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Abstract

This thesis is based on laser-photolysis/photoionisation mass spectrometry experiments I
have performed in the laboratory of reaction kinetics at the University of Helsinki. Whilst
I have measured bimolecular rate coefficients for many different kinds of radical-molecule
reactions, this thesis focuses on the reactions between resonance-stabilised hydrocarbon
radicals and oxygen molecules. For these reactions, I complemented the experimental work
with quantum chemical calculations and master equation simulations. One of the great
benefits of the computational work is that it permitted us to, in a way, extrapolate our
experimental results to conditions more relevant to practical application. For resonance-
stabilised hydrocarbon radicals, the obvious application is in modelling the chemistry of
unsaturated hydrocarbons in combustion systems. Our experiments are performed at low
pressures (3 ·10−4−1 ·10−2 bar) and relatively low temperatures (190−950 K), so there is
a real need to extrapolate our rate coefficient data to the high temperatures and pressures
encountered in, say, combustion engines. Doing computations in a purely ab initio fashion
for the studied systems are demanding and costly, which is why experimental input was
needed to fix parameters in the models that are either not well-understood or expensive
to calculate. This is why I call the approach we have used synergistic. The experiments
are used to cover for the shortcomings of the computations and the computations are used
to model the reactions under conditions inaccessible to experiment.

I begin the thesis by introducing the experimental technique we employ. This is followed
by a description of the theories behind the computational methods we utilise. To limit the
scope of the study, I mainly focus on the master equation and unimolecular rate theory.
In the results section I summarise the experimental and computational results and discuss
the findings.
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Tiivistelmä

Väitöskirjatyössäni olen mitannut resonanssistabiloitujen orgaanisten radikaalien ja hapen
välisien reaktioiden nopeusvakiota käyttämällä laserfotolyysi-valoionisaatiomassaspektro-
metriaa. Suoritin nämä mittaukset Helsingin yliopiston reaktiokinetiikan laboratoriossa.
Kokeellisen työn lisäksi olen mallintanut tutkittuja reaktioita kvanttikemiallisilla laskuil-
la ja masteryhtälösimulaatioilla. Laskennallisen työn hyöty oli siinä, että sen avulla ko-
keelliset tulokset voitiin ikään kuin ekstrapoloida olosuhteisiin, jotka ovat tavallisempia
käytännön sovellutuksissa. Tutkimani reaktiot ovat pääasiassa tärkeitä palamisen kemias-
sa. Kokeet suoritettiin melko matalissa paineissa (3 · 10−4 − 1 · 10−2 bar) ja lämpötiloissa
(190 − 950 K), joten oli aito tarve löytää keino ekstrapoloida mittaukset paineisiin ja
lämpötiloihin, joita esiintyy esimerkiksi polttomoottoreissa. Työssäni tutkittujen reak-
tioiden nopeusvakioita ei pystytä laskemaan tarpeeksi tarkasti molekyylien suuren koon
vuoksi, joten kokeita tarvittiin malleissa olevien parametrien kiinnittämiseksi. Tämän
vuoksi kutsun käyttämääni lähestymistapaa synergestiseksi. Kokeellisilla tuloksilla kor-
jattiin laskennallisten tuloksien puutteita, ja laskuja puolestaan käytettiin tuloksien ek-
strapolointiin olosuhteisiin, joissa kokeita ei ole mahdollista tehdä.

Väitöskirjani alkuosassa esittelen käyttämäni mittaustekniikan historian ja periaatteet,
minkä jälkeen esittelen käyttämieni laskennallisten menetelmien teoreettisen taustan.
Keskityn lähinnä unimolekulaariseen reaktioteoriaan ja masteryhtälömallinnukseen, kos-
ka nämä kaikkein oleellisimmin liittyvät reaktiokinetiikkaan. Väitöskirjani jälkimmäisessä
puoliskossa esitän yhteenvedon tekemistäni kokeista ja laskuista ja pohdin niiden merki-
tystä.
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1 Introduction

1.1 Chemical Kinetics and the Rate Coefficient

Chemical kinetics is the study of reaction rates and mechanisms. In a constant-volume
system, the rate law for some arbitrary reaction

aA+ bB ... → pP + qQ ... (1.1)

is given by
1

νi

d[i]

dt
= k(p, T )

∏
i

[i]ci . (1.2)

Here k(p, T ) is the rate coefficient of the reaction, which is temperature- and pressure-
dependent in general, νi is the stoichiometric number of species i, and ci is some real
number which needs to be experimentally determined for non-elementary reactions. For
elementary reactions, it can be deduced from the mechanism. The rate laws for the simple
uni- and bimolecular reactions

A2 −−→ A + A and (1.3)

A + B −−→ AB , (1.4)

are

−d[A2]

dt
=

1

2

d[A]

dt
= kdis(p, T )[A2] and (1.5)

−d[A]

dt
= −d[B]

dt
=

d[AB]

dt
= krec(p, T )[A][B] , (1.6)

respectively. The subscripts “dis” and “rec” stand for dissociation and recombination,
respectively. The former example illustrates why one must be careful with stoichiometric
numbers; a factor of two mistake is easy to make.

The purpose of this brief reminder about the basics of chemical kinetics was to illustrate
what rate coefficients are used for: they are used to relate how the time derivative of
a species depends on its own concentration, the concentrations of other species, and on
rate coefficients. Thus, if one is to comprehensively model the chemistry of complicated
environments, such as those encountered in the atmosphere or combustion engines, one
not only needs hundreds (if not thousands) of rate coefficients, but often needs them as a
function of temperature and pressure.

1.2 Computational Reaction Kinetics

Increases in computing power and developments in quantum chemistry methods and the
chemical master equation (ME) techniques1 has transformed computational reaction kin-
etics from an explanatory tool into a predictive one.2 This is a welcome development, as
kinetic models may contain thousands of pressure- and temperature-dependent rate coef-
ficients, and it is not feasible to determine all of these experimentally. However, this is
only part of the solution. The traditional computational approach (one reaction at a time,
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a lot of manual input from the chemist) is not suitable for the determination of thousands
of rate coefficients either. Recent efforts have focused on automating and streamlining
the work that goes into obtaining a rate coefficient.3 By reducing the manual labour of
the chemist to an absolute minimum, ideally just to giving the geometries or identifiers
of the initial molecules, the hope is that computational methods can mass produce rate
coefficients in the near-future.

Despite the advances in computational reaction kinetics, experimental input is still often
needed and rate coefficient calculations are rarely performed in a truly ab initio fashion.
As recently pointed out by Ahren Jasper,4 collisional energy transfer is rarely predicted
by ab initio methods, even in purely computational papers. What is done instead is
that crude models with adjustable parameters are used and the values of said parameters
are estimated (guessed) based on values known for analogous systems. An additional
complication in ab initio reaction kinetics is angular momentum conservation. The cur-
rent standard in ME modelling is to run so-called one-dimensional (1D) simulations that
only treat energy as an independent variable. More accurate treatments would also con-
sider angular momentum (2DME). A practical problem in 2DME calculations is finding
a way to describe EJ-coupled transition probabilities. Including angular momentum also
significantly increases the dimensions of the matrices that need to be diagonalised.1,5 How-
ever, the latter might not be a problem in practice since the computational bottleneck
will most likely be in quantum chemistry calculations (or in trajectory calculations, if
they are used to obtain EJ-coupled transition probabilities). The 1D-approach is known
to overestimate rate coefficients, and to compensate for this, one can use artificially low
collisional energy transfer parameters. Klippenstein has suggested that simply dividing
computationally obtained collisional energy transfer parameters by two can be used to
approximate angular momentum effects in a 1D-setting.6 Going forward, it seems clear
that 2DME approaches will need to become the standard in ab initio reaction kinetics at
some point. Barrierless reactions, such as those studied in this work, are also a challenge.
In barrierless reactions the minimum energy path (MEP) of the reaction is never above
the energy of the reactants. It is possible nowadays to use statistical methods to compute
rate coefficients for such reactions,7,8 but these calculations are prohibitively costly for
systems with many heavy atoms.

Due to these issues in computational methods, we have chosen to apply a hybrid approach
in which accurate experiments are used to correct for computational deficiencies. All of the
systems studied in this thesis are so large that we cannot reliably use statistical methods
to compute rate coefficients for barrierless reactions and/or to run classical trajectories
to obtain energy transfer parameters. Instead, we exploit the inverse Laplace transform
(ILT, see section 3.3) approach and our experimental data to obtain microcanonical rate
coefficients for barrierless reactions. All of the studied reactions exhibit pressure de-
pendence, and so we can directly fit collisional energy transfer parameters against our
pressure-dependent experimental data. The ME models are 1D, but as experimental data
is used for parameter optimisation, angular momentum effects are implicitly included.
This approach should extrapolate our experimental low-temperature and -pressure data
reasonably well to conditions relevant in atmospheric and combustion chemistry.

The experiments are, of course, also valuable in and of themselves. As computational
methods are developed, they need to be tested against benchmark-quality experimental
data. The results presented in this thesis are suitable for such purposes. Many of the mo-
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lecules studied here are quite similar, only differing by the location of a methyl group. The
methyl group location does not change the reaction mechanism, but it does have an effect
on the observed rate coefficient. It will be interesting to see if high-level computational
approaches are able to capture these subtle differences in reactivity.

1.3 Reactions of Resonance-Stabilised Hydrocarbon Radicals
with Oxygen Molecules

Resonance-stabilised hydrocarbon radicals (RSHRs) are molecules where the radical or-
bital is delocalised over multiple carbon atoms. For such molecules, it is usually possible
to draw more than one reasonable Lewis structure. These structures can be equivalent, as
is the case for allyl (prop-2-en-1-yl) or non-equivalent, like for propargyl (prop-2-yn-1-yl).
These Lewis structures are presented in Fig. 1. The triple-bonded structure is dominant
in propargyl, with the first carbon having about ∼ 65 % of the spin density.9

PropargylAllyl

Figure 1: The Lewis structures for allyl and propargyl.

RSHRs lose their resonance-stabilisation when they recombine with O2, which results in
them having much shallower RO2

• wells (zero-kelvin binding enthalpies) than similar-
sized hydrocarbon radicals that lack resonance-stabilisation. For example, the ethyl +
O2 recombination reaction has a well-depth of about 137 kJ mol−1,2 whereas for allylic
radicals these wells are about 60 kJ mol−1 shallower (III–V, XII). The shallower wells
of RSHRs have at least three important consequences. Firstly, the shallower wells and
loss of resonance-stabilisation means that radical + O2 interaction potentials are less
attractive for RSHRs, which results in them exhibiting decreased reactivity. The high-
pressure rate coefficient at 298 K for the ethyl + O2 recombination reaction is 8.4 ·
10−12 cm3 s−1,2 whilst the equivalent rate coefficient for allyl + O2 is much smaller,
5.8 ·10−13 cm3 s−1.10 Secondly, the redissociation back to reactants becomes significant for
RSHRs at much lower temperatures than for similar-sized hydrocarbon radicals that lack
resonance-stabilisation (I–V, XII). Thirdly, because the peroxyl adduct wells are shallow
for allylic and propargylic radicals, the barrier for any isomerisation reaction (internal
hydrogen abstraction, for example) is likely to lie above the energy of the bimolecular
reactants. Reactions over such barriers are expected to be slow.

For the latter two reasons, RSHR + O2 reactions are often dead-ends in combustion en-
vironments, which can lead to RSHR accumulation. As their concentrations increase, self-
and cross-reactions start to become important. These reactions are crucial in forming the
“first aromatic ring”—a key precursor in soot formation.11 Soot emissions are a symptom
of inefficient burning and thus undesirable. To model soot formation (prevention), the
competition between RSHR + O2 and RSHR + RSHR reactions needs to be understood.

An interesting feature of RSHR + O2 reactions is that a relatively fast reaction (k >
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10−14 cm3 s−1) is observed at room temperature and below,10,12 but a one or two orders of
magnitude slower reaction is observed at higher temperatures (T > 500 K).13,14 Even more
interestingly, the low-temperature rate coefficients exhibit negative temperature depend-
ence and pressure dependence, which is typical for barrierless recombination reactions,
but the high-temperature rate coefficient has weak, positive temperature dependence and
is pressure-independent. Hahn et al. explained why this behaviour is seen for propargyl
+ O2.15 Something quite similar is observed for alkyl radical + O2 reactions, although the
effect is less pronounced.16 The details regarding this are discussed in the results section,
but an introductory explanation is given below.

For propargyl, the overall reaction mechanism is

HC−−−C−CH2
• + O2 −−⇀↽−− HC−−−C−C(OO•)H2 (R1)

HC−−−C−CH2
• + O2 −−⇀↽−− HC(OO•)−−C−−CH2 −−→ HCO• + CH2−−C−−O . (R2)

At low temperatures, an irreversible HC−−−C−CH2
•+O2 −−→ HC−−−C−C(OO•)H2 reaction

is observed. This reaction is barrierless, as demonstrated by the careful experiments and
computations by Moradi et al.9 As temperature is increased above 300 K, reaction R1
begins to equilibrate and multi-exponential decays are observed. The HC−−−C−C(OO•)H2

peroxyl adduct has no low-barrier isomerisation pathways, so this reaction is a dead-end.
At even higher temperatures (T > 500 K), the equilibrium begins to overwhelmingly
favour the reactants (under typical O2 concentrations), and there is no net formation
of HC−−−C−C(OO•)H2. However, a slow radical decay due to R2 is seen. The initial
recombination reaction in R2 appears to have a small barrier and thus is unable to com-
pete with R1 at low temperatures. The intermediate product in R2, the peroxyl adduct
HC(OO•)−−C−−CH2, only ever has a small steady-state concentration, and a direct phe-
nomenological reaction HC−−−C−CH2

• + O2 −−→ HCO• + CH2−−C−−O is observed. For
allylic species, the general principles are the same.

The radicals studied in this work are shown in Fig. 2. In addition, some as of yet
unpublished data for propargyl and 3-ethylpropargyl will be presented for comparison
purposes.

Figure 2: Radicals studied in this thesis.
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2 Methods

2.1 Experimental

2.1.1 History

Using laser/flash-photolysis photoionisation mass spectrometry to study radical-molecule
reactions is an experimental technique pioneered by David Gutman and co-workers and
Kyle Bayes and co-workers in the 1980s.17,18 At the time, the results produced by laser-
photolysis techniques were questioned because the activation energies they predicted were
not in agreement with existing thermochemical data. Sydney Benson and co-workers
argued that the results were contaminated by “hot radicals” and conjectured that radicals
formed by laser-photolysis do not have sufficient time to thermalise in the experiments. 19,20

Moreover, the very low pressure reactor (VLPR) technique employed by Benson and co-
workers and the laser-photolysis experiments gave inconsistent rate coefficient predictions.
An example of the different predictions given by these two experimental techniques is given
in Fig. 3 for the C2H5

• + HBr −−→ C2H6 + Br• reaction. As one can see, not only do
the results disagree by more than an order of magnitude, but they also exhibit a different
temperature dependence.
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Laser-photolysis experiments

C2H5 + HBr        C2H6 + Br

Figure 3: Measured C2H5
• + HBr −−→ C2H6 + Br• rate coefficient as a function of

temperature. The laser-photolysis experiments are by Nicovich et al., Seetula, and Seakins
et al.21–23 and the VLPR measurements are from Dobis and Benson.19,20
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Krasnoperov and Mehta argued that if the laser-photolysis results are really contamin-
ated by vibrationally excited species, then the laser-photolysis rate coefficients should
decrease with pressure due to collisional relaxation.24 Thus, they performed pressure-
dependent experiments for the CH3

• + HBr −−→ CH4 + Br• reaction from 1 to 100 bar
and compared the results to the low-pressure results of Seakins et al. and Nicovich et
al.21,23,24 No pressure dependence was observed for the reaction between 2.5 ·10−3 bar and
1.0 · 102 bar, which clearly demonstrated that “hot radicals” are not a source of error in
laser-photolysis measurements. Since then, enough experimental and computational data
has accumulated to conclude that the laser-photolysis results are accurate and the VLPR
rate coefficient predictions are incorrect. For example, when ethyl radicals are produced
by C2H6 + Cl• −−→ C2H5

•+ HCl and then the C2H5
•+ O2 rate coefficient is measured,25

the results agree with laser-photolysis experiments. However, it is still unclear why the
VLPR technique gives incorrect results.

