid cell sizes, or by using focal statistics to enrich a grid cell
with information from neighbouring cells. Third, linguistic diversity in social media con-
tent is influenced by social media user behaviour, whereby content depicting an exciting and
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prosperous life is overrepresented and more mundane everyday content is underrepresented
(Boy & Uitermark, 2017; Hausmann et al., 2018; B. Huang & Carley, 2019; Koiranen et al.,
2020; Manikonda et al., 2016; Martı́ et al., 2021). Moreover, the languages one uses on
social media might not reflect language use in everyday face-to-face interactions, as the in-
tended audiences and socio-spatial contexts affect language choice (Androutsopoulos, 2014;
Artamonova & Androutsopoulos, 2019; El Ayadi, 2021; Latomaa, 2012). Fourth, the de-
mographic representativeness of social media users is influenced by platform bias and the
digital divide (Robinson, Schulz, Blank, et al., 2020; Robinson, Schulz, Dunn, et al., 2020)
and while representativeness can be improved (Heikinheimo et al., 2022; Toivonen et al.,
2019) it can not be considered to be representative of more than the users (Hargittai, 2020).
The perspective into linguistic diversity afforded by social media data should thus be seen
as a complementary perspective and not the complete picture (Arribas-Bel, 2014) that likely
represents more socio-economically advantaged people (Hargittai, 2020). Finally, the accu-
racy of the location information on social media posts has been reducing, as many platforms
are moving away from GPS coordinates to points-of-interest information (Hu & Wang, 2020;
Maurer, 2020; Tasse & Hong, 2017). This will reduce the spatial granularity of social media
content and complicate analyses that require operating on the scale of buildings, streets, and
city blocks.

Future work examining spatio-temporality of linguistic diversity in the HMA has several
possibilities. First, it is not known whether intergroup language contacts are more likely
in linguistically diverse areas identified from social media data or population registers. The
link between linguistic diversity on geotagged social media and in the real world needs to
be established, which is why actual interactions between individuals of different language
groups should not be conflated with interaction on social media. This could be done with
ethnographic field work following Pienimäki et al. (2023), or with a more traditional survey
study with some public participatory GIS elements included. Second, identifying which
elements in the spatio-temporal context of the language contact are most likely to lead
to positive outcomes is important (El Ayadi, 2021; Powers et al., 2022; Wessendorf, 2018;
Wessendorf & Farrer, 2021; Ye, 2016), as it would give some indication on how these contacts
can be supported by urban planners and local NGOs. Finally, identifying whether there are
linguistically diverse areas that lack multilingual information and support on how to access
public services is important, as populations in these areas are likely under an increased risk
of segregation.

4.3 Spatio-temporal inspection provides new perspectives to the
study of linguistic diversity

My results show that spatio-temporal approaches to linguistic diversity provide more fine-
grained understanding of how linguistic diversity unfolds on regional (I) and local scales
(III, IV). First, my work on spatio-temporality of linguistic diversity in social media content
addresses a knowledge gap. Some studies have examined temporal changes of linguistic
diversity of social media content from one location (Hiippala et al., 2019), or on the level
of a city (Jiang et al., 2022), but without a spatial perspective. Other studies have shown
that geography affects which languages are used on social media, but the dominant focus has
been on country-level differences (Coats, 2019a, 2019b; Graham et al., 2014; L. Hong et al.,
2011; Weerkamp et al., 2011) and, to my knowledge, little to no research interest has been
given to more regional perspectives (I).

Not only does the linguistic diversity of Finnish Twitter vary regionally and seasonally
across Finland, but it also varies depending on the user’s home location (I). The most lin-
guistically diverse areas and Twitter users in Finland are in coastal and urban areas, whereas
more rural and remote regions are linguistically less diverse. These geographical variations
can partly be an effect of the varying popularity level of social media between urban and rural
areas in Finland (Koiranen et al., 2020). Furthermore, the higher diversity in coastal regions
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(I) coincides with locations of Swedish-speaking communities (Sjöholm, 2004). Urban areas
have been shown to influence linguistic content on social media (Grieve et al., 2019; Grieve
et al., 2018; B. Huang & Carley, 2019), but these studies focus on lexical innovation and
variation among English speakers. Seasonality also affects linguistic diversity across various
spatial contexts (Hiippala et al., 2019; Jiang et al., 2022; Mocanu et al., 2013), reflecting
the results about temporal variations in linguistic diversity across regions, especially those
associated with tourism (I). Furthermore, the presence of Swedish, Russian, and Estonian
Twitter content increased in border regions of each nation, indicating the influence of geo-
graphical proximity of other states and transnational lifestyles of the users (Hedberg, 2007;
Järv et al., 2021; Silm et al., 2020) on the content, reflecting similar findings of the most
common languages on Twitter elsewhere (Coats, 2019b; Magdy et al., 2014; Mocanu et al.,
2013).

