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Notation

symbol explanation
𝑥 coordinates

𝑓, 𝑓(𝑥) ideal signal (image) at infinite precision, function 𝑓 ∶ Ω → ℝ2, Ω ⊂ ℝ2

Ω ⊂ ℝ2 image domain, often [𝑎, 𝑏] × [𝑐, 𝑑] ⊂ ℝ2

̂𝑓 , 𝔉(𝑓) Fourier transform of 𝑓
ℜ𝑓(𝑟, 𝜃) Radon transform of 𝑓 specified by 𝑟 and 𝜃

𝐟 discretely sampled numerical image, ’dropped’ to vector
𝐀 projection matrix
𝜺 noise term vector
𝐦 measurement vector

𝐦 = 𝐀𝐟 + 𝜺 linear forward model
𝐟 ∗ estimated approximate numerical solution to inverse problem 𝐦 = 𝐀𝐟 + 𝜺
𝐟u� 𝑘th iterative solution in iterative algorithms

𝜖, 𝜖limit (projection) error, error limit
𝑄 objective function in optimization tasks
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Chapter 1

Introduction

This thesis investigates X-ray computed tomography of hollow, metal pipes or tubes
with purpose of recovering small, sub-millimeter size irregularities inside the pipe
wall. The task is motivated by in the quality control and inspection of circumferential
pipe welds.

1.1 Non-destructive testing of pipe welds

Pipelines constructed of smaller pipe sections joined together by girth welds are
common in modern industrial environments. During the welding process, various
defects and impurities can be introduced to into the weld seam, affecting integrity
and structural soundness of the weld. Many of use cases for such pipes require welds
that must be able to withstand high stress and pressure loads. Examples of such
safety critical applications range from cooling circuits of nuclear power plants [1]
to underwater oil pipelines [2]. Quality control of weld joints in such applications
is of utmost importance. Inspection of weld joint quality without breaking or
otherwise affecting the object being inspected falls within the scope of the wider
field of non-destructive testing (NDT, also non-destructive evaluation or inspection).
Various methods for testing quality of welds and pipework are in use today, such as
ultrasonic techniques and X-ray radiography. [1, 3]

In this thesis, we study algorithms for X-ray computed tomography of simulated
and physical phantoms that are motivated by the girth weld inspection task.

1.2 X-ray computed tomography and inverse problems

Computed tomography (CT) is a branch of applied inverse problems [4]. The field
of numerical inverse problems concerns itself with finding reconstruction of some
unknown function given a set of measurements of the function. If we denote the
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unknown function by 𝑓 , the measurements by 𝑚, and let operator 𝐴 to describe the
relation between the unknown and the measurements, the measurement model can
be stated as

𝑚 = 𝐴(𝑓).

The forward problem is determining 𝑚 given 𝐴 and 𝑓 , and the respective inverse
problem is to recover 𝑓 given 𝑚 and 𝐴. The measurements are often imperfect: the
set of measurements may be too small to fully determine 𝑓 , and in many cases they
are to some extent corrupted by noise. Because of these reasons, in many interesting
practical applications the inverse problem is ill-posed.

In computed tomography, one wishes to numerically reconstruct a two or three-
dimensional view of the internal structure of a given object 𝑓 from a set of X-ray
projection images 𝑚 (also called radiographs). Colloquially described, we wish to see
inside of the object without breaking it apart. Micrometer-precision image resolution
CT (microtomography or micro-CT) is today an established technique in medical
radiology. [See e.g. 5, 6]

Traditional CT algorithms like filtered back-projection are fast, but require
a large quantity of full-view projection images sampled at high angular density
from all directions around the target. However, often one wishes to work with
limited projection data. In medical imaging, taking minimal number of projection
images reduces radiation dose received by the patient. In industrial NDT setting
the radiation exposure aspect is not as important, but nevertheless smaller number
of projection images taken can speed up the imaging process and thus result in
more cost-effective procedure. Sometimes projection data can be limited for other
reasons, for example projections are available only from certain direction or without
full view of the inspected object. The problem of using only a few, sparsely sampled
number of projection images is known as sparse angle tomography. In some settings
projections are available only from restricted angular range (limited tomography).
Unfortunately CT with classical algorithms becomes ill-posed problem with severely
reduced projection data, which motivates the study of algorithms that utilize a
priori information. [4, 7, 8]

1.3 A priori information in CT algorithms

One way to alleviate the problem of ill-posedness in limited data X-ray CT is to
augment the reconstruction algorithm with prior information about the object
of interest. One such source of prior information is knowledge that the object of
interest is composed of only a few kinds of different materials and each kind of
material itself has uniform composition. The subfield of computed tomography that
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studies such problems is known as discrete tomography [9] (also sometimes called
discrete-valued tomography). If we view a 2-dimensional tomographic reconstruction
slice as a gray-scale image, in discrete tomography we assume that the pixels in the
reconstructed image are allowed to take only certain gray values from a pre-defined
(discrete) set. A special case of discrete tomography where there are only two allowed
gray values (often normalized to {0, 1}) is known as binary tomography. [9]