Raimo Timonen worked in David Gutman’s group in the 1980s and 1990s, and when he
returned back to Finland, he started building an apparatus very similar to the ones he
had used with Gutman. He also managed to secure components from Bayes’ laboratory,
some of which are still being used by us. He finished constructing the apparatus with
Arkke Eskola and they published their first paper in 2003.26 The Helsinki and Gutman
apparatuses give very consistent results (as they should), which is shown in Fig. 4 for R•+
Cl2 −−→ RCl+Cl• reactions. Over the years, we have found that the results obtained with
the Gutman apparatuses are systematically about 10 − 20 % larger than those obtained
in Helsinki. Given the very similar design of the apparatuses, this is somewhat surprising
and the reason for it still unknown.
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Figure 4: A comparison of R• + Cl2 −−→ RCl + Cl• rate coefficient measurements by the
Gutman and Helsinki apparatuses.27–32
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2.1.2 The Experimental Apparatus

The principles behind the experimental technique are quite simple. Experiments are per-
formed in tubular laminar flow reactors at relatively low pressures (0.2–10 Torr). Although
the flow is laminar, the used pressures are low enough to permit rapid radial diffusion.
Thus, the molecules spend equal amounts of time, on average, in slow and fast laminars.
The pressure range of the experiment is controlled by varying the diameter of the reactors.
Reactors with large inner diameters (d = 1.65−1.70 cm) are used to perform low-pressure
(0.2–3 Torr) measurements and slightly smaller reactors (d = 0.80–0.85 cm) are used to
perform high-pressure ones (2–10 Torr). The pressure drop in the reactor is calculated
from

p =

(
p2

0 −
16ηTRTṅtot

πR4
rad

L

) 1
2

. (2.1)

Here p0 is the pressure at the start of the reactor (which is measured), p is the pressure at
distance L from the start, η is the viscosity of the gas, T is temperature, ṅtot is the molar
flow rate of the gas, and Rrad is the radius of the reactor. The pressure drop is usually a
few percentage points. The reactant (O2) concentration is calculated from

[O2] =
ṅO2

ṅtot

p

RT
. (2.2)

To control the temperature of the reactor, we circulate methanol (180−300 K) or distilled
water (300 − 365 K) through a cooling/heating mantle. To reach higher temperatures
(300− 950 K), resistive heating coils/blocks are used.

The oxygen flow rate is determined by measuring the increase of pressure in a known
volume with a stopwatch. The total flow rate is measured with a soap bubble flowmeter
and a stopwatch. The concentration of the inert bath gas (usually He, but sometimes
N2) is typically in huge excess over [O2], although for very slow reactions up to 50 % of
the flow can be O2. The concentration of O2 in turn is in huge excess over the radical
concentration. That is to say, the measurements are performed under pseudo-first-order
conditions ([He]� [O2]� [R•]). A schematic of the experimental apparatus is shown in
Fig. 5.

2.1.3 Radical Production

We use pulsed exciplex lasers for radical production. The laser pulse is fired along the axis
of the reactor to homogeneously produce the radical of interest. Care is taken to ensure
that the pulse does not hit the reactor wall. We typically use brominated precursors
(RBr) in our experiments, and the radical of interest is photolytically produced by

RBr + hν −−→ R• + Br• (2.3)

using either 193 nm or 248 nm radiation. Other photolytic precursors can be used, but
we have found brominated ones to be quite reliable. However, they have a few drawbacks.
One of them is that they start to thermally decompose between 600 K and 750 K, and
this often sets the upper temperature limit of our experiments. Another drawback is that
they usually have a secondary photolysis channel,

RBr + hν −−→ R−H + HBr . (2.4)
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Figure 5: A schematic of the Helsinki-apparatus

This can complicate the analysis of reaction products as conjugate alkenes (R−H) are
important products for many R• + O2 reactions. In general, we try to use more than
one photolytic precursor to produce a radical. If consistent results are observed with
both precursors, we can be quite confident that the photolysis event only produces the
radical of interest. For example, in measuring the kinetics of t-butyl radicals, we have
to be careful that we are not producing n-, s- or i-butyl radicals. Using different radical
precursors to obtain the same result can also be used to show that it is unlikely that the
measurements are contaminated by “hot radicals” or any kind of secondary chemistry.

The precursor is introduced into the reactor by bubbling helium or nitrogen through
temperature-controlled liquid precursor. The precursor is purified by several freeze-pump-
thaw cycles before use.
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2.1.4 Radical Detection

Photoionisation mass spectrometry is used for radical detection. We sample a small part
of the flowing mixture (3 − 20 %) through a hole on the side of the reactor to a va-
cuum chamber containing a quadrupole mass spectrometer. The radicals are ionised with
resonance-radiation-discharge lamps. We use different kinds of window materials to cut
off emission lines higher in energy than the most intensive one (the one we want). Differ-
ent lamp/window combinations are tested to see which gives the best signal for a given
radical. We like to check that we get the same result with different ionisation energies.
In these kinds of experiments, one must always be careful of dissociative ionisation. For
example, in R• + O2 measurements there is always a risk that the adduct dissociates by
RO2

• + hν −−→ R+ + O2 + e−. To avoid this problem, we try to use as low ionisation
energies as possible. If dissociative ionisation is a serious problem, it should be detectable
by noticing that the radical signal does not return to pre-photolysis baseline. Tables 1
and 2 list ionisation energies and window materials we have used.

Table 1: The UV-wavelengths emitted by some important resonance-radiation-discharge
lamp gases.33,34

Atom UV Emission Line (eV) Atom UV Emission Line (eV)

H 10.20, 12.09 He 21.22, 40.81
N 7.11, 8.31, 8.78 Ne 16.67, 16.85, 26.81, 26.91
O 9.49, 9.50, 9.52 Ar 11.62, 11.83, 13.30, 13.48
Cl 8.88, 8.92, 9.09 Kr 10.03, 10.64
Br 7.59-8.33 (7 lines) Xe 8.44, 9.57

Table 2: Energy thresholds for several window materials. At energies above the threshold,
the window absorbs all UV-light. eV = 1.602677 · 10−19 J.

Salt Window Cutoff Energy (eV)

LiF 11.9
MgF2 11.1
CaF2 10.2
Al2O3 (sapphire) 8.8
SiO2 (optical quartz) 7.6

The photoionisation mass spectrometry detection technique coupled with a flow reactor
permits us to measure the intensity of the radical signal as a function of time. When
a laser pulse hits, radicals at the pinhole have not had time to react and the radical
signal is at its maximum. This is the zero-time in our measurements. As time passes
by, the flow brings to the pinhole a gas mixture that has had more time to react and a
decay in the signal intensity is observed. Using a pulsed laser enables us to repeat this
measurement thousands of times. The average flow velocity in the reactor is generally
about 5 m s−1, and the laser is operated at 5 Hz. Because the reactors are about a metre
long, every laser pulse photolyses a fresh gas mixture. An example of a time-dependent
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radical trace obtained with the apparatus is shown in Fig. 6. Measuring a trace like this
takes 10–60 min, depending on signal quality.
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Figure 6: An example of a radical trace.

2.1.5 Wall Reactions

Because radial diffusion is fast in our experiments, the radicals frequently come into
contact with the reactor surface. Thus, we need to use suitable reactor material and
coating combinations to make the walls as inert as possible. At low temperatures, we
have had success with stainless steel reactors coated with halocarbon wax. A limitation
of halocarbon wax is that it begins to melt at around 400 K, so other coatings need to be
used for high-temperature measurements. At higher temperatures, we utilise quartz and
Pyrex (borosilicate glass) reactors. These can be coated with either polydimethylsiloxane
(PDMS), which can be used up to about 500 K, or boric oxide, which we have used up
to 950 K. To measure a rate coefficient over a wide temperature range, we need to use
multiple reactor material/coating combinations. The temperature ranges covered by each
combination overlap at some temperatures (at least room temperature), so we can easily
check that consistent results are obtained with different combinations. Whenever we make
a large change, such as changing a reactor and/or coating, we repeat an old measurement
to ensure we still get the same result.

The rate at which radicals react with the walls can be directly measured. We simply meas-
ure the radical decay rate in the absence of added reactant (O2). Strictly speaking, a decay

20



rate measured this way also has contributions from radical-radical and radical-precursor
reactions, but we can suppress these by using low radical and precursor concentrations. A
practical way of checking that these do not contribute to the loss rate is to double/halve
the precursor concentration (or pulse power) and see if the loss rate remains unchanged.

A low wall rate (kw) is a prerequisite for our measurements. The time-window in our
experiments is about 50–70 ms, so we try to measure decays that are slower than 250 s−1.
If the decays are faster, it becomes increasingly difficult to make a reliable exponential fit.
We always try to measure a decay that is at least five times faster than the wall rate, so
the maximum wall rate we can tolerate is about 50 s−1. Typically, the wall rates are much
lower than this For the radicals studied in this thesis, they were usually under 20 s−1,
sometimes even under 10 s−1. In fact, for some resonance-stabilised radicals we have seen
wall rates that are essentially zero.

The general trend we have observed is that wall rates tend to increase with radical size
and decreasing temperature. Most of the time it is the increase in wall rate that sets the
lower temperature limit in our experiments.

2.1.6 Bimolecular Plots

The typical steps of a rate coefficient measurement are the following:

1. The desired flow rate, temperature, and pressure it set.

2. The wall rate (kw) is measured. The wall rate is remeasured at the end of a bimolecu-
lar rate coefficient determination to ensure that is has remained approximately con-
stant. A single-exponential function

[R•] = A+ [R•]0e−kwt (2.5)

is fitted to these measurements to obtain kw. Here A is the signal background, t
is time after laser pulse, and [R•]0 is some value proportional to the initial radical
concentration.

3. After the initial wall rate measurement, a known concentration of O2 is added into
the reactor and the radical trace is measured. Again, a single-exponential function

[R•] = A+ [R•]0e−k
′t (2.6)

is fitted to the obtained trace. Here k′ is a pseudo-first-order rate coefficient and is
related to the bimolecular rate coefficient k and the wall rate by

k′ = k[O2] + kw . (2.7)

The pseudo-first-order rate coefficient is usually determined at 4–5 different oxygen
concentrations.

4. After the k′ and kw measurements, the results are plotted as a function of [O2].
When a straight line is fitted to the data, the slope and intercept give k and kw,
respectively. The kw value obtained from the fit should agree well with the measured
values if the experiments have been performed well. We typically report both values.
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An example of a bimolecular plot for the 2-methylallyl + O2 reaction is presented in Fig.
7.
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Figure 7: A bimolecular plot for the 2-methylallyl + O2 reaction measured at 203 K and
0.20 Torr. The figure is taken from (IV).

Sometimes radical decays are not purely single-exponential, as is the case when redissoci-
ation (R• + O2 −−⇀↽−− RO2

•) becomes significant, and more complicated functions need to
be fitted to the obtained traces to obtain rate coefficients. For simple R•+ O2 −−⇀↽−− RO2

•

equilibration, a double-exponential function suffices.35 However, if there are two equilib-
rating R• + O2 −−⇀↽−− RO2

• reactions, a triple-exponential function is needed. When the
reaction mechanisms become more complex, increasingly complicated fitting functions
need to be used and the problem easily gets out of hand. Our experience has been that
a double-exponential function can still be quite reliably fitted to the obtained traces, but
not a triple-exponential function (the fitting uncertainties are as large as the paramet-
ers). Fortunately, the recently implemented trace fitting feature in MESMER (a ME
code) alleviates some of these problems (this will be discussed in more detail in later
sections).36,37
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3 Theory

3.1 Transition State Theory

Transition state theory (TST) is the most widely used method to predict uni- and
bimolecular rate coefficients in the field of chemical kinetics. The theory itself is fully
classical, but typically at least some quantum effects need to be accounted for to obtain
quantitative agreement with experiment. For example, classical energy differences can be
replaced with zero-point-energy (ZPE) corrected energy differences or classical harmonic
oscillator partition functions with their quantum equivalents. The main idea of the the-
ory is that it places a dividing surface (a transition state) between the reactants and the
products and then evaluates the flux through this surface in the reactant → product dir-
ection. The dividing surface can be placed anywhere on a given potential energy surface
(PES), but it is most often placed on the first-order saddle-point (if it exists) that con-
nects the reactant and product valleys on the reaction’s PES. In its simplest application,
only information about the properties of the reactant and the first-order saddle-point is
needed to compute a rate coefficient. If one wants to improve on this estimate, typically
more information about the PES is needed (hindering potentials for internal rotations,
for example). However, in all its variants TST requires no knowledge about the under-
lying dynamics. In fact, one could say the reason for TST’s existence is to predict rate
coefficients without having to perform trajectory calculations, which are costly and can
only be done accurately for systems with a few heavy atoms and degrees of freedom.

TST can be used to predict thermal rate coefficients (k(T )) in canonical ensembles and
E- and J-resolved rate coefficients (k(E, J)) in microcanonical ensembles. The microca-
nonical version of TST is often called Rice–Ramsperger–Kassel–Marcus (RRKM) theory,
named after the people that were instrumental in developing it. Both versions of TST
assume there is a dividing surface between the reactant and product that acts as a point of
no return. This assumption is often called the “no recrossing assumption” and it has the
attractive feature that it necessarily overestimates the reactive flux through the dividing
surface on a given PES. Some trajectories will in fact cross the dividing surface but then
return back to the reactant valley (trajectory B in Fig. 10, for example). It is also possible
that some trajectories will cross the dividing multiple times before finally ending up in
the product valley (trajectory D in Fig. 10). Thus, the location of the dividing surface
can be variationally selected so as to minimise the overestimation that results from the
assumption that all trajectories that cross the dividing surface are reactive. At this point
it is worth pointing out that it is somewhat arbitrary how one determines if a trajectory is
reactive. After all, a trajectory with a constant (E, J) that enters the product valley from
the reactant side will eventually return to the reactant side. Therefore, some pragmatic
if arbitrary criteria are needed in trajectory calculations to determine if a reaction has
taken place. For example, the criterion could be that a certain bond length has reached
its equilibrium value on the product side.

The other assumption TST makes is that it assumes the reactants are in an equilibrium.
In the canonical case, it is assumed that the energy states of the reactant are always
Boltzmann distributed. This assumption is strictly true only in the limit of infinite pres-
sure where collisions are so frequent that thermal equilibrium is always maintained. In
practice, the high-pressure limit is reached when the rate coefficient no longer appreciably
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increases when pressure is increased. For the microcanonical case, the equilibrium assump-
tion is that each region of reactant phase space is always equally populated. Although a
reaction will depopulate the reactant phase space, it is assumed that intramolecular en-
ergy transfer is sufficiently fast that the reactant phase space will remain homogeneously
populated. Implicit in this assumption is that the system is ergodic and mixing, meaning
that a trajectory with a given (E, J) is able explore all of the phase space (ergodicity) and
that trajectories initiated with slightly different initial conditions will quickly “spread out”
to evenly cover the available phase space (mixing). This mixing behaviour is illustrated
in Figure 8 for a phase space element in a double-well potential.

Figure 8: An example how a phase space element in a double-well potential spreads to
cover the available phase space whilst maintaining its volume.

A consequence of this assumption is that k(E, J) is independent of initial conditions and
time (desirable features for a rate coefficient!). The validity of the microcanonical equi-
librium assumption has been questioned since the early days of TST,38 but nowadays it
is generally accepted that the assumption is accurate for most systems and the systems
for which it fails are the exception rather than the rule. The latter systems are often
described as being inherently non-RRKM or -statistical. A famous example of such a sys-
tem was presented by Rynbrandt and Rabinovitch39 when they reacted deuterated sing-
let methylene with 1,2,2-trifluoro-1-(1,2,2-trifluoroethenyl)-cyclopropane to form excited
1,2,2,1’,2’,2’-hexafluorobicyclopropane (see Figure 9 below), which subsequently decom-
posed by ring opening. At pressures below 0.13 bar, they observed that both rings opened
with nearly equal probability, indicating that the energy deposited in the one ring had
time to be redistributed to the other ring before collision-induced ring-opening occurred.
However, as pressure was increased above 0.13 bar, it was increasingly the – c-C3F3D2

ring that opened. From this it was concluded that above 0.13 bar the intramolecular
energy transfer rate between the two rings and the unimolecular decomposition reaction
happen at similar timescales.

The expression for the canonical TST rate coefficient (β = 1/kBT , qrc = reaction coordin-
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Figure 9: A reaction scheme in which chemically excited 1,2,2,1’,2’,2’-
hexafluorobicyclopropane is formed and its subsequent ring-opening reactions.

ate) is

k(β, qrc) =

∫
δ(f(q)− qrc)(∇f(q) · q̇)u(∇f(q) · q̇)e−βHdΓ∫

e−βHdΓ
, (3.1)

which can be expressed in the more conventional form

k(β, qrc) =
1

hβ

Q‡(β)

Qreact(β)
e−β∆rE

‡
0 (3.2)

if the reaction coordinate is separable and orthogonal to the other coordinates. Here
dΓ = dqdp, H = H(q,p) is the classical Hamiltonian, f(q) is a function that defines
the dividing surface, u is the Heaviside step function, qrc is the reaction coordinate, ∇
is the gradient, h is the Planck constant, and Q is the canonical partition function. The
equivalent expressions for the microcanonical case are

k(E, J, qrc) =

∫
δ(H− E)δ(J − J ′)δ(f(q)− qrc)(∇f(q) · q̇)u(∇f(q) · q̇)dΓ∫

δ(H− E)δ(J − J ′)dΓ
(3.3)

and

k(E, J, qrc) =
N ‡(E, J)

hρreact(E, J)
. (3.4)

Separability and orthogonality was once again assumed to go from the first expression to
the second. Here N ‡ is the number of states of the dividing surface and ρreact(E, J) is the
density of states of the reactant. The latter expression is known as the RRKM-expression.
A derivation of the TST rate coefficients is given in Appendix A.