Second, my analyses of linguistic diversity with social media and population register data
in the HMA provide both a dynamic and structural view of linguistic diversity (III, IV). Lin-
guistic diversity differs starkly between social media and population register data, indicating
the places, where encountering diverse populations is more likely, change throughout the day.
The importance of encountering diversity for social cohesion and a sense of community is rec-
ognized widely (Powers et al., 2022; Wessendorf, 2014; Ye, 2019), which is why using several
data sources (III) to understand where and when linguistically diverse populations are likely
to encounter one another is crucial. As exposure to diversity is more likely to happen during
the daily mobility (Moya-Gómez et al., 2021; Müürisepp et al., 2023), big data sources which
capture daily mobility and language use become important for understanding urban diver-
sity. Encounters with diversity in urban areas can be more likely to occur for more wealthy
people (Farber et al., 2012), which echoes my results about the high spatial concentration of
Somali speakers, their shorter commute distances, and their neighbourhoods being generally
more socio-economically deprived (IV). However, in contrast to the observation of Farber
et al. (2012), Somali speakers in the HMA are more exposed to linguistic diversity than any
other population group (IV), although the approach in Article IV only considers residential
areas, not exposure during daily mobility.

Third, my regression analyses (III) indicate the neighbouring socio-economic and built en-
vironment are associated with higher linguistic diversity on social media, which indicates that
the well-known effect of the socio-spatial context on language use and choice (El Ayadi, 2021;
Valentine et al., 2008) also affects virtual language use to some extent. Similar observations
have been made by Kellert and Matlis (2022) about the influence of the spatio-temporal
and social context on where formal and informal Spanish is used in Buenos Aires varied.
Although not related to linguistic diversity, Garcı́a-Palomares et al. (2018) also performed
regression analyses to exploring how land use affects Twitter activity in Madrid and found
similar results on the varying influence of the built environment to the amount of content
across times of day, e.g., the increasing importance of commercial areas during evening and
night (Tables 4 and 5 in Article IV).

Fourth, my analysis on the changes of linguistic diversity in the HMA with population
register data between 1987–2019 (IV) addresses two needs identified by other researchers.
The first need regards a call for more temporally continuous approaches to examining long-
term changes across neighbourhoods (Casarin et al., 2023; Catney, 2016; Zwiers et al., 2018).
This call was made as urban policies impact and changes in neighbourhoods happen gradually
over long time periods, and the majority of analyses used data from only two years separated
by several years (Catney, 2016; Zwiers et al., 2018). The second need is a more implicit
one, emerging from my understanding of literature regarding multilingualism in the HMA,
as previous studies used information on languages and their number of speakers from a
singular year (Lehtonen, 2016; Nuolijärvi, 2015). Exploring how linguistic diversity developed
annually between 1987–2019 thus addresses this “continuity” gap in knowledge to some
extent.

Future work examining spatio-temporality of linguistic diversity has several possibilities.
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The connection of language use on social media platforms to the geographical locations
of language communities has been studied on the level of countries (Coats, 2019a, 2019b;
Graham et al., 2014; L. Hong et al., 2011; Magdy et al., 2014; Weerkamp et al., 2011), but
much work remains on more regional and local scales. Another possible direction would be
to assess the influence of the socio-spatial context on language use on social media following
Kellert and Matlis (2022), but focusing on language choice instead of changes between more
formal and informal use of one language, and whether the level of diversity in surrounding
language use influences language choice across different types of areas.

4.4 Languages provide a view into urban diversity

My results show how information on languages and language use can be used to characterize
and describe the spatio-temporal patterns of urban diversity using a variety of data sources
(I, III, IV). Information on languages used on social media provides a way to better under-
stand which population groups the users represent (I, III). The linguistic diversity examined
through register data is based on first-language information and connected to the home lo-
cations of inhabitants. As such it reveals the locations of potential language users, but also
where social contacts between language groups are likely to happen when not at work, school
or in third places (III, IV). Whereas social media data, which is more connected to leisure and
everyday activities, may capture language contacts that may occur in work places, schools,
and third places, such as parks, restaurants, and event venues (III). Information on first lan-
guages of individuals from population registers can be used to assess and examine the more
structural side of urban diversity, but also as a lens to examine the integration of immigrant
groups to a host society (IV).

Previous literature has identified language as a potent marker of individual and group
identity. Language is thus useful in examining urban diversity, but it has been sparingly used
in research on social media data (Dunn et al., 2020; Hiippala et al., 2019). Some studies
exploring social media user demographics have identified demographic characteristics of the
users using first and last names of social media users (Coats, 2019a; Longley & Adnan,
2016; Longley et al., 2015; Luo et al., 2016). However, the approach is limited as only half
of the social media users used a name suitable for identification (Longley & Adnan, 2016;
Longley et al., 2015). Another way is to detect the place of residence of the users by using
information on the content, social network, and spatio-temporal patterns of social media posts
(Heikinheimo et al., 2022). Some have connected the detected place of residence with official
demographic statistics of the neighbourhood to assign the user as a likely member of some
group (Bernabeu-Bautista et al., 2021; Chapple et al., 2021; L. Li et al., 2013). However,
this approach has a risk stemming from ecological fallacy, as an “average” person from a
neighbourhood might not exist. Identifying the place of residence (I) and the languages of
the user (I, III) can thus provide a good basis for studying urban diversity with social media
data.