The assumptions of discrete tomography hold for a large number of objects in
industrial applications, where number and radiological properties of constituent
materials of the object can often be known beforehand. This is also true in the case
of metal pipe sections welded together: The composition of the pipe base metal is
uniform, and each weld can be assumed to have practically uniform structure aside
from some discontinuities and defects. The common defects found inside the weld
are also often approximately homogeneous, as the they are created by either lack of
weld material (i.e. voids and cracks filled with some gas) or presence of extraneous
material (slag inclusions).

One popular modern algorithm for discrete tomography is DART, introduced
by Batenburg and Sijbers [10], which has spawned a family of related algorithms
based on DART [11, 12, 13]. In addition to DART-family of methods, many
other algorithms for discrete and binary tomography on have been proposed in
the literature in the recent years, including (to name a few) belief-propagation
algorithm and Markov random field model from statistical physics [14], hierarchical
probabilistic models [15, 16], graph-cut algorithms [17, 18] and various other models
and methods [19, 20, 21, 22, 23, 24, 25].

Total variation minimization (TVM, introduced in image reconstruction context
by Osher and Rudin [26] and Rudin, Osher, and Fatemi [27]) is another popular
way to improve CT reconstruction quality with prior information. It builds upon a
similar notion as discrete tomography, but from a slightly different point of view:
instead of assuming a discrete set of gray values, TVM is based on the observation
that many interesting objects consist only of piecewise constant or smooth areas that
have only relatively few sharp discontinuities (that is, edges) between the smooth
areas. In TVM, we assume is that the total variation of the gradient magnitude of
pixel values in the reconstructed image should be minimal, which corresponds to the
characterization of the ideal reconstruction as consisting of relatively homogeneous
areas.

The third source of prior information considered in this thesis is the peculiar
geometry of the welded pipe itself: As noted above, we can safely assume a priori
that the metal pipe segments themselves have the uniform attenuation. We can also
assume that the hollow pipe segments are empty inside, and contain only uniform
intermediate material (which is often air). Moreover, the geometry of the segments
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and measurement setup can be known beforehand down to millimeter precision.
Only the internal structure of a rather small weld area (wherein the possibly defects
lie) is uncertain. In this work we investigate if this information can be used to guide
the reconstruction algorithm.

As a summary, in this thesis we study algorithms based on both DART-like
discrete tomography heuristic (namely, SDART, which is a smooth variant of DART
proposed by Bleichrodt, Tabak, and Batenburg [11]) and the total variation prior
(TVM), and methods for combining them with the pipe geometry prior. Recently
there has been interest in combining TV and DART, [28, 13, 29], and we also
experiment with some conceptually simple ways to combine them. The software
implementation of the algorithms was written in MATLAB [30], using ASTRA [31,
32, 33] and Spot toolboxes [34].

1.4 Prior literature on X-ray tomography for NDT of
pipes and girth welds

In recent decades there has been some interest in developing methods and tools
for X-ray tomography of pipes and welds (both circumferential pipe welds and
regular linear welds): Jovanović, Kosec, and Zorc [35] study weld NDT but only
with traditional slow CT algorithms. Venkatraman, Raj, and Vaithiyanathan [36]
simulated phantoms of various weld defects and used SART and linear system
of equations solver for reconstruction. Redmer et al. [37] describe a device for
conducting computed laminography and tomography of pipe welds (TomoCAR)
and Ewert et al. [38] [1] present further development of similar device (called
TomoWELD). For the computed tomography reconstruction part, both TomoCAR
and TomoWELD papers [37, 38, 1, 39] discuss traditional algorithms (FBP, ART)
only. Vengrinovich et al. [40] describe a toolchain that uses a Bayesian method
for weld inspection and especially restoration of cracks. Riis et al. [2] study a
limited-view setup similar to the one considered in this work in the context of
underwater pipe inspection and use shearlet-based algorithm for reconstruction.
Haith, Huthwaite, and Lowe [41] also study underwater pipeline defect detection and
characterization by radiography and they apply similar prior constraints from pipe
weld geometry, but they use background subtraction and ray-tracing algorithms.