3.2 Flexible Transition State Theory

For barrierless recombination reactions, the TS location is not obvious and it must be
variationally sought. A natural choice for the reaction coordinate for such reactions is
the centres-of-mass distance of the recombining fragments. It also turns out that this
reaction-coordinate definition is in many ways the most convenient as it simplifies much
of the mathematics needed to deal with these reactions. However, it was recognised by
Klippenstein that other definitions of the reaction coordinate, such as a bond length,40
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may lead to smaller k(E, J) values and must therefore be a better estimate of the “true”
k(E, J) due to the inherent assumptions in TST. So both the value and definition of the
reaction coordinate can be variationally chosen in order to minimise the overestimation of
the no-recrossing-assumption in TST. This approach is known in the literature as either
variable reaction coordinate TST (VRC-TST) or flexible TST (FTST).7,8 These theories
make one additional assumption to conventional TST; they divide the coordinates of the
studied system into “conserved” and “transitional” modes. The conserved modes are
those that remain approximately unchanged as the recombining fragments move from
large separations to the dividing surface. The transitional modes, in contrast, change
significantly as the dividing surface is approached. These modes are typically large-
amplitude motions that are often strongly coupled with each other and external rotation.

A short introduction of this approach is given in this thesis for the simplest non-trivial
system: an atom-diatom recombination reaction. This system can be used to introduce
all the essential features of the theory, but makes the mathematical expressions simpler
and, hopefully, easier to follow. A derivation of the TST rate coefficient for this system
is given in Appendix B. A derivation for the most general case, the recombination of two
asymmetric rotors, has been presented by Robertson, Wardlaw, and Wagner.7 A body-
fixed frame is used where the centres of mass of the fragments are placed on the z-axis,
with the origin being the centre of mass of the whole system. An angle θ is used to
determine the relative orientation of the fragments. A body-fixed frame is used because
the interaction potential between the fragments is most naturally expressed in such a
frame. A drawback of this choice is that there will be Coriolis-coupling terms in the
Hamiltonian. The example system used will be the H• + O2 −−→ HO2

• reaction, for
which an analytical PES has been reported by Harding, Troe, and Ushakov.41 The PES
is shown in Fig. 10. An interesting feature of the surface is the fairly limited angle-
range in which the recombination reaction is barrierless. For this system, the transitional
modes are the centres-of-mass distance, rotation of the diatom, and the three modes that
describe the overall rotation of the system. The conserved mode is the diatom vibration.

The FTST calculations were run with two different reaction-coordinate definitions: centres-
of-mass distance and O–H bond distance. These results are first compared, after which
the performance of FTST is compared to trajectory calculations. To be clear, I made the
FTST and trajectory calculations in this thesis only to explore the features of FTST and
see how much it overestimates the trajectory result. The results are not found in any of
the publications. I wrote the codes myself and they are freely available for inspection and
use (https://github.com/ttpekkan/git, folders FTST and TRAJECTORY). The final
results are are given below (see Appendix B for details).

k(β, r) =
Qcons(β)

Qreact(β)

25π4

β3h5

∫ π

0

|A′|
1
2 e−βV dθ (3.5)

k(E, r) =
24π4

νharmh5ρreact(E)

∫ E

0

∫ π

0

|A′|
1
2u (E − ε− V ) (E − ε− V )2 dθdε (3.6)

k(E, J, r) =
2

9
2J2π2

νharmh6ρreact(E, J)

∫ E

0

∫ π

0

|Z|−
1
2 ... (3.7)

...

(∫ 2π

0

∫ π

0

u (E − ε− Erot − V ) (E − ε− Erot − V )
1
2 sin(ν)dνdη

)
dθdε
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Here k(β, r) is the canonical (high-pressure) rate coefficient, k(E, r) is the microcanonical
rate coefficient, and k(E, J, r) is the EJ-resolved microcanonical rate coefficient. The
optimal dividing surface is located at the reaction coordinate r value that minimises the
rate coefficient expressions. The derivation of k(β, r) and k(E, r) follows exactly the one
given for k(E, J, r) in the appendix, except that Jx, Jy, Jz are integrated from −∞ to
∞ (one can start from equation B.39). This leads to simpler expressions, but angular
momentum conservation is ignored. The expression for the rotational energy is

Erot =
J2

2

([
sin2(η)

Ixx
+

cos2(η)

Iyy

]
sin2(ν) +

cos2(ν)

Izz

)
. (3.8)

The location of the dividing surface can be optimised against any of the three expressions.
For the canonical expression, the TS location is optimised at each temperature and this
is called canonical optimisation. In microcanonical optimisation, the TS location is op-
timised at each E to obtain k(E), but angular momentum conservation is not considered.
The canonical rate coefficient is then obtained from

k(β) =
1

Qreact(β)

∫ ∞
0

ρreact(E)k(E)e−βEdE . (3.9)

Finally, in EJ-resolved microcanonical optimisation the optimal TS location is sought for
each E and J . This is the most expensive of the calculations, but yields the lowest (best)
result. After k(E, J) is obtained, the canonical expression is acquired by integrating over
E and J ,

k(β) =
1

Q(β)react

∫ ∞
0

∫ ∞
0

ρreact(E, J)k(E, J)e−βEdJdE . (3.10)

The results yielded by the different optimisation schemes are shown in Fig. 11. Sensible
ordering is seen. The canonical and EJ-microcanonical give the worst and best result,
respectively, as they should. The microcanonical approach gives only slightly worse results
than EJ-microcanonical, but is much faster. The figure also shows how the reaction-
coordinate choice (centres-of-mass vs. O–H bond distance) affects the calculated rate
coefficient. Here the centres-of-mass reaction coordinate performs better, presumably
because the system is very small, but this is not true in general.

As is often the case for barrierless reactions, a centrifugal barrier dominates the kinetics
at low energies (or temperatures) and the TS is quite far away (see Fig. 12). 42 At suffi-
ciently far separations the interaction potential is essentially isotropic, and the problem
reduces to an atom-atom reaction, for which analytical solutions exist. If the long-range
potential is of the form Cr−6, then the temperature dependence of the capture rate will be
proportional to T

1
6 and positive temperature dependence is expected.42 The emergence of

negative temperature dependence is due to the TS shifting from the outer to the inner one.
In a microcanonical setting some k(E, J)-values correspond to the outer and others to
the inner TS, and temperature only affects how they are weighted. This is why a smooth
canonical rate coefficient is observed in the microcanonical and EJ-microcanonical ap-
proaches. In the canonical optimisation the TS location changes “in one go” and causes
the kink seen in the curve. The eventual shift back to positive temperature dependence is
not very intuitive, but it can be rationalised in terms of conventional TST. At relatively
low temperatures, enthalpic effects dominate and the value of the TST expression will be
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Figure 10: The analytical potential energy surface reported by Harding, Troe, and Ush-
akov41 for the H• + O2 −−→ HO2

• reaction. Also shown are example trajectories run at
E = 5.65 · 10−22 J and J = 5.04 · 10−34 Js (see Appendix C). The dividing surface is
located at r = 5.41 · 10−10 m.
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Figure 11: Canonical H• + O2 −−→ HO2
• rate coefficients. The upper figure shows how

the optimisation scheme affects the result. The lower figure shows how much EJ-FTST
overestimates the trajectory result. Also shown are the trajectory results obtained by
Harding, Troe, and Ushakov on the same potential.41
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governed by the exponential term exp(−∆rE
‡
0/RT ). The reaction is barrierless, so the ex-

ponent is positive and increasing temperature makes the exponential term smaller. Thus,
negative temperature dependence is expected. At higher temperatures, the exponential
term does not matter as much and the TST expression is governed by the pre-factor. The
partition function of the tight inner TS is likely to have significantly stronger temperature
dependence than that of the reactants. The centres-of-mass motion and relative rotation
of the diatom are effectively free at long separations, but become constrained by the po-
tential at short separations. That is to say, over the course of the reaction a translational
and a free-rotor partition function become vibrational partition functions.

I also tested how much the EJ-FTST-approach overestimates the “true” rate coefficient
by performing trajectory calculations (see Appendic C). The calculations were run on
the same potential, except that the diatom vibration was included. The Harding-Troe-
Ushakov (HTU) potential is two-dimensional, so I used the harmonic frequency of O2

(4.74 · 1013 s−1) to create a three-dimensional PES

V (r, R, θ) = VHTU(r, θ) + 2µRπ
2ν2

harm(R−Req)2 . (3.11)

There is no potential coupling between the harmonic and the other modes in this potential,
but kinetic coupling is included in the calculations. The aim here is to compare FTST to
trajectories, so the details of the potential are not important. A fully classical approach
was chosen to make the TST-trajectory comparison as straight-forward as possible. This
way I did not have worry about zero-point energy effects or if quantum effects were
consistently treated in both calculations (the FTST calculations were also fully classical).
The trajectories were used to determine a recrossing factor

χ(E, J) =
Nnorecross

Nnorecross +Nrecross

, (3.12)

where Nnorecross and Nrecross are the number of trajectories that cross the EJ-FTST divid-
ing surface only once and more than once, respectively. This correction factor was then
used to compute a dynamically corrected canonical rate coefficient from

k(β) =
1

hQ(β)react

∫ ∞
0

∫ ∞
0

χ(E, J)N ‡FTST(E, J)e−βEdJdE . (3.13)

The results of the trajectory calculations are shown in figures 11 and 13. According to
the results, EJ-FTST overestimates the “true” rate coefficient only by 5 − 10 % at tem-
peratures above 50 K. At lower temperatures the agreement is worse because a significant
number of trajectories that cross the outer TS get reflected by the inner one (see Fig.
13). However, even here the performance of EJ-FTST is not that bad. Furthermore,
poor performance at very low temperatures is of little practical relevance, as the classical
assumptions behind both trajectory and TST calculations do not apply there. Figure 11B
also shows the trajectory results reported by Harding, Troe, and Ushakov. 41 The results
overlap at high temperatures, but begin to diverge at lower temperatures. One obvious
explanation for the disagreement is that they treated the diatom as a rigid body in their
trajectories, whereas I assumed it was a classical harmonic oscillator. Another possible
source of disagreement is inconsistencies in initial-condition sampling.
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Figure 12: This figure depicts the optimum transition state location as a function of E
and J and shows how the TS state sum N ‡(E, J) changes with E and J .
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Figure 13: The upper figure shows how the ratio of reactive to total trajectories
changes with E and J . The lower figure depicts the recrossing factor (χ(E, J) =
Nnorecross/(Nnorecross +Nrecross)) as a function of E and J (see main text for details).
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3.3 Laplace Transforms

Sometimes a problem is easier to solve in microcanonical/canonical space but the answer is
needed in the other. Laplace and inverse Laplace transforms (ILT) provide a convenient
way to transform between the spaces. For example, in a canonical ensemble the total
partition function of a system where some degrees of freedom are decoupled can simply
be expressed as the product of the partition functions of the uncoupled degrees of freedom,
whereas in a microcanonical ensemble the total density of states needs to be expressed as
a convolution,

QA,B(β) = QA(β)QB(β) ρA,B(E) =

∫ E

0

ρA(ε)ρB(E − ε)dε . (3.14)

Since

QA,B(β) =

∫ ∞
0

ρA,B(E)e−βEdE = L[ρA,B(E)] (3.15)

(L is used to denote the Laplace transform operation) and if QA,B(β) is known, it may be
simpler to evaluate ρA,B(E) as the ILT

L−1[QA,B(β)] = ρA,B(E) . (3.16)

Laplace transforms also provide a way to obtain the canonical TST rate coefficient from its
microcanonical equivalent. If the canonical rate coefficient of a bimolecular A+B −−→ AB
reaction is expressed in modified Arrhenius form,

krec(β) = A

(
β0

β

)m
e−βE

′
a , (3.17)

then applying the ILT technique yields the following J-averaged expression for the state
sum of the TS:

N ‡(E)J =
Ahβm0

Γ (m+ 3
2
)

(
2πµ

h2

) 3
2
∫ E

0

u(ε+ ∆rE−E ′a)(ε+ ∆rE−E ′a)m+ 1
2ρA,B,rovib(E− ε)dε .

(3.18)
The RRKM-expression can then be used to obtain k(E)J . Here µ is the reduced mass of
the recombining fragments. The expression above has been derived by Davies et al.43 A
derivation is also given in Appendix D.

As mentioned before, for barrierless reactions the location of the TS often depends strongly
on E and J , and variational approaches are prohibitively costly for larger systems. If the
canonical rate coefficient for such a reaction is known approximately from experiments,
the ILT technique provides handy way of obtaining N ‡(E)J . In the case of barrierless
reactions, the Arrhenius expression is typically given for the recombination rather than
the dissociation reaction. The reason for this is that unimolecular dissociation reactions
have strong temperature dependencies. Therefore, it is difficult to measure kdis(β) over
a wide temperature range, and a modified Arrhenius fit performed on experimental data
over a narrow temperature range probably does not extrapolate well to temperatures be-
low and above those that were studied. The reliability of the ILT approach to obtain
k(E)J is heavily dependent on how well the modified Arrhenius expression is able to
capture the temperature dependence of the canonical rate coefficient. Barrierless recom-
bination reactions typically have much weaker temperature dependencies.43 Thus, one is
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generally able to perform experiments over a wider temperature range. Furthermore, the
Arrhenius expression that is fitted to the experimental data should extrapolate better to
temperatures outside the experimental range than in the unimolecular case. The main,
perhaps the only, drawback of the ILT approach is that a modified Arrhenius expression
is probably not flexible enough to capture the temperature dependence of the canonical
rate coefficient of most reactions over very wide temperature ranges.

In our work, we have relied almost entirely on the ILT approach to obtain state sums
for loose TSs. The alternative, VRC-TST or FTST,7,8 is costly and contains an assump-
tion (recombining fragments are treated as rigid) that becomes worse as the size of the
associating fragments increase. We have used the MESMER program36 in our ILT calcu-
lations. Whilst our measurements are typically not at the high-pressure limit, there are
automated fitting routines in MESMER that can be used to adjust the modified Arrhe-
nius equation parameters to obtain optimal agreement with experiment. Using the ILT
approach together with experimental data has the advantage that angular momentum
effects are automatically considered. Even recrossing effects are indirectly included. A
disadvantage of fitting the modified Arrhenius parameters is that the fit will also try to
compensate for intrinsic errors that are in the computational models.

3.4 Symmetry Numbers

One cannot be too careful with symmetry numbers. For example, the symmetry numbers
for t-butyl, molecular oxygen, and t-butylperoxyl are 162, 2, and 81, respectively. If one
were to ignore symmetry numbers when calculating the t-C4H9

• + O2 −−→ t-C4H9O2
•

rate coefficient, one would be making a factor four error in the calculation. The origin
of the problem is that identical particles are indistinguishable in quantum mechanics.
The total wave function of a molecule needs to remain unchanged or change sign upon
exchanging identical bosons or fermions, respectively. For example, in O2 the nuclei are
bosons. This means the total wave function must be symmetric. Since for ground-state O2

the electronic wave function is antisymmetric and vibrational wave function symmetric,
the rotational wave function must be antisymmetric. Thus, only odd rotational states are
permitted. For a discrete system, the partition function is defined as

Q(β) =
∑
i

e−βEi , (3.19)

so one can see that O2 is missing half of the terms in the sum. In practice, people compute
partition functions without explicitly considering symmetry factors and apply a symmetry
number in the end. For O2, all terms would be added and the final result then divided
with a rotational symmetry number of two.

Although this is a quantum mechanical phenomenon, an expression for the correct sym-
metry number that needs to be applied for a given reaction can be derived classic-
ally.44 Classical mechanics overestimates partition functions because identical particles
are treated as distinguishable (H1, H2, H3, and so on) and all “distinct” conformations
contribute to the configurational integral. However, this overestimation will be the same
for both the reactant and the transition state, so it ends up cancelling out in the TST
expression.
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A symmetry number is needed even in classical evaluations of configurational integrals
because the evaluations are typically performed in internal coordinates. Integrating over
internal coordinates might not cover all the different ways in which equivalent nuclei could
be labelled, so a symmetry number is introduced to correct for this undercounting. If a
molecule has one or more sets of equivalent nuclei, the total number of ways in which the
nuclei can be arranged is

∏
i ni!. In general, some of these arrangements can be accessed

by internal and external rotations, and integrating over the coordinates that correspond
to these rotations will count the contributions from such arrangements. If σ of the total
number of possible arrangements can be accessed by internal and/or external rotations,
the total number of rotationally distinct conformers that contribute to the configurational
integral is

1

σ

∏
i

ni! . (3.20)

For example, methane would altogether have

1

12
· 24 = 2 (3.21)

(classically) distinct but equivalent conformers.

If the studied molecule is chiral and one deals with racemic mixtures, the contributions
from optical isomers to the configurational integral can be included in the symmetry
number,

m

σ

∏
i

ni! . (3.22)

Here m is the number of optical isomers.