In research about urban populations not related to big data, language is used more
frequently, although much remains unexplored (Chriost & Thomas, 2008; El Ayadi, 2021;
Johnston et al., 2001). Language has been found to explain the level of socio-spatial segrega-
tion and isolation better than socio-economic variables, ethnic heritage, and origin countries
in some geographical contexts (Christopher, 2004; Johnston et al., 2001; Johnston et al.,
2021). This might be reflected in the HMA given the differences across socio-economic vari-
ables and spatial concentration between speakers of Finnish, Swedish, Somali, and Estonian
(IV). Elsewhere, language has not been the explicit focus, but used as one of several variables
examined (Catney, 2016; Pisarevskaya et al., 2022) or languages have just been assumed to
correlate with other variables of super-diversity (Connor, 2014; Pisarevskaya et al., 2022).
However, languages should not be overlooked, as language can reveal additional diversity
within the more traditional variables of ethnicity or origin country (Johnston et al., 2021;
Vertovec, 2007).
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Information on languages from social media and population registers can be used to
identify likely areas where contacts between language groups occur (III, IV). For example,
study site selection in research on places of encounter and linguistic landscapes is often
informed by statistical demographic information on some neighbourhood or local knowledge
of the researchers (Blackwood, 2015; Dirksmeier et al., 2014; Hiippala et al., 2023; Hoekstra
& Pinkster, 2019; Soukup, 2020; Wessendorf, 2014), but analyses on the spatio-temporality of
languages in population registers and social media can support and expand site selection (III,
IV). The importance of the places of encounter are known for establishing social cohesion and
intercultural understanding in highly diverse neighbourhoods (Ho et al., 2021; Matejskova
& Leitner, 2011; Wessendorf, 2014, 2018; Ye, 2019). Information on these places could
be leveraged by urban planners and policy-makers in policies that aim to increase social
cohesion, resilience, and a sense of community (Fincher et al., 2014). As encounters with
“the other” are more likely to lead to positive outcomes in shared, communal, and formal
spaces depending on the socio-spatial context (Ho et al., 2021; Hoekstra & Pinkster, 2019;
Pienimäki et al., 2023; Powers et al., 2022; Valentine et al., 2008; Wessendorf, 2014), analyses
identifying the locations of clusters of linguistic diversity (III, IV) can be used as supporting
data in selecting study sites that fall into the three types of places. Moreover, the cluster
locations can be enriched with information on points-of-interest to understand in which places
these encounters are likely taking place (Psyllidis et al., 2022). Finally, these data-driven
approaches for site selection in linguistic landscapes research can help research in the field
move beyond typical study sites, like main streets, into unexplored areas (Hiippala et al.,
2023).

Using information on languages to understand urban diversity comes with several con-
siderations. First, languages and multilingualism in the real world are somewhat resistant
to quantification (Pennycook & Otsuji, 2015, p. 47). Fixed categories are poor in describ-
ing fluid and fuzzy entities like languages, which are continuously evolving. Furthermore,
an individual speaking in, e.g. Finnish can draw on other languages to add emphasis or
alternative meanings, as is commonly done in the Helsinki slang (Lehtonen, 2016). Also, the
way languages are spoken and what the act of speaking in a certain language means socio-
culturally varies across time and space (Lehtonen, 2016). Furthermore, the language use on
social media platforms can also be resistant to categorization as users can draw on multiple
languages and use creative spellings (Baldwin et al., 2013; Grieve et al., 2017; Hiippala et
al., 2019), but also incorporate multimodal elements, such as emojis, smileys, hashtags, and
animated GIFs, that can alter the meaning of the text considerably and do not constitute
an identifiable language. The methods and data that I have used cannot capture this kind
of multilingualism.

Second, the quantification of languages into a score calculated with a diversity metric can
provide a one-sided view on linguistic diversity. Not only are languages fuzzy entities, but
different metrics emphasize different aspects of diversity, such as abundant, moderate or rare
observations. This underscores the importance of understanding what elements each metric
is sensitive to, as naive approaches can perpetuate socio-spatial disadvantages. For instance,
as Shannon entropy is sensitive to both rare and abundant observations, whereas moderate
observations do not affect the score as much (Magurran & Henderson, 2010; Morris et al.,
2014; Peukert, 2013). As diversity metrics are commonly used in ecology, the recommended
approach has been to use of two or more metrics simultaneously (Magurran & Henderson,
2010; Morris et al., 2014; Ortiz-Burgos, 2016; Peukert, 2013), which has been my approach
throughout this thesis (I, III, IV).