1.5 Outline of the thesis

The rest of the thesis is structured as follows: Chapter 2 provides first an introduction
to X-ray computed tomography and classic reconstruction algorithm called filtered
backprojection (FBP), followed by an introduction to the linear inverse problems
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point-of-view to CT and regularized reconstruction algorithms, and finally also an
introduction to discrete tomography. In Chapter 3 we look into the steel pipe welding
defects in a more detail and study how X-ray CT could be used in the NDT task of
detecting weld defects, and also explain how the weld inspection problem inspired
the design of the experiments, such as choice of the imaging geometries and use of a
priori information. In Chapter 4 the main algorithms and methods considered in
this thesis are described. The setup of simulated phantom objects, the construction
of the physical aluminum phantom, and other details of the conducted experiments
is described in Chapter 5. In Chapter 6 we discuss the results of the experiments,
and conclude the thesis in Chapter 7. Details and proofs of some relevant numerical
algorithms that fall outside the main scope of the thesis are described in Appendices.
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Chapter 2

Theoretical background of
inverse problems and X-ray
computed tomography

This chapter presents the necessary theoretical background to linear inverse problems
in the context of X-ray tomography. We also describe classic reconstruction algorithm
(filtered backprojection) and notion of discrete tomography.

2.1 Basics of X-ray computed tomography

In this section we describe how radiographic projection images are formed and the
Radon transformation model for computer tomography. Sources were Aarle [42,
Ch.1], Müeller and Siltanen [4, Section 2.3], and Kak and Slaney [43, Ch.1].

2.1.1 X-ray imaging

X-rays are a type of electromagnetic radiation capable of passing through materials
that appear opaque in the range of the electromagnetic spectrum that is visible
to human eye. The latter property makes radiography and other forms of X-ray
imaging possible, as discovered by Wilhelm Röntgen in 1895.

X-rays used in radiographic imaging are typically generated by an X-ray tube,
which we can understand as a point-like source that shoots a beam of high-energy
photons. As the X-rays travel through matter, they interact with it in various
ways that depend on the atomic composition of the matter and the energy of X-ray
photons. While the actual physical interactions involved are quite complicated, from
the mathematical modeling point of view they can be viewed as a phenomenon
where the object absorbs or scatters some of the photons that travel through it, but
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leaves some photons untouched. As a result, per each unit of distance in matter,
a slightly fewer number of photons leave than enter each such unit-length window.
The interaction of photons and matter can be approximately characterized by a
numerical quantity called attenuation factor or coefficient, and we also say that
the X-ray is attenuated while it traverses in the object being imaged: The matter
that absorbs high proportion of X-ray photons has high attenuation coefficient;
the matter through which the photons pass through easily is said to have a low
attenuation coefficient. In radiographic imaging applications, an object of interest
is illuminated with X-ray radiation. The photons that were not absorbed exit the
object and arrive on a detector surface; we refer to photon count also as the intensity
of the X-ray. Traditional choice of the detector material has been film, but today
digital detectors that count the number of photons observed on a single rectangular
unit of the detector surface (pixel) are increasingly common. (In this work we are
mainly interested in digital tomography.) The projection image formed is known as
radiograph.

Following the presentation in [4], the image formation process described above
can be modeled mathematically (in the two-dimensional case) in the following way:
Let us define the attenuation coefficient of a horizontal cross-section of the object
of interest at location 𝐱 = (𝑥1, 𝑥2) ∈ 𝐵 ⊂ ℝ2 as 𝑓(𝐱), where 𝑓 is a non-negative
attenuation coefficient function 𝑓 ∶ 𝐵 → ℝ≥0 with a compact support and 𝐵 is the
imaging area.

First we establish the connection between the detected photon counts (i.e.
intensity) and the attenuation 𝑓 . Because X-rays are non-diffracting, we can
mathematically model them as straight lines. Assume our X-ray source is located at
point 𝐱0 and the ray leaving arrives on a detector pixel located at 𝐱1, and denote
the intensity of the X-ray leaving the radiation source and arriving on the detector
by 𝐼(𝐱0) =∶ 𝐼0 and 𝐼(𝐱1) =∶ 𝐼1, respectively. Let us examine the straight line
𝐬 = 𝐬(𝑡), 𝑡 ∈ [0, 1] from 𝐱0 = 𝐬(0) to 𝐱1 = 𝐬(1). The relative loss in the intensity
𝐼 of a narrow X-ray that that travels a small distance Δ𝑠 = |Δ𝐬| along the line is
given by the formula

(2.1) Δ𝐼(𝐬)
𝐼(𝐬)

= −𝑓(𝐬)Δ𝑠,

where 𝑠 is the arc length along the parametrized path 𝐬.
By taking the line integral along the path 𝐬, we have

(2.2) ∫
u�

𝑓(𝐬)𝑑𝑠 = − ∫
u�

1
𝐼(𝐬)

𝑑
𝑑𝑠

𝐼(𝐬)𝑑𝑠 = − [log 𝐼(𝐬(𝑡))]10 = log 𝐼0 − log 𝐼1.
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Equivalently, this formula can be rearranged as

(2.3) 𝐼1 = 𝐼0 exp (− ∫
u�

𝑓(𝐬)𝑑𝑠)

and is known as a Beer-Lambert law for monochromatic X-rays. ’Monochromatic’
means the model assumes that X-rays are assumed to be of a single energy; true
X-rays generated are almost always to some extent polychromatic. Inaccuracy arising
from this modeling assumption often causes various beam hardening artifacts in the
reconstructed images.