Transition states and reactants will, of course, have the same number of equivalent nuclei,
so the overall symmetry number needed in rate coefficient calculations is

σtot =
m‡

σ‡

∏
i ni!

m
σ

∏
i ni!

=
m‡σ

mσ‡
. (3.23)

For example, in the t-butyl example we have (the TS shares the symmetry of the peroxyl
adduct)

σtot =
1 · 2 · 162

1 · 1 · 81
= 4 . (3.24)

In the peroxyl adduct, all four internal rotations have a symmetry number of three (34 =
81) and there is no external rotational symmetry. For t-butyl there are three internal
rotations with a symmetry number of three, a three-fold external rotational symmetry,
and the umbrella motion has a symmetry number of two (33 · 3 · 2 = 162). As mentioned
before, O2 has a rotational symmetry number of two.

Whilst this may seem straight-forward here, it is anything but. Once one moves to consider
large and floppy molecules, the situation becomes complicated very quickly. Particular
care is needed for multi-dimensional internal rotations.45 Automatic determination of
symmetry numbers is still an outstanding problem for those looking to automate rate
coefficient calculations.
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3.5 Torsional Coupling

With increasingly fast computers and better quantum chemistry methods, barrier heights
are no longer necessarily the main source of uncertainty in rate coefficient calculations.
The quality of partition functions matter too, especially at higher temperatures. One-
dimensional (decoupled) torsional treatments are routinely employed, but accurate work
may require multi-dimensional treatments. There are many ways to tackle this problem 46

and here I present the one implemented in MESMER.47 The approach is very similar in
spirit to FTST and could probably be further developed to include angular momentum
effects.

The modes in the molecule are first divided to internal rotors and those for which the
harmonic approximation is a good one. It is assumed that these mode groups are not
coupled. The internal rotors may couple with each other and external rotation, and the
kinetic energy for the coupled system is

2T =
(
ω q̇int

)(I CT

C I int

)(
ω
q̇int

)
= Q̇

T
AQ̇ . (3.25)

Here ω = (ωx, ωy, ωz), I is the moment of inertia tensor, C contains the coupling terms
between internal and external rotations, and I int are the inertial moments about a given
bond and their coupling terms. The expression can be manipulated similarly to the flux
expression in the FTST-derivation (see Appendices B and E) to obtain the partition
function for the coupled system,

Q(β) = 8π2

(
2π

βh2

)n
2
∫
|A|

1
2 e−V (qint)βdqint . (3.26)

The ILT technique is then used to obtain the density of states,

ρ(E) = 8π2

(
2π

h2

)n
2 1

Γ (n
2
− 1)

∫ E

0

∫
(E − ε)

n
2
−2u(ε− V (qint)|A|

1
2 dqintdε . (3.27)

The inner integral is solved with Monte-Carlo techniques in MESMER. The real trick in
this approach is to obtain the matrix elements for A, which is a daunting task for long-
chained alkanes with many internal rotations. An algorithm to systematically obtain the
elements has been presented by Gang et al.47

The present implementation in MESMER does not take potential coupling into account.
The potential is specified as a sum of individual hindered rotor potentials. However,
if relaxed scans are used to obtained these, part of the coupling will be included. In
addition, the treatment is fully classical and zero-point contributions will effectively be
double-counted if care is not taken. When we use this method, we estimate the ZPEs of
the hindered rotors with one-dimensional quantum methods and then subtract these from
the energy of the species. This gives the wrong result at cold temperatures, but converges
to the correct result at higher temperatures.

3.6 The Master Equation

The chemical master equation is a powerful technique that is used to model reactions
that occur over multiple interconnected potential energy wells. Here I will follow a recent
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introduction given by Struan Robertson.1 Only the one-dimensional case (no explicit
treatment of angular momentum) is considered as generalisation to two dimensions is not
complicated. In a chemical ME problem, one specifies sets of rovibrational states for each
species and then simulates the population of these states as a function of time (see Fig. 14).
Collisions move a species up or down its rovibrational states and chemical reactions from
one well to another. The probability to react or be collisionally activated/deactivated
depends only on the current state of the system and not on its past (the process is
Markovian). Simulations are typically run under dilute conditions to ensure that pressure
and temperature remain constant (this is common in experiments too). If a bimolecular
reaction is included, it is generally turned into a pseudo-first-order reaction. The time
derivative of the probability distribution function of energy for species i is given by

∂p(Ei, t)

∂t
=

∫ ∞
Ei,0

ω(Ej)P (Ei|Ej)p(Ej, t)dEj − ω(Ei)p(Ei, t)−
M∑
k 6=i

kki(Ei)p(Ei, t)

+
M∑
k 6=i

kik(Ej)p(Ej, t)− kdis,i(Ei)p(Ei, t)− kredis,i(Ei)p(Ei, t)

+ kredis,iK
ρ(Ei)e

−βEi

Qi(β)
nRnO2 . (3.28)

The first term on the right-hand side models the probability of gaining population by
activating/deactivating collisions, the second term is the loss due to collisions, the third
and fourth sums represent the loss and gain by isomerisation reactions, the fifth term is
the loss due to irreversible dissociation reactions, and the last two terms are the loss and
gain due to recombination and redissociation reactions, respectively. In the expression
above it has been assumed that there is only a single bimolecular source and irreversible
loss channel. There can, of course, be multiple such channels and modifying the above ex-
pression to accommodate these is straight-forward. Here ω is the Lennard-Jones collision
frequency

ω = σ2
AM

(
8π

kBTµAM

) 1
2

pΩ
(2,2)
AM (3.29)

and is assumed to be energy-independent. The collision integral Ω
(2,2)
AM is calculated by

the method of Neufeld et al.48 using knowledge about εAM. Here σAM and εAM are the
arithmetic-mean Lennard-Jones parameters, µAM is the reduced mass of the colliding pair,
and p is pressure. For the recombination reaction, it assumed that the reactants are always
Boltzmann-distributed, the idea being that non-reactive collisions are far more numerous
then reactive ones for bimolecular reactants under typical conditions. The standard model
for the collisional transition probability P (Ei|Ej) is the exponential-down model,

P (Ei|Ej) = A(Ej)e
−

Ej−Ei
〈∆E〉down , (3.30)

where the average energy transferred downward is usually given the temperature-dependent
expression

〈∆E〉down = 〈∆E〉down,300 K

(
T

300 K

)n
. (3.31)

A(Ej) is a normalisation factor and n is a number that governs the temperature depend-
ence of 〈∆E〉down. The energy transferred in activating collisions is obtained by applying
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Figure 14: A crude sketch of a three-well chemical problem. Taken from Glowacki et al.36

with permission.

detailed balance

P (Ei|Ej)ρ(Ej)e
−βEj = P (Ej|Ei)ρ(Ei)e

−βEi . (3.32)

Figure 15 shows how average energies transferred in collisions between helium and 1,3-
dimethylallylperoxyl (V) behave as a function of temperature. One can see from the
figure that collisions, in general, are weak and multiple collisions are typically needed to
excite a molecule that is deep in a well to a reactive state. The single-exponential down
model is used due to its simplicity, but trajectory calculations suggest that models with
longer “tails” (a double-exponential model, for example) are needed for more accurate
work.49

In practical work, the nearly-continuous rovibrational energy states are binned into finite-
sized grains with mean energies εi. These grains can be represented with delta functions.
With this, the probability to go from grain j to i in a deactivating collision becomes

Pij =

∫ ∫
A(Ej)e

−
Ej−Ei
〈∆E〉down δ(Ej − εj)δ(Ei − εi)dEjdEi (3.33)

= Aje
−

εj−εi
〈∆E〉down . (3.34)
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Equation 3.28 is now

dpi(t)

dt
= ω

m∑
j=1

Pijpj(t)− ωpi(t)−
M∑
k 6=i

kkipi(t)

+
M∑
k 6=i

kikpj(t)− kdis,ipi(t)− kredis,ipi(t)

+ kredis,iK
ρ(Ei)e

−βEi

Qi(β)
nRnO2 . (3.35)

The microcanonical ratecoefficients (k) are typically obtained from microcanonical TST
(RRKM). For barrierless reactions, they can be obtained from VRC-TST, FTST, or by
exploiting the ILT technique.

This set of coupled-differential equations can be more compactly expressed as

dp

dt
= Mp , (3.36)

where p is the population vector and M is the transition matrix which describes the colli-
sional and reactive loss and gain for each grain. This is a standard matrix diagonalisation
problem with a solution

p(t) = UeΛtU−1p0 , (3.37)

where p0 are the initial populations, U is the right eigenvector of M and Λ is a diagonal
matrix that contains its eigenvalues (MU = UΛ).

To obtain the time-dependent population of species A, one first sums the grains contrib-
uting to A and differentiates the result,

xA(t) =
∑
i∈A

pi(t) (3.38)

dxA

dt
=
∑
i∈A

dpi(t)

dt
(3.39)

=
∑
i∈A

(Mp)i (3.40)

=
∑
i∈A

(UΛU−1p)i . (3.41)

As Λ is diagonal, in component form

dxA

dt
=
∑
i∈A

∑
l

∑
j

UilλlU
−1
lj pj . (3.42)

By defining ZAl =
∑

i∈A Uil we get

dxA

dt
=
∑
l

ZAlλl
∑
j

U−1
lj pj (3.43)

=
∑
l

ZAlλlcl , (3.44)
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from which one can see that cl =
∑

j U
−1
lj pj, or

p = Uc . (3.45)

By comparing equation 3.44 and 3.38, one can deduce that

xA(t) =
∑
l

ZAlcl . (3.46)

A more general expression for the mole fractions is given by

x = Zc , (3.47)

from which c can be solved if Z is invertible. Z is a matrix in which the elements of all the
eigenvectors that correspond to each of the species have been summed.50 In general, it is
not a square-matrix. To make progress, it is necessary to think about the chemistry of the
situation. At very short time-scales, it is obvious that the time-evolution of the system
must depend on initial conditions. However, as chemists we know that rate coefficients are
transferable, so clearly the long-time behaviour cannot be sensitive to initial conditions. It
has been discovered that for a system with n wells, there will, in general, be n eigenvalues
that are much smaller in magnitude than the rest. These small eigenvalues have been
coined chemically significant eigenvalue (CSEs) and describe the long-time behaviour of
the system. The rest are larger in magnitude and have been termed internal energy
relaxational eigenvalues (IEREs) as they describe time-dependence of the energy transfer
process. Being large in magnitude, their contribution to the time-dependent mole fractions
quickly decays to zero. The separation between CSEs and IEREs was exploited early on
by Bartis and Widom,51 and their approach can be used to truncate equation 3.44 to
only contain terms associated with the CSEs. After the truncation, many elements in c
will be zero and only the terms in Z which operate on the non-zero elements will matter.
This effectively turns Z into a square matrix, which can then be inverted to obtain c.
Substituting Z−1x into 3.44 results in the following differential equation system:

dx

dt
= ZΛ′Z−1x (3.48)

= Krx . (3.49)

Here Λ′ is a diagonal matrix that only contains the CSEs. The matrix Kr is clearly time-
independent because there is no time-dependence in its elements. Nor is there dependence
on initial conditions. The elements of the matrix are rate coefficients that connect each
of the wells to each other well. This analysis is called the Bartis-Widom (BW) analysis
in the literature. Note that the wells need not be directly connected. Rate coefficients
to non-adjacent wells are called called well-skipping and they are not an artefact of the
calculations. Contributions from such reactions can be experimentally detected.16,52

A thumb rule has been that if IEREs and CSEs are separated by at least an order of
magnitude, then the BW analysis is reliable and the phenomenological time-evolution
predicted by the BW rate coefficients should closely match that given by the ME model.
When they are not separated by an order of magnitude, one must look carefully at the
results. One sign that the BW-analysis fails, at least partly, is that some rate coefficients
become negative. Note that the failure of the BW-analysis is not a failure of ME model
itself. The traces (species concentration versus time) are still valid and can be compared
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with experiment. In fact, one could say the failure of the BW-analysis is evidence of the
failure of the rate coefficient approximation itself . When temperature is increased, the
potential energy surface matters less and less and distinctions between species become
less obvious. If two species re-equilibrate almost instantly after some perturbation (a
reaction), one could argue that the two are effectively a single species. From general
chemistry courses we are familiar with the pre-equilibrium mechanism, where the

A
fast−−⇀↽−− B

slow−−→ C (3.50)

reaction system yields a single phenomenogical A −−→ C rate coefficient if the A −−⇀↽−− B
equilibrium is fast and favours A. One might ask if it would be better to view A and B
as a single species. In case of rotamers, master equation modellers intuitively know to
combine the different “species” into a single one. One ME code, MESS, has a feature that
allows the users to merge wells as needed.53

Our experience with the BW-analysis is that it is quite robust and often works even after
IEREs and CSEs begin to converge, at least for the important rate coefficients (those
that affect the time-evolution of the system the most). Figure 16 shows that BW-analysis
still gives the correct result even at 4500 K for the propargyl + O2 system (see reactions
R1 and R2 or Fig. 27 for details about the reaction mechanism). The high-temperature
kinetics of the system is determined by the well-skipping C3H3

• + O2 −−→ HCO• +
C2H2O reaction, and in the figure one can see that the rate coefficient for this reaction is
k = −λ1/[O2]. Manual inspection of high-temperature C3H3

•-traces confirms that they
are single-exponential, with λ1 giving the time constant of decay.

To further investigate the issue, I have compared the phenomenological evolution predicted
by the BW rate coefficients to the direct results of a ME simulation. All of the population
at time zero was placed on one of the peroxyl adducts, Int1p. These results are plotted in
Fig. 17. The results confirm many of the observations made in the previous paragraph. At
400 K and when the initial conditions are Boltzmann, the BW- and ME-time-evolutions
are in perfect agreement. This is expected since CSEs and IEREs are well-separated. Even
when seriously non-equilibrium initial conditions are set, a Boltzmann distribution that
corresponds to T = 1000 K, the long-term behaviour of the system remains unchanged.
Note that BW rate coefficients are independent of initial conditions (that is the whole
point!) and so cannot capture short-time behaviour caused by non-equilibrium initial
conditions. As mentioned in the last paragraph, the BW rate coefficients predict the
correct behaviour even at 4500 K, long after two of the three CSEs have converged with
IEREs. However, one cannot confidently say that this means that all the rate coefficients
are valid, it may be the case that just a few of kinetically important ones are. In fact, the
disagreement at short time-scales perhaps indicates that some of the BW rate coefficients
are not valid. The steady-state concentrations are correctly predicted, but this could just
be a consequence of the matrices M and Kr obeying detailed balance. That said, these
matrices are guaranteed to obey detailed balance only for conservative systems (no sinks);
no such guarantee exists for non-conservative systems (like the one studied here). 1

The BW-analysis is useful because it provides a way to compare experimental and ME
results. Experimentalists typically report rate coefficients (not kinetic traces). However,
sometimes a rate coefficient description of a system is difficult to define (either exper-
imentally or through the ME), and in these cases the only option left is to compare
experimental and modelled traces. In many ways, this is actually desirable, as a more dir-

42



ect comparison with experiments and computations is performed. This also obviates the
need for the experimentalist to come up with a kinetic mechanism from which a suitable
fitting function can be derived.

Recently, a trace fitting feature has been implemented in MESMER.37 This provides a
very convenient way of doing global parameter fitting. It permits the use of experimental
data in parameter optimisation under conditions where the BW-analysis has begun to fail.
There are also other advantages. In the past, we have had problems in simultaneously
fitting well-depths and 〈∆E〉down parameters since these are very often coupled. Increasing
one can be compensated by lowering the other. This can lead to looping behaviour
that yields unphysical results. This problem is avoided with trace fitting if the traces
contain information about equilibrium concentrations, which are independent of collisional
energy transfer parameters, but quite sensitive to well-depths. The error function that is
minimised in trace fitting is

χ2 =
n∑
i=1

wi

mi∑
j=1

(
yij,exp(t, p, T )− yij,ME(t, p, T )

σij

)2

, (3.51)

where yij(t, p, T ) is jth point of trace i at time t, wi is the weight given to trace i, n is the
number of traces, and mi is the number of points in trace i. The error σij associated with
each trace point is assumed to be constant if it is not known. The weights wi that should
be given for each traces are usually not known and MESMER can be used to approximate
them from

wi =
1/s2

i
1
n

∑n
j 1/s2

j

, (3.52)

where si is obtained from an unweighted fit and is defined as

s2
i =

1

mi − 1

mi∑
j=1

(yij,exp(t, p, T )− yij,ME(t, p, T ))2 . (3.53)

Weights defined this way reduce contributions from noisy and/or outlier data.