Third, the automatic language identification model used in the analyses (I, III), fastText
(Bojanowski et al., 2017; Joulin et al., 2016), is limited to 176 languages and is also based
on the ISO-639-1 standard. As a result, it can not identify all languages potentially present
on social media (I, III). To exemplify, fastText is not trained on content in Sámi languages
and thus cannot identify them. Furthermore, identification of very short texts by automatic
methods is challenging, as posts with only a few words or just one have less “contextual”

38



information for the model to identify the language accurately (Barman et al., 2014; Hiippala
et al., 2019). In these cases, especially orthographically identical words such as “Helsinki”
or “Pizza” are written identically in numerous languages and without other contextualizing
information, fastText essentially guesses the language. To reduce this, only posts where the
textual content was longer than 12 characters were analysed (I, III). Finally, the multilingual
nature of social media text poses a challenge for automatic language identification, as use of
multiple languages can occur multiple times in a sentence or a post (Barman et al., 2014).
Language identification performed on the sentence level (I, III) tackles this to some degree,
but does not capture the use of multiple languages that occur mid-sentence, or code-switching
(Barman et al., 2014), whereby some of the diversity in the content is likely lost.

Future work focusing on the role of languages in spatio-temporal urban diversity could
focus on several directions. First, exploring the role of languages in explaining socio-spatial
disadvantage compared to other variables such as socio-economic status, gender, and age to
improve understanding of the role of languages in socio-spatial segregations. Second, work
using language information on social media should use techniques that can identify more
languages, such as HeLI-OTS (Jauhiainen et al., 2022) or MMS (Pratap et al., 2023), to im-
prove the coverage of previously unaccounted groups of users (Hargittai, 2020). Third, using
fine-grained and highly accurate spatial data will be paramount for understanding spatial
complexities of urban diversity, as extreme disadvantage and social deprivation can be con-
centrated in very small geographical areas or to very specific population groups. Moreover,
analyses connecting urban diversity to topics like travel-time accessibility of urban amenities
and to urban parks and natural areas would provide more understanding about concentration
of disadvantage and knowledge urban planners need to support social sustainability (Will-
berg, Fink, et al., 2023; Willberg, Poom, et al., 2023). Furthermore, calls for explorations
of linguistic diversity outside the “traditional” areas, such as metropolises and urban areas,
have been made by some scholars, as increasing diversity and globalization also influence
more peripheral areas (Catney, 2016; Wang et al., 2014).

4.5 Computer vision can support analyses of diversity when lan-
guage is not useful

My results show how off-the-shelf computer vision models are capable of extracting infor-
mation on activities from photographic content on social media, but also how the use of
several computer vision techniques concurrently provides complementary perspectives to au-
tomatic analysis of visual content (II). This approach is highly relevant with Flickr data, as
the textual content on the platform is limited compared to other social media platforms. To
exemplify, many posts have no textual content, the textual content is a technical description
(e.g. a filename or camera settings), or the same textual content is repeated for several posts.
While the models used in Article II (He et al., 2017; Zhou et al., 2018) were not specifically
trained to detect activities, but more general tasks like object detection and image classifi-
cation, the detected contextual information, such as the presence of skis or bicycles in the
photographs are implicit signs of activities. Furthermore, the detection of the landscapes in
the photographs also provide information on what landscape values the social media users
have (van Zanten et al., 2016). Additionally, using the high-dimensional feature vectors,
that is, the numerical output from the models before classifying the image to belong in some
category, provides information that can be used to semantically cluster the information to
reveal the “activity landscape” of the content (II). This approach enables rapid overviews of
the visual content and can provide understanding. Furthermore, by classifying the users into
foreign and national visitors to the national parks, the differences in activities and visual
preferences of the two user groups become distinguishable. Even though the Flickr con-
tent is from national parks, there is no apparent reason why the techniques would not be
transferrable to urban contexts.