The account of the physics of X-ray generation and imaging presented here
is simplified, because its main purpose is to motivate how the line integral of
attenuation function 𝑓 can be related to the measured photon count data.

In computed tomography, the inverse problem is to recover the attenuation
function 𝑓 of an object of interest given several image projections taken from
multiple angles of view.

2.1.2 Parallel and cone beam geometry

In the preceding subsection, we looked at a single line of one X-ray passing through
an object and measured the intensity drop of this single ray. In reality we have a set
of measurements from a flat panel detector which can be viewed as a rectangular
array of pixels.

The panel captures an image that is formed when X-rays arrive on the detector
surface after passing through the object of interest.

An important modeling choice is how we model the path of the X-ray beam. In
parallel beam model (Figure 4a), we assume that X-rays radiate from a source so far
away from the detector that they can be assumed to be (approximately) parallel. In
fan beam (Figure 4b) model a point-like source is assumed, which results in a more
exact model.

In all numerical computations in this thesis, we assume a fan beam model, but
in the following sections we will present basic idea of FBP algorithm in parallel
beam model, where mathematical treatment is somewhat simpler.

2.1.3 Radon transform

Our measurement model is based on the Radon transform of the function 𝑓 , which
is defined as line integral along line path 𝐬, when 𝐬 is written in terms of an angle 𝜃
and a scalar variable 𝑟 ∈ ℝ (with slight abuse of notation)

𝐬 = {𝐱 ∈ ℝ2 ∶ 𝐱 ⋅ ⃗𝜃 = 𝑟}.
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𝐼1 𝐼0

X-ray sourcedetector 𝑓 = 𝑐 > 0

𝑓 = 0

𝐱1 𝐱0

Figure 1: Illustration of the basic attenuation model. A single X-ray beam generated
by X-ray tube at point 𝐱0 travels through an object and arrives on the detector
surface at point 𝐱1. The object consists of radiologically uniform matter (attenuation
coefficient function 𝑓 is constant 𝑓(𝐱) = 𝑐) and the attenuation of the air around
the object is assumed to be zero.

𝑓

𝑐

0

𝐼1 𝐼0

𝐱1 𝐱0

Figure 2: The attenuation profile of 𝑓 corresponding to the same setup as in Figure 1.

𝐼

𝐱1 𝐱0

𝐼1

𝐼0

Figure 3: Drop in the X-ray intensity according to the exponential Beer-Lambert
model 2.3 in the setup depicted in Figure 1. The X-ray intensity remains the same as
long as it travels in air, but as the ray passes through a dense medium, the amount
of photons that are not absorbed decays exponentially.
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(a) Parallel beam.

Detector

X-rays

(b) Fan beam.

Detector

X-ray source

Figure 4: Illustration of parallel (a) and fan beam (b) models. In parallel beam
model, X-rays are assumed to arrive at the detector at right angle. In fan beam
model, the X-rays are assumed to emanate from one single point-like source.

Here ⃗𝜃 is the unit vector tangential to 𝐬 and has angle 𝜃 with the respect to the 𝑥1

axis
⃗𝜃 = [

cos 𝜃
sin 𝜃

] ∈ ℝ2.

Notice that geometrically 𝑟 is a length of projection of vector 𝐱 to a line determined
by the unit vector ⃗𝜃. With this notation, we can formally define the Radon transform:

Definition 1. The Radon transform ℜ𝑓 of the function 𝑓 is the one-dimensional
line integral along the line 𝐬 specified by parameters (𝑟, 𝜃):

(2.4) ℜ𝑓(𝑟, 𝜃) = ℜ(𝑓)(𝑟, 𝜃) = ∫
u�

𝑓(𝐱)𝑑𝑠 = ∫
u�⋅ ⃗u�=u�

𝑓(𝐱)𝑑𝑠.

Notice that assuming the parallel beam model, one full projection image consists
of several line integrals ℜ𝑓(𝑟, 𝜃) where 𝜃 is kept fixed and 𝑟 tells the distance between
the ray and the origin (Alternatively, the length of the vector tangential to 𝐬).

The collection of projections sampled from several angles is called a sinogram.
It will prove useful to express 𝑓(𝑥1, 𝑥2) = 𝑓′(𝑟, 𝑠) in a rotated coordinate system

(𝑟, 𝑠), where 𝑟 is as above and 𝑠 is the distance of the displacement along the line 𝐬.
The coordinate transforms between systems (𝑟, 𝑠) and (𝑥1, 𝑥2) are thus given by

(2.5) [
𝑟
𝑠
] = [

cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

] [
𝑥1

𝑥2
]
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and

(2.6) [
𝑥1

𝑥2
] = [

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] [
𝑟
𝑠
] .