The difference between traditional rate coefficient and trace fitting workflows is outlined
in Fig. 18.
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dark yellow line terminates abruptly because the rate coefficient became negative at low
temperatures due to numerical problems. Unpublished results
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Figure 18: Algorithms for rate coefficient (A) and trace (B) fitting. Taken from Medeiros
et al. with permission.37

3.7 Summary of Quantum Chemical Computations

This section outlines how the quantum chemical computations presented in the articles
were performed. The focus is on which methods were used and why; the theoretical
underpinnings of the methods will not be discussed to limit the scope of the thesis. All
the calculations were performed with publicly available codes, Gaussian and ORCA.54,55

The aim of the calculations was to obtain chemically accurate (∼ 4 kJ mol−1) relative
energies at a reasonable cost. Typical wall times of the most expensive computations were
2–3 days with around 30 cores.

Nearly all of the studied species are too large to be optimised with high-level wave func-
tion methods, so density-functional theory (DFT) was used instead. The functional and
basis set we opted to use were MN15 and Def2TZVP, respectively.56,57 We felt this was
a reasonable compromise between accuracy and cost. The MN15/Def2TZVP method
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was also used to obtain harmonic frequencies and evaluate one-dimensional hindered ro-
tor potentials. The harmonic frequencies were scaled by 0.979 to approximately account
for anharmonic effects.58 Single-point energies were mostly calculated with the coupled
cluster method with single-, double-, and perturbative triple-excitations using a restricted
open-shell Hartee-Fock reference wave function (ROHF-CCSD(T)).59 The correlation con-
sistent cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets were used in these calculations.60 HF
energies were extrapolated to the complete basis set (CBS) limit using a three-parameter
exponential function,

EHF(X) = EHF,∞ +BHFe−αHFX . (3.54)

Here X = 2, X = 3, or X = 4 are for the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets,
respectively.61 The CBS limit of the slower converging correlation energy was estimated
using a power function62

Ecorr(X) = Ecorr,∞ +BcorrX
−αcorr . (3.55)

The parameters α, B, and E∞ are obtained in both cases by solving a system of three
equations. For some of the larger systems (more than six heavy atoms), ROHF-CCSD(T)
calculations were prohibitively expensive. In these cases we used the more approximate
ROHF-DLPNO-CCSD(T) method that is implemented in ORCA.63,64

For some species there were reasons to suspect that single-reference treatments were not
suitable (high T1 diagnostic values,65 for example), and in these cases we also performed
complete active space perturbation theory (CASPT2) calculations. The CBS CASPT2
energy differences were estimated using the formula66

∆Einf = ∆Ecc−pVQZ − (∆Ecc−pVTZ −∆Ecc−pVQZ)
44

54 − 44
. (3.56)

A different extrapolation scheme had to be used in the multi-reference calculations as
there are no HF or correlation energies.

ROHF wave functions were used because many of the key transition structures were
spin contaminated with unrestricted methods. Examples of this are given in the sup-
plemental material of (IV). For species in which spin contamination was not an issue,
UHF- and ROHF-CCSD(T) calculations generally agreed to within two kJ mol−1. In
(IV) ROHF-CCSD(T) and ROHF-DLPNO-CCSD(T) energies were also compared. The
energies usually agreed to within four kJ mol−1, but only for species that do not exhibit
multi-reference character. Thus, we expect the ROHF-DLPNO-CCSD(T) energies to be
reliable for the larger species we have studied, provided that they are well-described by
single-reference treatments.
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4 Results and Discussion

4.1 Trace Fitting

Since trace fitting is a relatively recent feature, we decided to test whether it and the
more traditional rate coefficient fitting give equivalent results for a simple system. We
did the test for the 2-methylallyl + O2 reaction (IV). The potential energy profile for
the reaction is presented in Fig. 19. Although the system looks fairly complex, the

Figure 19: Potential energy profile for the 2-methylallyl + O2 reaction.
The energies are in kJ mol−1 (ROHF-CCSD(T)/CBS//MN15/Def2TZVP or
CASPT2/CBS//MN15/Def2TZVP). Figure taken from (IV).

barriers are sufficiently high that under our experimental conditions we only observe the
initial recombination reaction and its redissociation back to reactants. Thus, the reaction
mechanism simplifies to

C4H7
• + O2

kf−−⇀↽−−
kb

C4H7O•

C4H7
• kw1−−→ wall

C4H7O2
• kw2−−→ wall .

Here the rate coefficients kf , kb, and kw2 can be obtained from double-exponential fits to
traces35 and kw1 was measured separately. In the ME-fits, single-exponential down and
ILT parameters were fitted simultaneously with the well-depth of C4H7O2

•. The fitting
results with the rate coefficient and trace approaches are reported in Table. 3.

As one can see, very consistent results are obtained. All of the optimised well-depths
are close to the computed value of −81.12 kJ mol−1 and are within computational uncer-
tainties. The only parameter that shows some disagreement is the Arrhenius pre-factor,
which in our case is the canonical recombination rate coefficient at 300 K. However, we
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are trying to obtain the canonical rate coefficient from low-pressure data, so some uncer-
tainty is expected. That said, when the fall-off curve of the recombination rate coefficient
is plotted, the trace values for A appear more reasonable. The fall-off curve is shown in
Fig. 21. This figure also shows the experimental equilibrium constant plotted together
with those obtained from computations and fitting. Figure 20 gives examples of measured
and modelled traces.

Table 3: Optimised master equation model parameters using different fitting approaches.
The reported errors are standard errors (1σ).

Parameter Rate Coefficient Fit Unweighted Trace Fit Weighted Trace Fit

A (10−12 cm3 s−1) 1.95 ± 0.06 2.46 ± 0.44 2.42 ± 0.35
m -0.727 ± 0.086 -0.351 ± 0.387 -0.387 ± 0.318

〈∆E〉(He)
down,300 K (cm−1) 146 ± 3 139 ± 10 144 ± 11

n 0.0746 ± 0.1131 0.100 ± 0.216 0.0235 ± 0.363
∆rH

	
0 (kJ mol−1) -79.75a ± 0.11 -79.44 ± 0.05 -79.51 ± 0.09

〈∆E〉(N2)
down,300 K (cm−1) 353± 7 339± 45 336± 57

a Fixed to the third-law analysis value (see V).
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4.2 Reactions of Allylic Radicals with Oxygen Molecules

Allyl is the simplest RSHR encountered in combustion and it reacts very slowly with O2

at high temperatures (4.2 · 10−19 cm3 s−1).13 Four-carbon allylic radicals also appear to
react very slowly (IV,67). Interestingly, Baldwin et al.14 have observed faster reactivity
for five-carbon allylic radicals. This is an important finding because pentenes are often
used as surrogate fuels to mimic the behaviour of alkenes present in real fuels. However,
they performed their measurements quite long ago, at a single temperature, and there
has been no experimental or computational work to corroborate their findings. In fact,
our computations in a relatively recent study (X) predicted relatively low reactivity for 3-
ethylallyl (CH2 – – ––CH – – ––CH–CH2 –CH3). Since then, we have performed high-temperature
experiments for three five-carbon allylic radicals,

CH2 −−−−CH−−−−CH−CH2−CH3 + O2 (4.1)

CH3−CH−−−−CH−−−−CH−CH3 + O2 (4.2)

CH2 −−−−CH−−−−C(CH3)2 + O2 , (4.3)

(3-ethylallyl, 1,3-dimethylallyl, and 1,1-dimethylallyl, III, V, XII) and measured rate
coefficients very similar to those obtained by Baldwin et al.14 The key to their relatively
high reactivity is that the conjugate-alkene-channel (R• + O2 −−→ R−H + HO2

•) does in
fact form a conjugated diene! Conjugated dienes are more stable than regular alkenes
because of delocalisation between the π-bonds (resonance stabilisation). This additional
stabilisation is, to a degree, present in the formally-direct transition state, thus lower-
ing its energy relative to the peroxyl adduct. The R• + O2 −−→ R−H + HO2

• reaction is
called formally-direct because the abstraction of H and dissociation of HO2

• happens sim-
ultaneously; there is no R−HOOH intermediate. The five-carbon allylic systems also have
slightly deeper RO2

• wells than allyl (∼ 10 kJ mol−1 deeper), and the alkyl-substituent
effects that make the wells deeper also lowers the energy of the formally-direct TS with
respect to the energy of the separated reactants. The formally-direct TSs end up being
just 5− 20 kJ mol−1 above the energy of the reactants. The conjugate-alkene channel is
not present in allyl and 2-methylallyl, which likely explains their low reactivity at high
temperatures. For 1-methylallyl it is present, so it is a bit perplexing that Knyazev and
Slagle did not see any reactivity at high temperatures.67 A possible explanation for this
is that the formally-direct TS’s energy is very sensitive to structural effects and removing
a methyl group may substantially increase the barrier height.

The expected high-temperature products, the conjugated dienes, were observed in all of
our experiments. Unfortunately, photolysis of the brominated precursors also form the
dienes, so it was hard to confirm that the formation rates of these dienes matched the
decay rate of the radicals. It also appears that they are formed though some secondary
chemistry. When we measured diene signals in the absence of O2, we still observed a
steadily raising signal. However, the diene signals were quantitatively different in the
presence of O2, so we are quite confident that the studied reactions produce them.

We had some trouble computing barrier heights for the conjugate-alkene channels that
were consistent with experiment. ROFH-CCSD(T) and ROHF-DLPNO-CCSD(T) reg-
ularly predicted barriers above 20 kJ mol−1, which are too high. Interestingly, the T1
diagnostic values were quite acceptable for the transition structures, around 0.03, but
it is our understanding that the common T1 diagnostic thresholds that are used to
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assess the multi-reference character of open-shell species cannot always be trusted.68

CASPT2(13,11)/CBS// MN15/Def2TZVP calculations gave barrier heights that were
more consistent with experiment, though we are fully aware that CASPT2 cannot be
relied upon to obtain energies within chemical accuracy (∼ 4 kJ mol−1). In the end, we
optimised the barrier heights with the trace fitting feature in MESMER, and the fitted
and CASPT2 values ended up being in pretty close agreement. An example potential
energy profile of these allylic systems is shown for 1,3-dimethylallyl in Fig. 22. The es-
sential features of the profile are the same for 3-ethylallyl and 1,1-dimethylallyl. In Table
4 the fitted parameters are tabulated for comparison purposes. Figures 23 and 24 show
the low-temperature fall-off curves and high-temperature reactivity, respectively.

Figure 22: Potential energy profile for the 1,3-dimethylallyl + O2 reaction. The energies
are in kJ mol−1. Figure taken from (V).

The canonical recombination rate coefficient is the largest for 1,3-dimethylallyl, slightly
smaller for 1,1-dimethylallyl and 3-ethylallyl, still smaller for 2-methylallyl, and much
smaller for allyl. This is consistent with what we have seen in our experimental stud-
ies. Namely, that alkyl-substitution next to a radical centre tends to increase reactivity,
but the effect is subject to diminishing returns. That is to say, the reactivity enhan-
cing effect of substituting a hydrogen of an unsubstituted carbon-centred radical with
a methyl is greater than making such a substitution to an already substituted carbon-
centred radical. This can be seen here with 1,3-dimethylallyl (both radical centres singly
substituted) reacting faster than 1,1-dimethyallyl (one centre unsubstituted, the other
doubly substituted). At higher temperatures, it is not easy to explain the results in
terms of structure-reactivity relationships. What is clear is that the reactivity is governed
by the relative energy of the formally-direct TS, but it is harder to say why the relat-
ive energy of this TS is the lowest for 1,1-dimethylallyl and highest for 1,3-dimethylallyl.
2-Methylallyl has much lower high-temperature reactivity than the five-carbon species be-
cause the conjugate-alkene channel is not present there. Note that the high-temperature
rate coefficient for 2-methylallyl is only a computational prediction. We were experiment-
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Table 4: Optimised master equation model parameters using trace fitting approaches.
The values in brackets for the energies are computed results.

Parameter 2-methylallyl 3-ethylallyl 1,3-dimethylallyl 1,1-dimethylallyl

A1 (10−12 cm3 s−1)a 2.42 1.96 3.30 2.34
m1 -0.387 -1.15 -1.38 -1.04

A2 (10−12 cm3 s−1) 0.515 1.59 1.17
m2 -0.786 -0.539 -1.06

〈∆E〉(He)
down,300 K (cm−1) 144 131 164 166

n 0.0235 0.382 0.362 0.100

∆rH
	
0 (kJ mol−1)(RO2

•)b -79.51 (-81.12) -80.67 (-79.19) -83.08 (-79.91) -81.59 (-84.60)
∆rH

	
0 (kJ mol−1)(TS)c 11.76 (9.444) 13.42 (10.84) 4.979 (14.18)

〈∆E〉(N2)
down,300 K (cm−1) 336 300 330

a Because there are multiple barrierless R• + O2 −−→ RO2
• channels, multiple ILT expressions had to be used.

b In case of multiple RO• adducts, the deepest well was fitted, but so that the energy differences between the RO• wells
were fixed to the computed value.
c Same as above, but for the formally-direct transition structures.
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Figure 23: Fall-off curves for allylic radical + O2 reactions.10,69,70 Figure taken from (V).

ally unable to see any reactivity at 700 K, which means that the high-temperature rate
coefficient must be smaller than 10−16 cm3 s−1.

We have frequently observed for hydrocarbon radical + O2 systems that there is eigenvalue
“hopping”. Klippenstein and co-workers have published articles about this about twenty
years ago,15,16 but it has not received much attention since then. What happens is that
at low temperatures there is a one-to-one correspondence with the largest (in magnitude)
CSE and the observed rate coefficient (k = −λlargestCSE/[O2]), but at high temperatures
the correspondence is with the smallest (in magnitude) CSE (k = −λsmallestCSE/[O2]).
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Figure 24: High-temperature rate coefficients of allylic radical + O2 reactions.14 Figure
taken from (V).

The rate coefficient, in a sense, hops from one eigencurve to another. This behaviour
is shown Fig. 25. However, the rate coefficients describe very different things. At low
temperatures, the rate coefficient describes the R + O2 −−→ RO2

• recombination reaction,
whereas at high temperatures it describes the phenomenological R•+O2 −−→ R−H +HO2

•

conjugate-alkene-forming reaction. In between cold and high temperatures, there is region
of avoided crossing where multi-exponential behaviour (R + O2 −−⇀↽−− RO2

• equilibrium) is
observed and the rate coefficient cannot be simply assigned to an eigenvalue. The width
of this region is pressure dependent; it gets smaller as pressure is decreased and eventually
vanishes completely. The location of the region depends on [O2]. This is because the equi-
librium fraction of RO2

• is dependent on [O2] and using larger concentrations pushes the
equilibration zone to higher temperatures. We have also observed that in these systems
BW rate coefficients, at least the important ones, appear to remain valid even after the
order-of-magnitude separation between CSEs and IEREs ceases to exist. We have tested
this by assuming pre-equilibrium conditions for RO2

• and then using the BW rate coeffi-
cients to compute a phenomenological R•+ O2 −−→ R−H + HO2

• rate coefficient. It turns
out the rate coefficient calculated this way is almost exactly equal to −λsmallestCSE/[O2]
(see V). Perhaps the reason for this is simply that the BW-analysis remains valid be-
cause the CSEs never cross (at least below 1500 K) with the IEREs, not even at 10−5 bar
(see Fig. 25). Given that a single eigenvalue determines the high-temperature kinetics,
one could argue that the system has effectively been reduced to a single well, with the
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intermediate wells having merged with that of the reactants.
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Figure 25: CSEs plotted as a function of temperature and pressure for the 3-ethylallyl
system. Figures taken from (III).

Another interesting feature in these reactions is that the high-temperature rate coefficient
is pressure-independent (this is also illustrated in Fig. 25). Klippenstein and co-workers
have discussed the reasons behind this as well.16 As temperature is increased, the peroxyl
adduct begins to approach what Klippenstein calls its stabilisation limit (see Fig. 26). At
the stabilisation limit, a significant chunk of the peroxyl’s Boltzmann population is above
the reaction threshold(s). Once this happens, collisions continuously try to repopulate the
reactive states that are depleted by reactions to re-establish a Boltzmann distribution. So
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although increasing pressure will increase collisional relaxation from reactive states, there
will be a compensating increase in the rate at which reactive states are repopulated. As
can be seen from Fig. 26, at the stabilisation limit activating collisions start to become
as likely as deactivating ones.

From the point of view of combustion modelling, the emergence of a pressure-independent
rate coefficient that is easily obtained from the smallest CSE is very useful. To model the
reactivity of, say, 1,3-dimethylallyl, one only needs to plot −λsmallestCSE/[O2] as a function
of temperature and then fit a modified Arrhenius expression to the result. If there are
multiple product channels, the expression can simply be multiplied with the branching
ratio of each channel to obtain channel-specific rate coefficients. The only drawback with
this approach, from what I can tell, is that the user needs to know if he/she is working in
the post-avoided-crossing (post-equilibrium) region. This condition should be frequently
fulfilled in combustion systems. The simplification this approach provides is obvious. The
number of BW coefficients grows rapidly with system size (there is a BW rate coefficient
from each well to the other wells and sinks), and it is not realistic to provide a pressure-
dependent parameterisation of each of them to combustion modellers. The number of
reactions they can accommodate is quite limited in models that fully couple chemistry
with continuum-mechanics. The results we have obtained suggest that it is often sufficient
to give a few Arrhenius expressions. For the allylic systems studied in this thesis, these
expressions are given in Table 5.