Similar research using computer vision and social media photographs elsewhere has fo-
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cused on mapping of cultural ecosystem services, landscape preferences, and monitoring of
visitors (Chen et al., 2020; Huai et al., 2022; Mouttaki et al., 2022; Santos Vieira et al.,
2021; X. P. Song et al., 2020; Staab et al., 2021; Winder et al., 2022). Most of the body of
work focuses on national and urban parks, and only Chen et al. (2020) focused primarily on
urban areas. Regardless, activity detection is generally a by-product of these broader goals.
In the context of cultural ecosystem services, activities are often allocated to two categories:
leisure and sport recreation, without more in-depth analyses (Huai et al., 2022; Santos Vieira
et al., 2021). Staab et al. (2021) detected visitors from trail camera content, but also their
likely activities by detecting recreational equipment carried by visitors. Similarly, Y. Song
et al. (2022) derived likely activities of Instagram users in urban parks by detecting objects
commonly associated with specific activities, whereas Chen et al. (2020) detected the activi-
ties based on the scenes identified in Flickr photographs. These studies have reached similar
conclusions (II) about the applicability of computer vision techniques in monitoring the ac-
tivities in natural areas as a way to complement more labour-intensive manual monitoring
field work. Similar, but reversed, gender imbalance was observed in Instagram data, with
young women being the majority of users (Y. Song et al., 2022). Several studies have also
observed that domestic and foreign visitors have somewhat differing visual preferences and
content, with foreign visitors focusing more on content they consider exotic (Huai et al.,
2022; Santos Vieira et al., 2021; X. P. Song et al., 2020). Reflecting the findings regarding
the prevalence of orienteering (II), the influence of Flickr super-users on the analysis, even
when mitigated, has been recognized to affect the results (Winder et al., 2022). Much of
the research using computer vision techniques on social media content relies on classification
and detection techniques (Ghermandi et al., 2020; Mouttaki et al., 2022; Richards & Tunçer,
2018; Santos Vieira et al., 2021; X. P. Song et al., 2020; Winder et al., 2022), and the call for
using several methods in the analysis made in Article II was reiterated by Ghermandi et al.
(2022). Finally, there appears not to be work using similar methods to semantic clustering.

There are some considerations to using visual content from social media and computer
vision models. First, what is shared on social media has a bias towards content that shows
something exclusive, exotic, popular or “cool” especially in visual content (Boy & Uitermark,
2017; Hausmann et al., 2018; Hochman & Manovich, 2013; Manikonda et al., 2016; Tenkanen
et al., 2017). Activities inferred from social media photographs thus likely reflect middle-
or upper-class lifestyles (Boy & Uitermark, 2017; Hu et al., 2014), as much of the shared
content is planned to fit in certain “aesthetic and lifestyle ideals” (Boy & Uitermark, 2017,
p. 622). Furthermore, the user classification (II) revealed most content to be generated by
male users. Second, the computer vision models are openly available off-the-shelf models,
which have been pretrained on massive datasets and replicate the biases in these datasets.
As COCO and ImageNet are databases of images from the internet, they replicate gender,
cultural, and social biases, because the original images uploaded to the internet contained
the biases in the first place (Denton et al., 2021; Lin et al., 2014; Mitchell et al., 2020;
Prabhu & Birhane, 2021; Shankar et al., 2017; Steed & Caliskan, 2021; Winder et al., 2022).
Finally, social media content is often multimodal with textual, visual and audio content,
whereby a more comprehensive understanding of the content could be achieved by analysing
all modalities of the content (Toivonen et al., 2019).

Future work on using computer vision techniques should focus on finding relevant areas
where to apply these techniques, considering the ethics of using computer vision in urban
and natural contexts, and examining the biases that extend from the training data to the
final outputs. The strengths and weaknesses of these techniques need to be mapped and
understood in order not to perpetuate inequalities and disadvantages, especially given the
popularity of smart city and digital twin initiatives across the world, where machine learning
methods are integrated into decision and policy pipelines (Biljecki & Ito, 2021; Ibrahim et
al., 2020; Vanky & Le, 2023). In terms of research on urban areas using social media data,
multimodal models that incorporate both textual and visual content to extract activities
and semiotics from the content (Koylu et al., 2019; Lucas et al., 2022; You et al., 2016;
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Zhao et al., 2023) would be a natural next step. Another option would be to complement
the semantic clustering we performed in Article II by leveraging multilingual or language-
agnostic language models like BERT (Devlin et al., 2019) and LASER (Artetxe & Schwenk,
2018), to cluster the semantically similar textual content regardless of the language used in
the posts (George & Sumathy, 2023; Q. Xie et al., 2020).

4.6 Diverse data sources are crucial for studying urban diversity

My results show how information on languages and activities from a wide array of data
sources can be used to examine urban diversity from several perspectives and on different
spatial scales (I, II, III, IV). The analysis based purely on textual content from Finnish
Twitter shows how the diversity of languages used on social media platforms varies across
Finland spatially, but also per user home locations (I). The challenges of poor textual content
and other challenges arising from textual content can be circumvented by focusing on the
visual content to explore how activities and visual preferences differ between population
groups (II). Combining social media data sources provides a more balanced view of dynamic
urban diversity, but also demonstrates how findings from social media data analyses can be
contextualized with more established sources of data (III). Finally, the strength of focusing on
highly detailed longitudinal register data (IV) enables the investigation of temporal changes
in urban diversity at a high level of detail from a structural perspective (Figure 1). As the
language information is derived from a national population register, it can be easily combined
with other official data sources describing the demographic and socio-economic composition
of the residential neighbourhood. More generally, big data sources provide information not
available from more traditional sources (I, II, III), such as the spatio-temporality of language
use, the degree of multilingualism across multiple spatio-temporal scales, spatio-temporal
activities and visual preferences of population groups. However, this does not negate the
importance of traditional data sources (III, IV) as these data are not as subject to issues
regarding bias and representativeness.