Applying the transform (2.6), the integral in (2.4) becomes

ℜ𝑓(𝑟, 𝜃) = ∫
u�⋅ ⃗u�=u�

𝑓′(𝑟, 𝑠)𝑑𝑠 = ∫
u�⋅ ⃗u�=u�

𝑓(𝑥1(𝑟, 𝑠), 𝑥2(𝑟, 𝑠))𝑑𝑠(2.7)

= ∫
∞

−∞
𝑓(𝑟 cos 𝜃 − 𝑠 sin 𝜃, 𝑟 sin 𝜃 + 𝑠 cos 𝜃)𝑑𝑠.(2.8)

This latter form (2.8) will become useful in the next section when proving the Fourier
slice theorem.

Having now defined the Radon transform, the central problem in computed
tomography can be restated as a task of recovering 𝑓 given the observed Radon
transform ℜ(𝑓)(𝑟, 𝜃) of 𝑓 over multiple 𝜃, 𝑟.

2.2 Filtered backprojection

Filtered backprojection (FBP) is a classic tomographic reconstruction algorithm.
FBP is fast and very common method in industrial applications. In the context
of the weld inspection task, its has a major drawback of not performing well with
limited amount of angles nor with extremely noisy data. In the context of weld
inspection task, tomographic reconstruction by FBP thus necessitates high amount
of projection images (making the imaging process impractically slow).

The FBP algorithm can be described as a filtered, discretized version of the inverse
Radon transform. To motivate the rest of the methods in this thesis, we provide
here a brief introduction to the theory behind the algorithm. The presentation
and the proofs below follow Kak and Slaney [43, Sections 3.2–3.3] and Müeller and
Siltanen [4, Section 2.3.3].

2.2.1 Analytical background: Fourier transform and the Radon
inversion formula

The theoretical background of filtered backprojection algorithm is provided by a
classic result known as the Radon inversion formula. The Radon inversion formula
can be derived by observing a certain relationship between the Radon transform
and the Fourier transform called Fourier slice theorem.

Here we derive the formula for the parallel beam case, building upon the exposi-
tion in Section 2.1.3.
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The Fourier transform is an important integral transform that has many applica-
tions in signal and image processing. Intuitively described, the Fourier transformation

̂𝑓 of a signal 𝑓 is a representation of the original signal as its constituent sinusoidal
frequencies. The connection between the Radon and the Fourier transforms is
established in a classic result called Fourier slice theorem [4, 43] (also known as
central slice theorem [4]).

Let us define the Fourier transform ̂𝑓 = 𝔉(𝑓) of (any) continuous, integrable
function 𝑓 ∶ ℝu� → ℝ, 𝑓 ∈ 𝐿(ℝ2) by

(2.9) ̂𝑓(𝜔) = 𝔉(𝑓)(𝜔) = ∫
ℝu�

𝑓(𝑥)𝑒−u�u�⋅u�𝑑𝑥,

which is a function ̂𝑓 ∶ ℝu� → ℂ; In a dimension 𝑛 = 1, 𝜔 is interpreted as the angular
frequency of the signal 𝑓 . When performing Fourier transform on two-dimensional
signals such as images, we have 𝑛 = 2, and 𝜔 can be viewed as two dimensional
generalization of the frequency. The inverse of the Fourier transform ̂𝑓 is given by

(2.10) 𝑓(𝑥) = 𝔉−1( ̂𝑓)(𝑥) = 1
(2𝜋)u� ∫

ℝu�

̂𝑓(𝜔)𝑒u�u�⋅u�𝑑𝜔.

Together 𝑓 and ̂𝑓 are called a Fourier transform pair.
Equipped with these definitions, we are able to state and prove the Fourier slice

theorem for the parallel beam case.

Theorem 1 (Fourier slice theorem). Let the 𝑓 = 𝑓(𝑥1, 𝑥2) be a compactly supported
integrable attenuation function, and ̂𝑓 its two-dimensional Fourier transform, and
let 𝜃 be an angular parameter 𝜃 ∈ [0, 2𝜋]. Then it holds for all 𝜔 ∈ ℝ that
(2.11)

ℜ̂𝑓u�(𝜔) = ∫
∞

−∞
∫

∞

−∞
𝑓(𝑥1, 𝑥2)𝑒−u�u�(u�1 cos u�+u�2 sin u�)𝑑𝑥1𝑑𝑥2 = ̂𝑓(𝜔 cos 𝜃, 𝜔 sin 𝜃),

where ̂𝑓 = ̂𝑓(𝜉, 𝜂) is the two-dimensional Fourier transform of 𝑓 at a spatial frequency

𝜉 = 𝜔 cos 𝜃

𝜂 = 𝜔 sin 𝜃.