Table 5: Modified Arrhenius parameters for the product channels of the allylic systems
studied in this thesis. Note that the exponential parameter is in calories. See articles
(III), (V), and (XII) about the details of the different product channels.

k(T ) = ATme−E
′
a/RT

Reaction A (cm3 s−1) m E ′a (cal mol−1)

3-ethylallyl
R −−→ P1E 1.72 · 10−18 1.26 2360
R −−→ P1Z 4.36 · 10−19 1.41 3280
R −−→ P2 2.93 · 10−27 3.41 -3490

1,3-dimethylallyl
R −−→ P1E 1.66 · 10−18 1.26 3030
R −−→ P1Z 2.88 · 10−18 1.22 3710
R −−→ P2RR 1.02 · 10−29 4.02 -2500
R −−→ P2SR 5.27 · 10−30 4.08 -1750

1,1-dimethylallyl
R −−→ P1 1.46 · 10−19 1.71 780
R −−→ P3 2.09 · 10−28 3.76 -2530
R −−→ P4 3.56 · 10−18 0.79 7020
R −−→ P6 3.18 · 10−18 0.77 5510
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Figure 26: The stabilisation limit for 1,3-dimethyallylperoxyl (Int1E, C5H9O2
•). R here

refers to the separated reactants, whose zero-kelvin enthalpy is set to zero, and ts1EP1E
refers to the formally-direct transition state. Figure taken from (V)
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4.3 Reactions of Propargylic Radicals with Oxygen Molecules

I present here results for the two propargylic radicals studied in this thesis (1- and 3-
methylpropargyl, II and I) and some unpublished data for propargyl and 3-ethylpropargyl.
For propargyl, we have only performed computations. The experimental data we use for
fitting is from Slagle and Gutman and Atkinson and Hudgens.12,71 Since the publication
of articles (I) and (II), trace fitting was introduced in MESMER, which makes a global fit
of these results easier and less arbitrary. Several bug-fixes have also been implemented in
MESMER since the publication of the articles that will have a small effect on the results.
To make the comparisons between the propargylic radicals as consistent as possible, I have
refitted the results in (I) and (II) with the most recent MESMER version. Therefore, there
might be some very small differences in the values reported here and in the publications.
A publication is being prepared where the four propargylic radicals are systematically
studied. A potential energy profile for the 1-methylpropargyl + O2 reaction is shown in
Fig. 27. The essential features of the profile are the same for all propargylic radicals.
One of the products shown in profile, methylketene, was observed in the experiments
and its formation rates matched the decay rate of 1-methylpropargyl. The equivalent
product was observed in the other systems. The other product, a formylic (methanoylic)
species, reacts instantly72 with O2 upon formation under our high-[O2] conditions and so
cannot be detected. I have considered more product channels in my calculations than
those shown in the profile, particularly for propargyl, but these channels are kinetically
irrelevant, especially under the conditions of our experiments.

Figure 27: Potential energy profile for the 1-methylpropargyl + O2 reaction. The energies
are in kJ mol−1. Figure taken from (II).

The experimental and computational results for the propargylic systems are listed in Table
6 and displayed graphically in Fig. 29. As demonstrated by Moradi et al., addition to the
CH2-end of propargyl is barrierless, whereas addition to the H−C−−−-end appears to have a
small barrier. These findings are consistent with our experiments. Therefore, we have used
ILT and conventional TST to get the TS state sums for the CH2- and H−C−−−-additions,
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respectively. The trace fits yield fairly consistent parameters for the studied systems.
The value of 〈∆E〉down,300 K increases with radical size for both He and N2, which is as

one would expect. Interestingly, 1-methylpropargyl has a slightly smaller 〈∆E〉(He)
down,300 K

value than 3-methylpropargyl. However, since 1-methylpropargyl has a larger canonical
recombination rate coefficient (at least according to the fits), the fall-off curves for 1- and
3-methylpropargyl end up crossing. The order makes sense at the high-pressure limit. In 1-
methylpropargyl the methyl group is next to the dominant radical centre, so I would except
it to be more reactive than 3-methylpropargyl. It is not clear, though, as to why collisional
energy transfer should be more efficient for 3-methylpropargyl. There are some obvious
differences in the structures; the methyl group rotation is free in 3-methylpropargyl, but
hindered by about 10 kJ mol−1 in 1-methylpropargyl, 3-methylpropargyl is effectively
linear, 1-methylpropargyl is not. That said, it is hard to know if any of these factors are
directly linked to collisional energy transfer. Definite answers require running trajectories.

Table 6: Optimised master equation model parameters using trace fitting approaches.
The values in brackets for the energies are computed results.

Parameter Propargyl 1-Methylpropargyl 3-Methylpropargyl 3-Ethylpropargyl

A (10−13 cm3 s−1)a 1.98 12.2 7.27 12.1
m -1.33 -1.29 -1.44 -1.44

〈∆E〉(He)
down,300 K (cm−1) 87.2 127 137 178

n 0.812 0.301 0 0

∆rH
	
0 (kJ mol−1)(Int1p) -72.91 (-75.48) -79.80 (-84.14) -75.08 (-78.43) -78.41 (-78.90)

∆rH
	
0 (kJ mol−1)(ts01a) 3.601 (12.78) 2.097 (7.989) 2.796 (7.679) 2.831 (5.464)

∆rH
	
0 (kJ mol−1)(ts12a)a 7.275 (9.260) 2.437 (3.836) 0.4230 (1.460) -12.83 (-0.3761)

〈∆E〉(N2)
down,300 K (cm−1) 206 260 283 247

a In case of multiple ts12a transition structures, the lower energy one was fitted and the energy difference held fixed to the
computed value.

The canonical recombination rate coefficient is much smaller for propargyl than for any
of the alkyl-substituted propargyls. This is very similar to the behaviour of allyl in the
allylic systems and shows how big an effect simple methyl-substitution can have on rate
coefficients.

As to the high-temperature reactivity, it appears to be mainly determined by the value of
the latter TS (ts12a) and to a smaller degree by t01a. All the fitted energies are in good
agreement with ROHF-CCSD(T)/CBS//MN15/Def2TZVP values, which is a bit surpris-
ing, given that many of the transition structures exhibited multi-reference character. For
example, for ts12a we noticed that our Hartree-Fock calculations often converged to a
different solution if we used a different initial guess. For ts01a, the MN15 functional was
not able to find the correct transition structure and we used M08HX instead to locate it.
The T1 diagnostics were also relatively large, above 0.03. Furthermore, when we tried
to employ unrestricted wave-function methods, both of these transition structures had
huge spin contaminations. The fitted energy for ts12a in 3-ethylpropargyl + O2 differs
quite significantly from the calculated value and we need to double-check the fit. Our
experience has been that changing the initial guesses can lead to different results. When
multiple parameters are simultaneously fit, there is no guarantee one obtains the global
minimum. Thus, it is advisable to try different sets of initial guesses. If some parameters
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are known relatively well, like well-depths, it can help if these are fixed in initial fitting
runs and only the more uncertain parameters are floated. The well-depths can be included
in later runs after one has obtained reasonable values for the other parameters.

Like for the allylic systems, we notice that a pressure-independent rate coefficient with
weak, positive temperature dependence arises at higher temperatures for the propargylic
systems. The reasons for this are the same as for the allylic systems, so the discussion will
not be repeated here. A comparison of the CSE plots shown in figures 25 and 28 show that
they are qualitatively the same. It is interesting that the same behaviour emerges even
though the mechanisms are different. It may well be this behaviour is encountered quite
frequently and master equation modellers should expend some effort to analyse the CSE-
curves and check if single-exponential behaviour re-emerges at elevated temperatures. As
mentioned in the previous section, surprisingly simple rate coefficient descriptions can be
extracted.

300 600 900 1200 1500
10-4

10-1

102

105

108

 

 

 3

 2

 1

-
n 
(s

-1
)

T (K)

Solid lines: 10-5 bar
Dashed lines: 10-2 bar
Dotted lines: 102 bar

Symbols: experiments 
(k[O2])

C3H3 + O2

Figure 28: CSEs plotted as a function of temperature and pressure for the propargyl +
O2 system. The experiments are by Slagle and Gutman and Atkinson and Hudgens.12,71

The ME simulations are unpublished results.
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Figure 29: The rate coefficients for the reactions between propargylic radicals and oxygen
molecules as a function of temperature and pressure. The measurements for propargyl
are by Slagle and Gutman and Atkinson and Hudgens.12,71
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5 Conclusions

Laser-photolysis photoionisation mass spectrometry has been used to study reactions
between resonance-stabilised hydrocarbon radicals and oxygen molecules. Both pro-
pargylic and allylic radicals have been studied and interesting structure-relationships
have been observed. Most of the reactions have not been studied before, at least not
extensively as a function of temperature and pressure, but where previous measurements
exist, they are in reasonably good agreement with the present results (within a factor
of two). The experimental work was complemented with quantum chemical calculations
and master equation simulations. A particular focus of the work was to synergistically
combine experiments and computations to compensate for the shortcomings of the other.
The experiments were used to fix collisional energy transfer parameters, obtain state
sums for barrierless reactions, and to adjust energies of key transition states if needed.
The recently introduced trace fitting was employed and compared with good success to
a more traditional fitting approach. After parameter optimisation, the master equation
models were able to reproduce experimental findings and, presumably, extrapolate well
to conditions relevant to practical application. The modelling work was also informative
in rationalising the experimental findings.

It was found during the studies for each reaction that a phenomenological rate coefficient
arises at high temperatures that is independent of pressure and has weak, positive temper-
ature dependence. This behaviour is opposite to the low-temperature R + O2

• −−→ RO2
•

recombination rate coefficients, which all exhibit negative temperature dependence and
are pressure dependent. In these reactions, the high-temperature reactivity is governed
by a single eigenvalue (the least negative one). This eigenvalue can be used to obtain
simple phenomenological expressions for the different product channels and there is no
need to provide pressure-dependent Bartis-Widom rate coefficients for all of the element-
ary steps. However, many of the Bartis-Widom rate coefficients appear to be valid at
high temperatures, even after chemically significant eigenvalues begin to converge with
the internal energy relaxational eigenvalues.

Except for 2-methylallyl, all the radicals react fairly fast with O2 at elevated temperatures.
The phenomenological rate coefficients for the five-carbon allylic radicals are in the range
5·10−16−2·10−14 cm3 s−1 and the propargylic ones in the range 2·10−15−4·10−14 cm3 s−1.
Thus, the oxygen reactions constitute of major sink of these radicals in combustion sys-
tems. It is certainly incorrect to assume that larger allylic radicals are as unreactive as
plain allyl (C3H5

•).

Finally, high-quality experiments have been performed and the results are suitable for
benchmarking purposes.
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A Derivation of the TST Rate Coefficient1

A.1 The Microcanonical Rate Coefficient

The number of phase space points in the reactant region, NR, can be obtained by integ-
rating the density of phase space points ξ(Γ , t) over the phase space of the reactant,

NR =

∫
ξ(Γ , t)dΓ . (A.1)

Here dΓ = dqdp. Differentiating this with respect to time and using the continuity
equation

∂ξ(Γ , t)

∂t
= −∇ · ξ(Γ , t)q̇ (A.2)

gives

−dNR

dt
= −

∫
∂ξ(Γ , t)

∂t
dΓ

−dNR

dt
=

∫
∇ · ξ(Γ , t)q̇dΓ . (A.3)

Applying Gauss’s theorem yields the flux expression

− dNR

dt
=

∫
ξ(Γ , t)q̇ · ndS , (A.4)

where S is some arbitrary dividing surface (a transition state) that separates the reactants
and the products and n is a unit vector normal to this surface. If the dividing surface
is defined by the function f(q), then a vector normal to this is given by ∇f(q), so the
equality above can be expressed as

− dNR

dt
=

∫
ξ(Γ , t)δ(f(q)− qrc)(∇f(q) · q̇)dΓ . (A.5)

Here δ is the delfa function and qrc is some arbitrary reaction coordinate qrc = qrc(q). The
last equality needs to be slightly modified because we are not interested in the overall
flux through the dividing surface but rather the reactive flux. To take this into account,
we introduce the characteristic function of reaction χ(Γ ) that contains all the dynamical
information. This gives

− dNR

dt
=

∫
χ(Γ )ξ(Γ , t)δ(f(q)− qrc)(∇f(q) · q̇)dΓ . (A.6)

χ(Γ ) can be defined in several ways.75 Here we use the following definition: χ(Γ ) = 1 if a
trajectory initiated from the dividing surface at t = 0 goes directly to products (without
recrossing the dividing surface) and was part of the reactant ensemble at t → −∞.
Otherwise, χ(Γ ) = 0. Note that the flux expression is independent of the location of the
dividing surface. Although the overall one-way flux is dependent on the dividing surface
location, χ(Γ ) makes sure that the reactive flux is always the same. If the dividing surface

1The derivation is largely based on the material presented in refs 38,73,74
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is put deep into the reactant valley, the overall flux through the dividing surface will be
large, but most trajectories will recross the dividing surface before (if ever) ending up in
the product valley. Similarly, if the dividing surface is put deep into the product valley,
then most trajectories that cross the dividing surface will in fact have originated from the
product rather than reactant side of the potential energy surface.

Phenomenologically, the time-dependent unimolecular rate coefficient is defined as the ra-
tio of the negative time derivative of the reactant population and the reactant population,
so classically,

k(t) =
−dNR

dt
NR

=

∫
χ(Γ )ξ(Γ , t)δ(f(q)− qrc)(∇f(q) · q̇)dΓ∫

ξ(Γ , t)dΓ
. (A.7)

The “no recrossing assumption” of TST is realised by stating that χ(Γ ) = u(∇f(q) · q̇)
at t = 0 (u is the Heaviside step function). That is to say, all trajectories that cross
the dividing surface at t = 0 in the reactant → product direction are assumed to be
reactive. Note that making this assumption means that the reactive flux through the
dividing surface is now dependent on its location. Since making this assumption also
means that the reactive flux is necessarily overestimated (some trajectories recross), the
optimal location of the dividing surface is where the reactive flux obtains its minimum
value.

The equilibrium assumption in the microcanonical case is realised by stating that

ξ(Γ , t) =
δ(H− E)δ(J − J ′)∫
δ(H− E)δ(J − J ′)dΓ

. (A.8)

Here the denominator is a normalisation constant (volume of the (E, J) surface) and
it cancels out in the expression for k. As mentioned in the main text, the equilibrium
assumption removes the time-dependency from the rate coefficient (the ratio of phase
space points crossing the dividing and the total number of phase space points in the
reactant valley is a constant), so the microcanonical TST expression is

k(E, J) =

∫
δ(H− E)δ(J − J ′)δ(f(q)− qrc)(∇f(q) · q̇)u(∇f(q) · q̇)dΓ∫

δ(H− E)δ(J − J ′)dΓ
. (A.9)

The expression can be further simplified by demanding that the reaction coordinate is
separable and orthogonal to the rest of the coordinates. This leads to the following
simplifications:

q̇rc =
prc

µ
(A.10)

H = H∗ +
prc

2

2µ
= H∗ + Erc (A.11)

δ(f(q)− qrc) = δ(qrc − q′rc) (A.12)

∇f(q) · q̇ =
prc

µ
. (A.13)
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Here H∗ is the constrained Hamiltonian for all the degrees of freedom but (qrc, prc) and µ
is the reduced mass for the motion along the reaction coordinate. The TST expression is
now

k(E, J) =

∫
δ(H∗ − (E − Erc)δ(J − J ′)δ(qrc − q′rc)(

prc

µ
)u(prc)dΓ∫

δ(H− E)δ(J − J ′)dΓ
. (A.14)

The integral over the reaction coordinate is straightforward to compute and the integral
over its conjugate momenta can be evaluated by making the change of variable

Erc =
prc

2

2µ
→ dErc

dprc

=
prc

µ
. (A.15)

Further progress is made by noting that the E- and J-resolved density of states is defined
as

ρ(E, J) =
1

hn+1

∫
δ(H− E)δ(J − J ′)dΓ , (A.16)

where n + 1 is the number of degrees of freedom in the system (including the reaction
coordinate). Plugging in the density of states expression yields

k(E, J) =

∫∞
0

(∫
δ(H∗ − (E − Erc)δ(J − J ′)dΓ ∗

)
dErc∫

δ(H− E)δ(J − J ′)dΓ

=

∫∞
0
ρ‡(E − Erc, J)dErc

hρreact(E, J)
. (A.17)

The superscript ‡ denotes the transition state. Note that the step function has been
omitted because the lower limit of integration is set to zero (as opposed to minus infinity).
Computing the final integral yields the RRKM expression

k(E, J) =
N ‡(E, J)

hρreact(E, J)
, (A.18)

where N ‡ is the sum of states of the transition state for a given E and J .