All data sources used in this thesis provide varying perspectives on urban diversity, which
is essentially a prerequisite for studying complex social phenomena (Vertovec et al., 2022).
Previous research has recognized the biases and representation issues of social media and
have proposed approaches to mitigate these issues (Heikinheimo et al., 2022; Martı́, Serrano-
Estrada, et al., 2019; Martin & Schuurman, 2020; Toivonen et al., 2019). For instance,
Hargittai (2020) stresses that as social media data are more likely to reflect the views of
people in a higher socio-economic status with good internet skills, which likely affects the
diversity of languages and activities based on social media content (I, II, III). There are
three common ways to deal with bias from social media: first, combining social media data
sources with each other, second, complementing social media sources with traditional data
sources, and third, being open about the limitations of the data (Crampton et al., 2013;
Hargittai, 2020; Hausmann et al., 2018; Heikinheimo et al., 2017; Herdağdelen, 2013; Kandt
& Batty, 2020; Martı́, Serrano-Estrada, et al., 2019; Tenkanen et al., 2017; Tu et al., 2017).
These approaches are equally important, as there are platform-level differences in the user
base and type of content (Arribas-Bel, 2014; Boy & Uitermark, 2017; Hargittai, 2020; Hu
et al., 2014; Lansley & Longley, 2016; Longley & Adnan, 2016; Manikonda et al., 2016;
Tenkanen et al., 2017). I have adopted these approaches to varying degrees throughout this
thesis (I, II, III). Combining traditional and big data sources has been found to be useful
in contextualizing social media findings, reducing the possibility of erroneous conclusions,
and identifying emerging phenomena (Chapple et al., 2021; Kandt & Batty, 2020; Lansley
et al., 2018; Martı́, Garcı́a-Mayor, & Serrano-Estrada, 2019; Martı́ et al., 2021). In fact,
the importance of traditional data will likely increase because of the prevalence of big data
(Kandt & Batty, 2020), which is why examining Article III and IV together will likely provide
a more holistic understanding of linguistic diversity in the HMA. The perspective into the
diversity of languages and activities afforded by social media data on its own (I, II) should
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thus be seen as a complementary perspective and not the complete picture (Arribas-Bel,
2014; Tenkanen et al., 2017).

As different sources capture different aspects of people, combining data sources can re-
sult in highly detailed information on individuals. This raises questions of ethics and equity
regarding the analysis, data, methods, and presentation of the results in any analysis. Pro-
tecting the privacy of individuals whose data is analysed, especially if the topic is sensitive,
while adhering to local privacy laws is paramount (Di Minin et al., 2015; Zook et al., 2017).
Acknowledging this, researchers need to carefully consider all analysis steps to reduce po-
tential harm the research may cause (Di Minin et al., 2021; Nelson et al., 2022; Toivonen
et al., 2019; Zook et al., 2017). This was a challenge when combining individual-level pop-
ulation register data with data on languages used in geotagged social media content (III).
Following the data minimization and pseudonymization principles (Di Minin et al., 2021;
Zook et al., 2017), the social media data combined with population register data contained
a pseudonymized identifier, information on the language of the post, coordinates and local
time. The rest of social media analyses either aggregated information on languages and
activities to coarser spatial scales (I, II, III) or grouped information on the user level by
variables such as low, moderate, and high diversity (II). With register data (III, IV), all
analyses were performed in a secure virtual environment and the outputs were vetted by
trained professionals at Statistics Finland before export.

Future works should develop frameworks for combining various data sources for research
on urban diversity. Using several social media platforms reduces platform-specific bias and
increases the coverage of the population included in the analysis (Hausmann et al., 2018;
Owuor & Hochmair, 2020; Tenkanen et al., 2017), however, how to best combine them with
more established traditional data sources remains a challenge. As big data and traditional
data sources have both strengths and weaknesses, mapping them and communicating about
them openly and clearly supports the selection of appropriate data sources for various con-
texts by researchers and decision-makers (Arribas-Bel, 2014; Janowicz et al., 2015; Kandt &
Batty, 2020).

4.7 Research on urban diversity requires open science and interdis-
ciplinarity

Contributing to open research and interdisciplinarity in geography is a common meta-theme
throughout this thesis. First, all Python scripts are published openly alongside each pub-
lication. These scripts are fully commented and document the analysis workflows from be-
ginning to end, supporting transparency and replicability of each article. Open availability
also enables their application across various spatio-temporal contexts and fields of research.
Second, each article is published as an open-access article, which ensures better accessibility
to the work. Third, by using free and open-source tools to perform the analyses in every
article of this thesis, this work demonstrates the value and impact of open source tools for
contributing to research on urban diversity. Every article of this thesis would have looked
starkly different or not happened at all, if I had had to rely on proprietary software and
tools. Finally, each article of this dissertation is inherently interdisciplinary, as they draw
on and contribute to GIScience, urban geography, and research on urban multilingualism
and linguistic landscapes, while using an interdisciplinary selection of methods from natural
language processing, machine learning, ecology, and conservation science.