Proof. Let 𝑓 be the compactly supported attenuation coefficient function with a
finite integral, and ℜ𝑓(𝑟, 𝜃) = ∫∞

−∞
𝑓′(𝑟, 𝑠)𝑑𝑠 the Radon transform of 𝑓 expressed

as the (𝑟, 𝑠) coordinate system. Let 𝜃 be fixed, and write the Radon transform as a
function of 𝑟, ℜ𝑓(𝑟, 𝜃) = ℜ𝑓u�(𝑟). The one-dimensional Fourier transform of ℜ𝑓u�(𝑟)
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is ℜ̂𝑓u�, given by

ℜ̂𝑓u�(𝜔) = ∫
∞

−∞
ℜ𝑓u�(𝑟)𝑒−u�u�⋅u�𝑑𝑟.

By substituting the Radon transform in the rotated coordinate system and applying
the change of variables theorem, we get

ℜ̂𝑓u�(𝜔) = ∫
∞

−∞
ℜ𝑓u�(𝑟)𝑒−u�u�⋅u�𝑑𝑟

= ∫
∞

−∞
(∫

∞

−∞
𝑓′(𝑟, 𝑠)𝑑𝑠) 𝑒−u�u�⋅u�𝑑𝑟

= ∫
∞

−∞
(∫

∞

−∞
𝑓(𝑟 cos 𝜃 − 𝑠 sin 𝜃, 𝑟 sin 𝜃 + 𝑠 cos 𝜃)𝑑𝑠) 𝑒−u�u�⋅u�𝑑𝑟

= ∫
∞

−∞
∫

∞

−∞
𝑓(𝑟 cos 𝜃 − 𝑠 sin 𝜃, 𝑟 sin 𝜃 + 𝑠 cos 𝜃)𝑒−u�u�⋅u�𝑑𝑠𝑑𝑟

= ∫
∞

−∞
∫

∞

−∞
𝑓(𝑥1, 𝑥2)𝑒−u�u�⋅(u�1 cos u�+u�2 sin u�)𝐽𝑑𝑥1𝑑𝑥2,

where 𝐽 is the Jacobian,

𝐽 = ∣
u�u�

u�u�1

u�u�
u�u�1

u�u�
u�u�2

u�u�
u�u�2

∣ = (cos 𝜃)2 + (sin 𝜃)2 = 1.

To summarize, the slice theorem states that the one-dimensional Fourier trans-
form ℜ̂𝑓u� ∶ ℝ → ℂ of the Radon transform of 𝑓 at a fixed angle 𝜃 is equal to a
restriction of two-dimensional Fourier transform of 𝑓 , given by ̂𝑓(𝜔 cos 𝜃, 𝜔 sin 𝜃).
Notice in particular that from the equation ℜ̂𝑓u�(𝜔) = ̂𝑓(𝜔 cos 𝜃, 𝜔 sin 𝜃) it follows
that if we sample the projections of an 𝑓 at angles 𝜃u�, 𝑖 = 1 … 𝑛, we will know the
value of ̂𝑓 along radial lines at angles 𝜃u�, and with infinite number of samples, ̂𝑓
would be known fully. (In practice one has finite number of samples and thus one
must interpolate.)

With this result, we are now ready to derive the Radon inversion formula [4,
43], which describes a simple method for computing inverse Radon transform in the
ideal theoretical case.

Theorem 2 (Radon inversion formula). If 𝑓 ∶ ℝ2 → ℝ and its Fourier transform
̂𝑓 ∶ ℝ2 → ℂ are absolutely integrable functions, then

(2.12) 𝑓(𝐱) = 𝑓(𝑥1, 𝑥2) = 1
(2𝜋)2 ∫

u�

0
∫

∞

−∞
ℜ̂𝑓u�(𝜔)𝑒u�u�u�⋅ ⃗u�|𝜔|𝑑𝜔𝑑𝜃.

Proof. We first show that Radon transform satisfies symmetry property ℜ̂𝑓u�(𝑟) =
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ℜ̂𝑓(𝑟, 𝜃) = ℜ̂𝑓(−𝑟, 𝜃 + 𝜋):

ℜ̂𝑓(−𝑟, 𝜃 + 𝜋) = ∫
∞

−∞
ℜ𝑓(𝑡, 𝜃 + 𝜋)𝑒−u�u�(−u�)𝑑𝑡

= ∫
∞

−∞
ℜ𝑓(𝑡, 𝜃 + 𝜋)𝑒−u�(−u�)u�𝑑𝑡

= ∫
∞

−∞
ℜ𝑓(−𝑡, 𝜃 + 𝜋)𝑒−u�u�u�𝑑(−𝑡)