A J-averaged microcanonical rate coefficient is obtained by integrating over angular mo-
mentum,

k(E)J =

∫∞
0
ρreact(E, J)k(E, J)dJ∫∞

0
ρreact(E, J)dJ

k(E)J =

∫∞
0
N ‡(E, J)dJ

h
∫∞

0
ρreact(E, J)dJ

k(E)J =
N ‡(E)J

hρreact(E)J
. (A.19)

Because forward and backward reactions share the same transition state (N ‡(E, J)), their
TST rate coefficients are related by

kf(E, J)ρreact,f(E, J) = kb(E −∆rE, J)ρreact,b(E −∆rE, J) , (A.20)

where ∆rE is the reaction energy. This expression applies even if one of the reactions is
bimolecular.
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A.2 The Canonical Rate Coefficient

The derivation of the canonical rate coefficient is started here from equation (A.7) and
making the TST assumptions, except now the density of phase space points is defined as

ξ(Γ , t) =
e−βH∫
e−βHdΓ

. (A.21)

Plugging this into equation (A.7) yields

k(β) =

∫
δ(f(q)− qrc)(∇f(q) · q̇)u(∇f(q) · q̇)e−βHdΓ∫

e−βHdΓ

=

∫
δ(f(q)− qrc)(∇f(q) · q̇)u(∇f(q) · q̇)e−βHdΓ

hn+1Qreact(β)
. (A.22)

We have used the canonical partition function definition

Q(β) =
1

hn+1

∫
e−βHdΓ . (A.23)

The familiar form of the canonical TST expression is obtained by again demanding that
the reaction coordinate be separable and orthogonal to the other coordinates. We also shift
the potential energy function of the reduced Hamiltonian H∗ by the reaction threshold
∆rE

‡
0, so

H∗ = T ∗ + V ′ + ∆rE
‡
0 , (A.24)

where V = V ′ + ∆rE
‡
0 and the “shifted” reduced Hamiltonian is H′∗ = T ∗ + V ′. Now

k(β) =

∫∞
0

(∫
e−βH

∗
dΓ ∗

)
e−βErcdErc

hn+1Qreact(β)

=

∫∞
0

(∫
e−βH

′∗
dΓ ∗

)
e−β∆rE

‡
0e−βErcdErc

hn+1Qreact(β)

=
1

hβ

Q‡(β)

Qreact(β)
e−β∆rE

‡
0 . (A.25)

The reverse rate coefficient for a given reaction can be obtained from the equilibrium con-
stant. For example, the rate coefficients of bimolecular recombination and unimolecular
dissociation (A + B −−⇀↽−− AB) are related by

K(β) =
krec(β)

kdis(β)

p	

RT
=

krec

kdisV 	
. (A.26)

Here p	 = 1 bar and V 	 = RT
p	

(ideal-gas behaviour has been assumed). The expression
for the equilibrium constant is

K(β) =
QAB(β)

QA(β)QB(β)V 	
e−β∆rE , (A.27)
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which can be plugged to the previous equation to obtain

krec(β) = kdis(β)
QAB(β)

QA(β)QB(β)V 	
e−β∆rE . (A.28)

Using the canonical TST expression gives

krec(β) =
1

hβ

Q‡(β)

QA(β)QB(β)
e−β∆rE

‡
rec , (A.29)

where ∆rE
‡
rec = ∆rE

‡
dis −∆rE.
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B Derivation of the FTST Rate Coefficient for an

Atom-Diatom System2

B.1 The Canonical Rate Coefficient

The starting point of the derivation is equation (A.22),

k(β) =

∫
δ(f(q)− qrc)(∇f(q) · q̇)u(∇f(q) · q̇)e−βHdΓ

hn+1Qreact(β)
. (B.1)

Separation of the modes gives the FTST-expression

k(β, r) =
Qcons(β)

Qreact(β)

1

hn+1
...

...

∫
δ(f(qtr)− r)(∇f(qtr) · q̇tr)u(∇f(qtr) · q̇tr)e

−βHtrdqtrdptr

=
Qcons(β)

Qreact(β)
Fc(β, r) . (B.2)

Here n + 1 is the number of transitional modes, including the reaction coordinate, Fc is
the canonical flux through the dividing surface, and r is the reaction coordinate. From
here on, the subscripts “tr” are dropped. Only the transitional modes are investigated.
The reaction coordinate is chosen to be the distance between the H-atom and an arbitrary
point d on the O–O bond R. The studied system is depicted in Figure 30. The kinetic

Figure 30: The rotating body-fixed frame. The triatomic system is in the xz-plane.

energy for the translational modes is given by

2T =
3∑
i=1

miq̇
2
cart,i + 2ω

3∑
i=1

miqcart,i × q̇cart,i + ωTIω . (B.3)

2The derivation is largely based on the material presented in refs 7,76
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Here qcart,i is the Cartesian position vector of atom i in the rotating frame, mi is its
mass, ω = (ωx, ωy, ωz) gives the angular velocities of the Cartesian axes, and I is the
instantaneous moment of inertia tensor of the whole system. The cartesian coordinates
are related to the Jacobi coordinates (θ, R, rcm) by the following expressions:

xH = 0

yH = 0

zH = −2mO

M
rcm

xO1 = −R
2

sin(θ)

yO1 = 0

zO1 =
mH

M
rcm −

R

2
cos(θ)

xO2 =
R

2
sin(θ)

yO2 = 0

zO2 =
mH

M
rcm +

R

2
cos(θ) .

Here M is the total mass 2mO + mH. The kinetic energy of the transitional modes
can be expressed more compactly in matrix form

2T =
(
ωx ωy ωz θ̇ ṙcm

)
Ir + IR cos2(θ) 0 −IR cos(θ) sin(θ) 0 0

0 Ir + IR 0 −IR 0
−IR cos(θ) sin(θ) 0 IR sin2(θ) 0 0

0 −IR 0 IR 0
0 0 0 0 µ



ωx
ωy
ωz
θ̇
ṙcm


= Q̇

T

cmAcmQ̇cm , (B.4)

where Ir = µr2
cm = 2mOmH

2mO+mH
r2

cm, IR = µRR
2 = mO

2
R2, and Acm is the inverse G-matrix

in centres-of-mass coordinates. The kinetic energy is not yet fully expressed in terms of
generalised velocities because there are no angles that correspond to the angular velocities
ω. The linear transformation needed to get from Q̇cm to generalised velocities q̇cm is77

ωx
ωy
ωz
θ̇
ṙcm

 =


− sin(Θ) cos(Ψ) sin(Ψ) 0 0 0
sin(Θ) sin(Ψ) cos(Ψ) 0 0 0

cos(Θ) 0 1 0 0
0 0 0 1 0
0 0 0 0 1



Φ̇

Θ̇

Ψ̇

θ̇
ṙcm


Q̇cm = Sq̇cm . (B.5)

so

2T = q̇T
cmS

TAcmSq̇cm = q̇T
cmacmq̇cm . (B.6)

The Lagrangian for the centres-of-mass system is

L =
1

2
q̇T

cmacmq̇cm − V (rcm, θ) , (B.7)

from which the momenta corresponding to qcm can be obtained,

pcm =
∂L
∂q̇cm

= STAcmSq̇cm = acmq̇cm . (B.8)

Since the components of angular momentum in a body-fixed frame are defined by

J =
∂L
∂ω

, (B.9)
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these components are the first three components of

∂L
∂Q̇cm

= AcmQ̇cm = AcmSq̇cm = pJ . (B.10)

Thus, pcm and pJ are related by

pcm = STpJ

→ pJ = (ST)−1pcm . (B.11)

The centres-of-mass reaction coordinate rcm is related to the more general reaction co-
ordinate r by the simple geometric relation

r = f(θ, rcm) =
(
r2

cm + d2 − 2rcmd cos(θ)
) 1

2 . (B.12)

In principle, if the oxygen pivot point is moved a distance +d along the bond from the
centre of mass, there will be another pivot point at a distance −d, so the general reaction
coordinate should in fact be defined as

r =

{
(r2

cm + d2 − 2rcmd cos(θ))
1
2 , 0 ≤ θ ≤ π

2

(r2
cm + d2 + 2rcmd cos(θ))

1
2 , π

2
< θ ≤ π .

However, in practice only the first case needs to be considered. The value of θ can
be limited to the range [0,π/2]. The resulting flux through the dividing surface can
be multiplied by two to obtain the total flux. This can be done because the diatomic
fragment is homonuclear. The function for r can be inverted to obtain

rcm = F (θ, r) = d cos(θ)±
(
r2 − d2 sin2(θ)

) 1
2 . (B.13)

Here we will only consider cases where r is so much larger than d that the expression in
the square-root is never negative and the negative root is unphysical. The Jacobian of
the transform is

∂rcm

∂r

∂θ

∂θ
− ∂rcm

∂θ

∂θ

∂r
= r

(
r2 − d2 sin2(θ)

)− 1
2 . (B.14)

Taking the total differential of rcm reveals that the general and centres-of-mass velocities
are related by the linear transform q̇cm = J vq̇, where

J v =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

0 0 0
∂F (θ, r)

∂θ

∂F (θ, r)

∂r

 . (B.15)

Replacing q̇cm with J vq̇ in the kinetic energy expression yields

2T = q̇T
cmacmq̇cm

2T = q̇TJ T
v acmJ vq̇

2T = q̇Taq̇ . (B.16)
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Since

p =
∂L
∂q̇

= aq̇ → q̇ = a−1p = gp , (B.17)

the kinetic energy expression in terms of conjugate momenta is

2T = pTgTagp

2T = pTgp , (B.18)

where we have used ag = 1 and gT = g. From the above equations it can be seen that

p = J T
v acmJ vq̇

p = J T
v acmq̇cm

p = J T
v pcm

→ pcm = (J T
v )−1p . (B.19)

The Jacobian for this transform is

1

∂F (θ, r)

∂r

=
[
r
(
r2 − d2 sin2(θ)

)− 1
2

]−1

, (B.20)

so clearly the (r, pr)→ (rcm, pr,cm) transformation is canonical because drdpr = drcmdpr,cm.

The Hamiltonian with the general reaction coordinate is

H =
1

2
pTgp+ V (r, θ) =

1

2
pTa−1p+ V (r, θ) . (B.21)

To evaluate the canonical flux through the dividing surface, it is helpful to define a
momentum integral P and solve it first.

Fc(β, r) =
1

hn+1

∫
δ(r − r‡)(∇r · q̇)u(∇r · q̇)e−βHdqdp

=
1

hn+1

∫
δ(r − r‡)ṙu(ṙ)e−βHdq′drdpdpr

=
1

hn+1

∫
δ(r − r‡)

(∫
ṙu(ṙ)e−βT dpdpr

)
e−βV dq′dr

=
1

hn+1

∫
δ(r − r‡)Pe−βV dq′dr . (B.22)

Here q′ refers to all the generalised coordinates, excluding the reaction coordinate. The
Heaviside step function u(ṙ) is non-zero when

ṙ =
∂H
∂pr

=
∂T
∂pr

=
5∑
j=1

g5jpj > 0 , (B.23)

from which we get the condition

pr > p∗r (B.24)
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where

p∗r = −
∑4

j=1 g5jpj

g55

. (B.25)

We can now integrate P over the reaction coordinate momentum to get

P =

∫
ṙu(ṙ)e−βT dp′dpr

=

∫ (∫ ∞
p∗r

∂T
∂pr

e−βT dpr

)
dp′

=

∫ (∫ ∞
T ∗

e−βT dT
)

dp′

=
1

β

∫
e−βT

∗
dp′ . (B.26)

The expression for the constrained kinetic energy (ṙ = 0) is

2T ∗ = q′
T
a′q′ , (B.27)

where a′ is equal to a except that the fifth row and column is missing. The corresponding
G-matrix is the inverse of a′,7 meaning

2T ∗ = p′
T
g′p′ = p′

T
a′−1

p′ = p′
T
S−1A′−1

(ST)−1p′ = p′
T
S−1G′(ST)−1p′ . (B.28)

(S and J commute, so the order of operation can be reversed). To complete the mo-
mentum integral, we make the transformation p → pJ which has the Jacobian sin(Θ).
The momentum integral in the transformed coordinates is

P =
sin(Θ)

β

∫
e−

1
2
βp′TJ G

′p′Jdp′J . (B.29)

The matrix A′ is symmetric and has the block structure

(
I C

CT D

)
=


Ir + IR cos2(θ) 0 −IR cos(θ) sin(θ) 0

0 Ir + IR 0 −IR
−IR cos(θ) sin(θ) 0 IR sin2(θ) 0

0 −IR 0 IR + µ

(
∂F (θ, r)

∂θ

)2

 .

(B.30)

G′ is similarly symmetric and has the block form

(
X Y

Y T Z

)
=



1
Ir

0 cos(θ)
Ir sin(θ) 0

0
IR+µ

(
∂F (θ,r)
∂θ

)2

µ(Ir+IR)
(
∂F (θ,r)
∂θ

)2
+IrIR

0 IR

µ(Ir+IR)
(
∂F (θ,r)
∂θ

)2
+IrIR

cos(θ)
Ir sin(θ) 0 Ir+IR cos2(θ)

IrIR sin2(θ)
0

0 IR

µ(Ir+IR)
(
∂F (θ,r)
∂θ

)2
+IrIR

0 Ir+IR

µ(Ir+IR)
(
∂F (θ,r)
∂θ

)2
+IrIR


.

(B.31)

72



Expansion of the exponent yields

P =
sin(Θ)

β

∫ (∫ ∞
−∞

e−
1
2
β(2JTY pθ+Zp2

θ)dpθ

)
e−

1
2
βJTXJdJ

=
sin(Θ)

β

∫ (∫ ∞
−∞

e−
1
2
β((pθ+JTY Z−1)Z(pθ+Z−1Y TJ))dpθ

)
e−

1
2
βJT(X−Y Z−1ZZ−1Y T)JdJ

=
sin(Θ)

β

(
2π

β

) 1
2

|Z|−
1
2

∫
e−

1
2
βJT(X−Y Z−1Y T)JdJ . (B.32)

It is useful to investigate the remaining exponent.

X − Y Z−1Y T (B.33)

=


1
Ir

0
cos(θ)
Ir sin(θ)

0
IR+µ

(
∂F (θ,r)
∂θ

)2

µ(Ir+IR)
(
∂F (θ,r)
∂θ

)2
+IrIR

− I2R

(Ir+IR)

(
µ(Ir+IR)

(
∂F (θ,r)
∂θ

)2
+IrIR

) 0

cos(θ)
Ir sin(θ)

0
Ir+IR cos2(θ)

IrIR sin2(θ)

 (B.34)

=


1
Ir

0
cos(θ)
Ir sin(θ)

0 1
Ir+IR

0

cos(θ)
Ir sin(θ)

0
Ir+IR cos2(θ)

IrIR sin2(θ)

 (B.35)

= I−1 (B.36)

So the exponent is just the inverse of the moment of inertia matrix. Further progress
can be made by making the diagonalisation I → Id,

Id =


Ir + IR 0 0

0 1
2

(
Ir + IR −

√
I2
r + I2

R + 2IrIR(cos2(θ)− sin2(θ))
)

0

0 0 1
2

(
Ir + IR +

√
I2
r + I2

R + 2IrIR(cos2(θ)− sin2(θ))
)


(B.37)

=

Ixx 0 0
0 Iyy 0
0 0 Izz

 . (B.38)

Now the momentum integral is

P =
sin(Θ)

β

(
2π

β

) 1
2

|Z|−
1
2

∫
e
− 1

2
β

(
J2
x

Ixx
+
J2
y

Iyy
+
J2
z

Izz

)
dJ . (B.39)

To obtain the results in terms of the magnitude of total angular momentum, yet another
coordinate transform is needed, this time from cartesian to spherical, giving

P =
sin(Θ)

β

(
2π

β

) 1
2

|Z|−
1
2

∫ ∞
0

∫ 2π

0

∫ π

0

e−βErotJ2 sin(ν)dνdηdJ . (B.40)

where

Erot =
J2

2

([
sin2(η)

Ixx
+

cos2(η)

Iyy

]
sin2(ν) +

cos2(ν)

Izz

)
. (B.41)

Now what remains is to solve the coordinate-part of the flux integral. Integration over
the reaction coordinate and the Euler angles can be done analytically, giving

Fc(β, r) =
1

hn+1

∫ 2π

0

∫ π

0

∫ 2π

0

∫ π

0

∫ ∞
0

δ(r − r∗)sin(Θ)

β

(
2π

β

) 1
2

|Z|−
1
2 ...

...

∫ ∞
0

∫ 2π

0

∫ π

0

e−βErotJ2 sin(ν)dνdηdJe−βV drdθdΦdΘdΨ

=
4π

h5

(
2π

β

) 3
2
∫ π

0

|Z|−
1
2

(∫ ∞
0

∫ 2π

0

∫ π

0

e−βErotJ2 sin(ν)dνdηdJ

)
e−βV dθ . (B.42)
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The remaining integrals are best solved numerically. Analytical solutions exist for the
integrals over η and ν, but they tend to be complicated.7 To obtain a J-dependent flux,
the order of integration can be changed in the above expression and the integration over
J omitted. This gives

Fc(β, J, r) =
4πJ2

h5

(
2π

β

) 3
2
∫ π

0

|Z|−
1
2

(∫ 2π

0

∫ π

0

e−βErot sin(ν)dνdη

)
e−βV dθ . (B.43)

This expression will be useful in the derivation of the microcanonical rate coefficient.