Interdisciplinarity and openness are necessary in research on urban diversity using big
data (Kitchin, 2013; Martin & Schuurman, 2020; Nelson et al., 2022; Vertovec, 2019; Ver-
tovec et al., 2022). Knowledge and understanding about spatio-temporality of diverse urban
populations derived from several perspectives is highly important information for supporting
social cohesion and resilience (Nelson et al., 2022; Vertovec et al., 2022), as has been argued
in each article. Furthermore, democratizing access to science and tools of science, especially
research relating to highly diverse populations, is also a question of ethics, social sustain-
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ability, and justice (Nelson et al., 2022; UNESCO, 2021). This is why using interdisciplinary
methods, publishing open-access articles, and sharing the analysis scripts openly are highly
important, which is what I have done with each article (see Section 3.3.8). Moreover, open-
ness enables others to reproduce, build upon, critically evaluate, transfer, and potentially
improve the methods (Arribas-Bel et al., 2021; Owuor & Hochmair, 2020).

Open research is not a perfect solution. Publishing open-access articles is a costly endeav-
our for researchers (Beall, 2012) and places many universities and institutes with less mon-
etary resources at a disadvantage (Kwon, 2022; Smith et al., 2021). The open-access model
can paradoxically lead to less diversity, because research performed in rich countries become
more widely available, while the high quality and relevant research from poorer countries
remains less accessible behind paywalls (Smith et al., 2021) or is published in questionable
journals (Taşkın et al., 2023). As Nelson et al. (2022) point out, greater access does not
automatically translate to greater equity, as it empowers those with the skills and knowledge
to use the open tools and data. Furthermore, providing open access to the research data can
be ethically and legally problematic due to sensitive and personally-identifiable information
or trade secrets (Di Minin et al., 2021; Martin & Schuurman, 2020; Toivonen et al., 2019).
Finally, given the rising popularity of open research (Grahe et al., 2020; Holbrook, 2019;
Inkpen et al., 2021), predatory publishers are focusing on open-access publishing models,
which can challenge the credibility of open research (Beall, 2012).

Interdisciplinarity also poses some challenges. Contemporary urban diversity is highly
complex (Vertovec, 2007; Vertovec et al., 2022; Wessendorf, 2014), and understanding such
phenomena “requires a combination of approaches” (Casadevall & Fang, 2014, p. 1357),
which increase the difficulty of performing the necessary analyses. Simultaneously, big data
has transformed GIScience into an inherently interdisciplinary field (Kitchin, 2013; Martin &
Schuurman, 2020; Nelson et al., 2022). This requires geographic research performed with big
data to find a balance between “machine learning algorithms, postpositivist subjectivity of
user-generated content” (Martin & Schuurman, 2020, p. 1340) and the theories that inform
geographic research (Kandt & Batty, 2020; Kitchin & McArdle, 2016). Balancing between
requirements of interdisciplinarity and field-specific expertise is difficult for individual re-
searchers, but necessary to address the complex challenges contemporary human civilization
faces (Casadevall & Fang, 2014; Nelson et al., 2022; Simon & Graybill, 2010; Ye, 2019).

4.8 More information on the diversity of people and places is needed

This thesis shows how linguistic diversity is increasing at multiple geographical scales in
Finland and the HMA, but also provides a methodological framework for studying urban
diversity. Given the complexity of urban diversity, a diverse selection of data sources and
methods are necessary to extract meaningful information from big data and traditional data
sources (I, II, II, IV). The information extracted helps to generate knowledge and understand-
ing about the more short-term and dynamic processes (I, II, III) and the more structural
long-term processes (III, IV) associated with urban diversity. Traditional data sources, like
the population register data (III, IV), offer a perspective to long-term and structural changes
in urban diversity through annual information on residential demographics and the built en-
vironment. This perspective is necessary as it provides the “canvas” on which everyday
mobility and activities take place, but also points to potentially important residential areas
where encounters with “the other” are more likely. Big data sources like social media data
can then complement this information by addressing the diversity of languages and activities
that emerge from the mobility and activities of people (I, II, III).