= ∫
∞

−∞
ℜ𝑓(−𝑡, 𝜃 + 𝜋)𝑒−u�u�u�𝑑𝑡

= ∫
∞

−∞
ℜ𝑓(𝑡, 𝜃)𝑒−u�u�u�𝑑𝑡 because ℜ𝑓(−𝑡, 𝜃 + 𝜋) = ℜ𝑓(𝑡, 𝜃)

= ℜ̂𝑓(𝑟, 𝜃)

Now the inversion formula follows from (2.10). Set 𝝃 = (𝜔 cos 𝜃, 𝜔 sin 𝜃), and we
obtain

𝑓(𝐱) = 1
(2𝜋)u� ∫

ℝ2

̂𝑓(𝝃)𝑒u�u�⋅u�𝑑𝝃 change of coord.

= 1
(2𝜋)u� ∫

2u�

0
∫

∞

0

̂𝑓(𝜔 cos 𝜃, 𝜔 sin 𝜃)𝑒u�u�(u�1 cos u�+u�2 sin u�)𝜔𝑑𝜔𝑑𝜃

= 1
(2𝜋)u� ∫

2u�

0
∫

∞

0
ℜ̂𝑓u�(𝜔)𝑒u�u�(u�1 cos u�+u�2 sin u�)𝜔𝑑𝜔𝑑𝜃

= 1
(2𝜋)u� ∫

u�

0
∫

∞

−∞
ℜ̂𝑓u�(𝜔)𝑒u�u�(u�1 cos u�+u�2 sin u�)|𝜔|𝑑𝜔𝑑𝜃.

2.2.2 Numerical algorithm: Filtered backprojection

The standard tomographic reconstruction algorithm based on the Radon inversion
formula is called filtered backprojection (FBP).

We sketch the general idea of the FBP algorithm in the parallel projection
case[4, 43, p. 3.3] as a numerical version of the theory presented above: First,
measure the projection intensities of the object 𝑓 from all angles 𝜃. By Beer-Lambert
law, we can obtain the Radon transform of 𝑓 from the recorded intensities as
ℜ𝑓(𝑟, 𝜃) = log 𝐼0 − log 𝐼1. Then calculate the (discretized equivalent of) Fourier
transform ℜ̂𝑓u�(𝜔) by FFT (Fast Fourier Transform algorithm). Finally we utilize
the formula (2) to obtain the reconstruction in two steps: First compute

(2.13) 𝑄u�(𝑡) ∶= 1
2𝜋

∫
∞

−∞
ℜ̂𝑓u�(𝜔)|𝜔|𝑒u�u�u�𝑑𝜔
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along the line 𝐱 ⋅ ⃗𝜃 = 𝑡; this is viewed as the filter operation that coins the name
’filtered backprojection’. The second step is to ’backproject’ the filtered projection
𝑄u�(𝑡) for each projection to retrieve reconstruction of 𝑓 :

(2.14) 𝑓(𝐱) = 1
2𝜋

∫
u�

0
𝑄u�(𝐱 ⋅ ⃗𝜃)𝑑𝜃.

Here we skipped many technical details to provide a general idea how FBP works
but also an explanation why it can be expected to fail with sparse data (with too
sparse angular sample rate 𝜃, Fourier domain ̂𝑓(𝜉, 𝜂) will have information only on a
few radial lines and the filter-backprojection step can not be expected to work well).

For discussion of details such as filter design see [44, e.g] or full implementation
details (including fan-beam geometries) in [43]. In short, for fan beam geometries
two common FBP algorithms exist: First option is to derive a fan-beam analogue
of the theory above, which results in a weighted FBP. Another way is to notice
that after conducting measurements in the fan beam geometry, by re-ordering all
observed line integrals in a particular fashion, the sinogram can be made to look like
as if the measurements were made in the parallel beam configuration. This results
in a resorting algorithm, implemented by e.g. MATLAB ifanbeam.

The three-dimensional reconstructions can be achieved by either by extending the
theory presented above in two dimensions to the three-dimensional case, or simply
stacking two-dimensional cross-section reconstructions. One popular 3D version
of FBP for the cone beam geometry is the FDK algorithm (by Feldkamp, Davis,
and Kress [45]), which is based on interpreting conebeam as tilted fanbeams [43,
p. 3.6.2].

2.3 Linear inverse problems

2.3.1 Motivation: Limited data tomography as an ill-posed inverse
problem

The natural filtered backprojection reconstruction method based on the Radon
inversion formula 2 (FBP, FDK) has the benefit of being computationally efficient.
The main drawback of the method is that it is not robust if the measurement data
𝑚 is very noisy or only a sparse-angle projection data is available. It is known in
the literature [7] that a FBP reconstruction is numerically stable given complete
data, that is, a large number of projections from all angles around the target object
are available. However, as noted, with increasingly limited projection data the FBP
reconstruction quality suffers. [7]

There are two common imaging situations where the data may become limited:
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either the number of projections may be small (resulting in a sparse tomography
problem), or the angular range from which the projection data is available is re-
stricted(limited-angle tomography). The limited-angle geometries specifically relevant
to the weld inspection scenario are described in more detail in Chapter 3.