To summarise, the canonical rate coefficient for the H• + O2 reaction is

k(β, r) =
Qcons(β)

Qreact(β)
Fc(β, r) . (B.44)

This expression can be optimised with respect to r to find minimum value for k(β, r).
However, a canonical minimisation does not provide the smallest k(β, r) because the
minimisation should in fact be done with respect to E and J . This will be considered
next.

B.2 The Microcanonical Rate Coefficient

The canonical rate coefficient of a reaction can be obtained by averaging the microcanon-
ical rate coefficient over E and J ,

k(β, r) =
1

Qreact(β)

∫ ∞
0

∫ ∞
0

k(E, J, r)ρreact(E, J)e−βEdJdE . (B.45)

Using the RRKM-expression

k(E, J, r) =
N(E, J, r)

hρreact(E, J)
(B.46)

and changing the order of integration, this simplifies to

k(β, r) =
1

hQreact(β)

∫ ∞
0

∫ ∞
0

N(E, J, r)e−βEdEdJ

k(β, r) =
1

hQreact(β)

∫ ∞
0

L[N(E, J, r)]dJ . (B.47)

The sum of states divided by the Planck constant can be expressed as the convolution

h−1N(E, J, r) =

∫ E

0

ρcons(ε)h
−1Ntr(E − ε, J, r)dε (B.48)

=

∫ E

0

ρcons(ε)Fmc(E − ε, J, r)dε , (B.49)

where Fmc(E − ε, J, r) is the microcanonical flux through the dividing surface. Here
it has been assumed that the conserved modes have no angular momentum. Replacing
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h−1N(E, J, r) in equation (B.47) with the convolution yields

k(β, r) =
1

Qreact(β)

∫ ∞
0

L

[∫ E

0

ρcons(ε)Fmc(E − ε, J, r)dε
]

dJ (B.50)

=
1

Qreact(β)

∫ ∞
0

L[ρcons(E, r)]L[Fmc(E, J, r)]dJ (B.51)

=
Qcons(β)

Qreact(β)

∫ ∞
0

L[Fmc(E, J, r)]dJ . (B.52)

Comparison with equation (B.2) shows that

Fc(β, r) =

∫ ∞
0

L[Fmc(E, J, r)]dJ , (B.53)

or with the J-dependent canonical flux,

Fc(β, J, r) = L[Fmc(E, J, r)] . (B.54)

This transform can be inverted to obtain an expression for the microcanonical flux. We
will use the transform

L−1
[
t−ne−ct

]
(s) =

u(s− c)(s− c)n−1

Γ (n)
. (B.55)

Applying this to the problem at hand yields

Fmc(E, J, r) =L−1[Fc(β, J, r)] (B.56)

=
4πJ2

h5Γ (3
2
)

(2π)
3
2

∫ π

0

|Z|−
1
2

(∫ 2π

0

∫ π

0

u (E − Erot − V ) ... (B.57)

... (E − Erot − V )
1
2 sin(ν)dηdν

)
dθ . (B.58)

The microcanonical flux can be convolved with the conserved mode to obtain the mi-
crocanonical rate coefficient

k(E, J, r) =
4πJ2

h5Γ (3
2
)ρreact(E, J)

(2π)
3
2

∫ E

0

ρcons(ε, r)

∫ π

0

|Z|−
1
2 ... (B.59)

...

(∫ 2π

0

∫ π

0

u (E − ε− Erot − V ) (E − ε− Erot − V )
1
2 sin(ν)dνdη

)
dθdε (B.60)

=
2

9
2J2π2

νharmh6ρreact(E, J)

∫ E

0

∫ π

0

|Z|−
1
2 ... (B.61)

...

(∫ 2π

0

∫ π

0

u (E − ε− Erot − V ) (E − ε− Erot − V )
1
2 sin(ν)dνdη

)
dθdε .

(B.62)

Note that ρcons(ε) is simply the density of states of the diatom harmonic oscillator.

The integral can be solved by crude Monte Carlo integration,∫ E

0

∫ π

0

|Z|−
1
2

(∫ 2π

0

∫ π

0

u (E − ε− Erot − V ) (E − ε− Erot − V )
1
2 sin(ν)dνdη

)
dθdε

≈ V

N

N∑
i=1

G(εi, θi, νi, ηi) , (B.63)
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where

G(ε, θ, ν, η) = |Z|−
1
2u (E − ε− Erot − V ) (E − ε− Erot − V )

1
2 (B.64)

V =

∫ E

0

∫ π

0

∫ 2π

0

∫ π

0

sin(ν)dνdηdθdε = 4π2E , (B.65)

and N is the number of Monte Carlo points. The arguments of G(ε, θ, ν, η) are sampled
from

ε = E · x1 (B.66)

θ =
π

2
· x2 (B.67)

η = 2π · x3 (B.68)

ν = arccos(2 · x4 − 1) . (B.69)

Here xi is a random value in the range [0,1]. Due to the symmetry of the interaction
potential, θ can be sampled in the range [0,π/2].
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C Trajectory Calculations

The trajectories are run in a centres-of-mass frame where r = rcm.

To reduce the dimensionality of the trajectory calculations, one can make the coordinate
transform (Φ,Θ, Ψ, pΦ, pΘ, pΨ → qJ , qM , qK , J,M,K), where J is the magnitude of total
angular momentum and M and K are the projection of total angular momentum on
the space- and body-fixed z-axes, respectively. Because angular momentum is conserved,
M and J are cyclic coordinates. The generating function needed to make the canonical
transformation has been presented by Augustin and Miller76 and it is

F2(Φ,Θ, Ψ, J,M,K) = ΦM + ΨK + J arccos

(
J2 cos(Θ)−MK

[(J2 −K2)(J2 −M2)]
1
2

)
(C.1)

−M arccos

(
M cos(Θ)−K

[sin(Θ)(J2 −M2)
1
2 ]

)
(C.2)

−K arccos

(
K cos(Θ)−M

[sin(Θ)(J2 −K2)
1
2 ]

)
. (C.3)

The momenta conjugate to Euler angles are obtained from

pΦ =
∂F2

∂Φ
= M (C.4)

pΘ =
∂F2

∂Θ
=

1

sin(Θ)

(
(J2 −K2) sin2(Θ)− (K cos(Θ)−M)2)

) 1
2 (C.5)

pΨ =
∂F2

∂Ψ
= K (C.6)

and the new coordinates from

qJ =
∂F2

∂J
= arccos

(
J2 cos(Θ)−MK

[(J2 −K2)(J2 −M2)]
1
2

)
(C.7)

qM =
∂F2

∂M
= Φ− arccos

(
M cos(Θ)−K

[sin(Θ)(J2 −M2)
1
2 ]

)
(C.8)

qK =
∂F2

∂K
= Ψ − arccos

(
K cos(Θ)−M

[sin(Θ)(J2 −K2)
1
2 ]

)
, (C.9)

the last of which is useful to rearrange to

K cos(Θ)−M = (J2 −K2)
1
2 sin(Θ) cos(Ψ − qK) . (C.10)

These expressions can be used together with pJ = (ST)−1p (see equation (B.11)) to
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obtain the body-fixed components of angular momentum,

Jx = −cos(Ψ)pΦ
sin(Θ)

+ sin(Ψ)pΘ +
cos(Ψ) cos(Θ)pΨ

sin(Θ)
(C.11)

=
cos(Ψ)

sin(Θ)
(K cos(Θ −M)) +

sin(Ψ)

sin(Θ)

(
(J2 −K2) sin2(Θ)− (K cos(Θ)−M)2

) 1
2

(C.12)

Jy =
sin(Ψ)pΦ
sin(Θ)

+ cos(Ψ)pΘ −
sin(Ψ) cos(Θ)pΨ

sin(Θ)
(C.13)

= − sin(Ψ)

sin(Θ)
(K cos(Θ −M)) +

cos(Ψ)

sin(Θ)

(
(J2 −K2) sin2(Θ)− (K cos(Θ)−M)2

) 1
2

(C.14)

Jz = pΨ = K . (C.15)

Applying equation (C.10) simplifies the expressions to

Jx = (J2 −K2)
1
2 cos(qK) (C.16)

Jy = −(J2 −K2)
1
2 sin(qK) (C.17)

Jz = K . (C.18)

The Hamiltonian in the transformed coordinates is

H =
1

2Ir

(
J2 −K2 +

2K(J2 −K2)
1
2 cos(qK) cos(θ)

sin(θ)
+
K2 cos2(θ)

sin2(θ)

)
(C.19)

+
1

2Ir

(
p2
θ − 2(J2 −K2)

1
2 sin(qK)pθ

)
+

1

2IR

(
p2
θ +

K2

sin2(θ)

)
(C.20)

+
p2
R

2µR
+
p2
r

2µ
+ V (r, R, θ) , (C.21)

where

V (r, R, θ) = V (r, θ) + 2µRπ
2ν2

harm(R−Req)2 . (C.22)

Here it has been assumed that the harmonic potential is decoupled from the two-dimensional
potential provided by Harding et al.41 This is, of course, a very bad approximation at short
centres-of-mass separations, but the purpose is here is to compare trajectory results with
TST, so the details of the potential are not essential. What matters is that the potential
is the same for both.

The equations of motions are obtained the standard way,

q̇ =
∂H
∂p

ṗ = −∂H
∂q

. (C.23)

The trajectories are started from a centres-of-masses distance r = 30 Å. The initial
conditions are microcanonically sampled as follows (E and J fixed):

1. The orientation of the fragments are set by qK = 2πx1 and θ = πx2, where xi is a
random number in the range [0,1].
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2. The diatom distance is initially set to its equilibrium value R = 1.2075 Å, and then
K is sampled from K = (2x3 − 1)J . Afterwards, the initial rotational energy Erot

is calculated from the Hamiltonian by setting pθ = pr = pR = 0.

3. The energy of the diatom vibration is set by

Evib = (E − Erot)x4 . (C.24)

The position and momentum are then set by

R = Req +

(
Evib

2π2µRν2
harm

) 1
2

cos(2πx5) (C.25)

pR = − (2µREvib)
1
2 sin(2πx5) . (C.26)

4. The energy associated with the internal diatom rotation is sampled from

Eint = (E − Erot − Evib)x6 . (C.27)

The corresponding momentum is obtained by solving

1

2Ir

(
p2
θ − 2(J2 −K2)

1
2 sin(qK)pθ

)
+

p2
θ

2IR
= Eint (C.28)

for pθ. This is a quadratic equation and the positive and negative roots are randomly
chosen.

5. Finally, the translational energy is obtained from

Etrans = E −H(qK , θ, r, R,K, pθ, pR, pr = 0) , (C.29)

which is solved for pr to get

pr = −(2µEtrans)
1
2 . (C.30)

Only the negative root is taken as we are interested in reactive collisions. Since the
trajectories are initiated from r = 30 Å (the interaction potential is virtually zero),
it is fair to assume that any trajectory with pr > 0 will never make it to the product
valley.

At each step, it is checked that H ≤ E, and if H > E, the whole sampling procedure is
restarted. When the initial conditions are set like this, the average initial energy associated
with each mode are related by 〈Evib〉 ≈ 2〈Eint〉 ≈ 2〈Etrans〉.

The purpose of the trajectory calculations was to obtain an estimate for the number of
trajectories that recross the variationally optimised dividing surface at a given E and J .
This information was used to calculate a dynamic correction factor

χ(E, J) =
Nnorecross

Nnorecross +Nrecross

, (C.31)
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where Nnorecross and Nrecross are the number of trajectories that cross the dividing surface
only once and more than once, respectively. This correction factor was then used to
compute a canonical rate coefficient from

k(β) =
1

hQ(β)react

∫ ∞
0

∫ ∞
0

χ(E, J)N ‡FTST(E, J)e−βEdJdE . (C.32)

The trajectories were run in batches of 560. If the value of χ(E, J) changed by less
than 1%, the trajectory runs for the specified E and J were terminated. An individual
trajectory was terminated when it was deemed reactive (100 kJ mol−1 down in the HO2

•

potential well), unreactive (returned back to the initial centres-of-mass distance 30 Å),
or when the energy of the trajectory differed more than 1% from the initial energy. The
number of trajectories for a given E and J that failed due to energy conservation or other
numerical issues were always negligible and often zero.

The codes used in the trajectory and FTST calculations can be inspected here:
https://github.com/ttpekkan/git
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D Inverse Laplace Transform

The canonical rate coefficient of a reaction can be expressed in terms of the Laplace
transform of the J-averaged state sum N ‡(E)J of the TS,

k(β) =

∫∞
0

∫∞
0
ρreact(E, J)k(E, J)e−βEdJdE∫∞

0

∫∞
0
ρreact(E, J))dJe−βEdE

(D.1)

=

∫∞
0
ρreact(E)Jk(E)Je−βEdE∫∞
0
ρreact(E)Je−βEdE

(D.2)

=

∫∞
0
N ‡(E)Je−βEdE

hQ(β)
(D.3)

=
L[N ‡(E)J ]

hQreact(β)
. (D.4)

This procedure can be inverted to obtain N ‡(E)J from the canonical rate coefficient. For
example, if one wanted to obtain the TS state sum for a A + B recombination reaction,
one can obtain it from

N ‡(E)J =hL−1[kdis(β)QAB,rovib(β)] . (D.5)

The equilibrium constant relates the recombination and dissociation rate coefficients,

K(β) =
krec(β)

kdis(β)

p	

RT
=
krec(β)

kdis(β)

1

V 	
, (D.6)

so

N ‡(E)J = hL−1

[
krec(β)

K(β)V 	
QAB,rovib(β)

]
(D.7)

= hL−1

[
krec(β)

QA,trans(β)QB,trans(β)

QAB,trans(β)V 	
QAB,rovib(β)

QAB,rovib(β)
QA,rovib(β)QB,rovib(β)eβ∆rE

]
(D.8)

= h

(
2πµ

h2

) 3
2

L−1

[
krec(β)

(
1

β

) 3
2

QA,B,rovib(β)eβ∆rE

]
. (D.9)

Here p	 = 1 bar and V 	 are the standard pressure and volume, respectively, and µ
is the reduced mass of the recombining fragments. If the canonical recombination rate
coefficient is expressed in modified Arrhenius form

krec(β) = A

(
β0

β

)m
e−βE

′
a , (D.10)

one obtains

N ‡(E)J = Ahβm0

(
2πµ

h2

) 3
2

L−1

[(
1

β

)m+ 3
2

e−β(E′a−∆rE)QA,B,rovib(β)

]

=
Ahβm0

Γ (m+ 3
2
)

(
2πµ

h2

) 3
2
∫ E

0

u(ε+ ∆rE − E ′a)(ε+ ∆rE − E ′a)m+ 1
2ρA,B,rovib(E − ε)dε .

(D.11)
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E Torsional Coupling

The starting point of the derivation is the kinetic energy expression of the coupled internal-
external rotation system,

2T =
(
ω q̇int

)(I CT

C I int

)(
ω
q̇int

)
= Q̇

T
AQ̇ . (E.1)

Here ω = (ωx, ωy, ωz), I is the moment of inertia tensor, C contains the coupling terms
between internal and external rotations, and I int are the inertial moments about a given
bond and their coupling terms. Like in Appendix B, the relationship between Q and the
generalised Euler velocities is given by Q̇ = Sq̇ (see equation B.5), so

2T = Q̇
T
AQ̇ = (Sq̇)TASq̇ = q̇Taq̇ . (E.2)

As shown in Appendix B, q̇ = a−1p, which gives

2T = pTgp , (E.3)

where g = a−1. Now we have the Hamiltonian

H =
1

2
pTgp+ V (qint) (E.4)

and the partition function for the coupled system is obtained from

Q(β) =
1

hn

∫ ∫ (
e−

1
2
pTgpβdp

)
e−V (qint)βdq . (E.5)

The integrals over the momenta and Euler angles (|a| = sin(Θ)|A| = sin(Θ)|G|−1) can
be done analytically, giving

Q(β) = 8π2

(
2π

βh2

)n
2
∫
|A|

1
2 e−V (qint)βdqint . (E.6)

Since
Q(β) = L[ρ(E)] (E.7)

can be inverted to give
ρ(E) = L−1[Q(β)] , (E.8)

we get

ρ(E) = 8π2

(
2π

h2

)n
2

L−1

[(
1

β

)n
2
−1 ∫

|A|
1
2

1

β
e−V (qint)βdqint

]
(E.9)

= 8π2

(
2π

h2

)n
2 1

Γ (n
2
− 1)

∫ E

0

∫
(E − ε)

n
2
−2u(ε− V (qint)|A|

1
2 dqintdε . (E.10)
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