Accounting for urban diversity is recognized as an important endeavour that supports
social sustainability, well-being, and cohesion (Fincher et al., 2014; Schroedler et al., 2023).
As the local matters in urban diversity (OECD, 2018; Syrett & Sepulveda, 2012; United
Nations, 2022), it is imperative for cities to keep up with the emerging spatio-temporal
patterns of urban diversity (I, II, III, IV) to support the development of socially sustainable,
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resilient and thriving urban areas (El Ayadi, 2021; Fincher et al., 2014; Gorter, 2006).
Frequent, even fleeting, exposure to diversity can increase social cohesion and improve the
sense of community as interaction between diverse people can generate understanding, while
reducing tensions and prejudices (Chriost & Thomas, 2008; Powers et al., 2022; Wessendorf,
2014). However, diversity can also lead to increased tensions and conflicts due to the lack
of a common language, unusual use of public space, and existing prejudices (Hoekstra &
Pinkster, 2019; Matejskova & Leitner, 2011; Pienimäki et al., 2023; Powers et al., 2022;
Valentine et al., 2008). Being able to support the positive effects of urban diversity, research
on urban diversity from various perspectives and a wide selection of methods and sources of
data is necessary (I, II, III, IV). Luckily, the increased amount and availability of geospatial
big data on urban diversity enables new approaches to understanding urban phenomena
(Arribas-Bel, 2014; Arribas-Bel et al., 2015; Batty, 2010; Martı́, Serrano-Estrada, et al.,
2019; Martin & Schuurman, 2020) that traditional data sources can not map (Batty, 2010;
Martin & Schuurman, 2020), but which are also needed to ground the findings (Hargittai,
2020; Kandt & Batty, 2020).

Future work on urban diversity should focus on exploring which selections of variables
of urban diversity in which geographical context capture the phenomenon best (Vertovec
et al., 2022). Gaining increasingly detailed information on the diversity of urban populations
and their local patterns are essential in ensuring social sustainability and cohesion in highly
diverse urban environments (Syrett & Sepulveda, 2012; United Nations, 2022), which is why
more detailed data about diverse populations and their interactions are needed. Work on
urban diversity could also be extended to examining how accessibility (Willberg, Fink, et al.,
2023), exposure to environment (Torkko et al., 2023; Willberg, Poom, et al., 2023), and use
of urban green areas (Heikinheimo et al., 2020; Powers et al., 2022; X. P. Song et al., 2020)
vary across super-diverse population segments.

Given the complexity, broadness, intersectionality, and the increasing rate of urban di-
versity, the need for more research and interdisciplinary approaches is evident. The need is
compounded by the climate crisis, the increasing level of urbanization, and global instabil-
ity, which drive more people into cities (United Nations, 2022). My thesis has contributed
towards this aim by examining urban diversity in the Helsinki Metropolitan Area and by ad-
vancing the adoption of an open and interdisciplinary methodological framework in studying
urban diversity. While being rooted firmly in geography, my thesis builds especially from
geographical information science and reaches out to linguistic landscapes and urban geog-
raphy. This thesis represents one small step towards improving the understanding of urban
diversity and supporting social sustainability of urban areas, much more work from diverse
and interdisciplinary perspectives is needed for there to be a leap.
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tapolitiikka, 77 (5), 525–534.

Lazar, M. (2022). Semiotic timescapes. Language in Society, 51 (5), 735–748. https://doi.
org/10.1017/S0047404522000641

Leeman, J., & Modan, G. (2009). Commodified language in Chinatown: A contextualized
approach to linguistic landscape. Journal of Sociolinguistics, 13 (3), 332–362. https:
//doi.org/10.1111/j.1467-9841.2009.00409.x

55

https://doi.org/10.1080/21632324.2020.1830563
https://doi.org/10.1080/21632324.2020.1830563
https://doi.org/10.1177/2043820613513388
https://doi.org/10.1177/2053951716631130
https://doi.org/10.1177/2053951716631130
https://doi.org/10.1007/s10209-019-00654-1
https://doi.org/10.1111/ijal.12018
https://doi.org/10.1111/ijal.12018
https://doi.org/10.1080/15230406.2018.1510343
https://doi.org/10.1080/15230406.2018.1510343
https://doi.org/10.2478/v10202-011-0004-2
https://doi.org/10.2478/v10202-011-0004-2
https://doi.org/10.1016/j.compenvurbsys.2021.101693
https://doi.org/10.1016/j.compenvurbsys.2021.101693
https://doi.org/10.18653/v1/2021.wnut-1.24
https://doi.org/10.1038/d41586-022-00342-w
https://doi.org/10.1177/0261927X970161002
https://doi.org/10.1177/0261927X970161002
https://doi.org/10.1016/j.compenvurbsys.2016.04.002
https://doi.org/10.1016/j.compenvurbsys.2016.04.002
https://doi.org/10.1017/S0047404522000641
https://doi.org/10.1017/S0047404522000641
https://doi.org/10.1111/j.1467-9841.2009.00409.x
https://doi.org/10.1111/j.1467-9841.2009.00409.x


Lehtonen, H. (2016). What’s Up Helsinki?: Linguistic Diversity Among Suburban Adoles-
cents. In R. Toivanen & J. Saarikivi (Eds.), Linguistic Genocide or Superdiversity?:
New and Old Language Diversities (pp. 65–90). Multilingual Matters.
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López Peláez, A., Aguilar-Tablada, M. V., Erro-Garcés, A., & Pérez-Garcı́a, R. M. (2022). Su-
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pandemic: The dynamics of daytime social diversity during COVID-19 in Greater
Stockholm. Applied Geography, 154. https://doi.org/10.1016/j.apgeog.2023.102926
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