In many applications the full projection data may not be available because of
technical constraints (for example, in some setups it may be physically impossible
to take radiographic picture from some particular range of angles), or we wish to
reduce the number of projection images taken for a specific reason: for instance, to
expose the patient to as minimal dose of ionizing radiation as possible [7]1. Taking
fewer radiographs can also result in an overall faster imaging process.

The problem of creating a tomographic reconstruction from limited projection
data is an ill-posed problem in the Hadamard’s sense[4]. Hadamard’s conditions for
well-posed problem are:

1. Existence. There should be at least one solution.

2. Uniqueness. There should be at most one solution.

3. Stability. The solution must depend continuously on data.

In an ill-posed problem, one or more of the conditions fail.

2.3.2 Definition of linear inverse problem

The tomographic reconstruction problem presented in the Section 2.1 can be regarded
as an example of a linear inverse problem. The following presentation is based
on Müeller and Siltanen [4].

As already noted in the Chapter 1, the field of inverse problems studies the
problem of recovering unknown function 𝑓 from possibly noisy measurements 𝑚,
the relationship between which is characterized by an operator 𝐴, or

𝑚 = 𝐴(𝑓).

Recall that in the case of tomography, 𝑓 is the attenuation function, 𝑚 are the
collection of logarithmic photon count intensities as per the line model (2.2), and 𝐴
describes the projection process (the Radon transform). It turns out that in computed
tomography, the interaction operator 𝐴 is an approximately linear operator, and so
we can write our projection model as

𝑚 = 𝐴𝑓.
1Alternatively, one could achieve reduced radiation exposure by applying much shorter exposure

time windows per projection than usual, but this usually results in poor signal-to-noise ratio per
image [6].
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Taking into account that measurements 𝑚 can contain signal noise produced by
various sources, we augment the projection model with an additive noise term 𝜀,

𝑚 = 𝐴𝑓 + 𝜀.

However, in actual numerical computations we do not observe a continuous
function 𝑚 which depends on a continuous 𝑓 at infinite precision, but rather we have
a discretized vector of measurements 𝐦 = [𝑚1, … , 𝑚u�u�

], one per each constituent
pixel on the detector surface per projection view. Likewise the unknown attenuation
function is also treated as a 𝑛u� dimensional vector 𝐟 = 𝑓(𝐱) = [𝑓1, … , 𝑓u�u�

] sampled
at some grid coordinates 𝐱. In two-dimensional case (which corresponds to recon-
struction of one horizontal slice of the target object), 𝐱 is a vector that specifies
𝑛1 × 𝑛2 = 𝑛u� pixel elements, and in the three-dimensional case (the reconstruction
task of a whole three-dimensional volume), 𝐱 specifies 𝑛1 × 𝑛2 × 𝑛3 = 𝑛u� voxels.

Taking the above considerations into account, the numerical inverse problem
model we are mainly concerned with can be written as a matrix equation

(2.15) 𝐦 = 𝐀𝐟 + 𝜺.

Here the interaction operator becomes a 𝑛u� ×𝑛u� real matrix known as the projection
matrix, also sensing or measurement matrix. The vector 𝐟 encapsulates the pixel-level
information about attenuation coefficient, and the elements 𝑎u�u� of the matrix 𝐀
describe how each pixel 𝑓(𝑥, 𝑦) in the image domain contribute to each measurement
𝑚u�. There are various ways to construct projection matrix, depending on the
level of modeling precision and computational simplicity desired. (The choice of
projection matrix is discussed in more detail in Section 2.7.) The unknown vector
𝐟 can be viewed as a two (or three) dimensional pixel (voxel) image subject to
linear transformation 𝐀. The inverse problem is then to recover the vector 𝐟 or
approximate solution that is ”good enough”:

Definition 2 (Inverse problem). Given the forward model (2.15) 𝐦 = 𝐀𝐟 + 𝜺 and
measurement vector 𝐦, the inverse problem is to recover a solution 𝐟 ∗ = 𝐟 or an
estimate 𝐟 ∗ that is near the original target, 𝐟 ≈ 𝐟 ∗.

If the matrix 𝐀 were invertible, a naive solution could be computed by

𝐟 ∗
naive = 𝐀−1𝐦,

relying on the intuition that as 𝐦 ≈ 𝐦 + 𝜺,it would appear sensible to assume that
also 𝐟 ∗

naive = 𝐀−1𝐦 ≈ 𝐀−1𝐀𝐟 = 𝐟 .
However, in vast majority of cases of interest such naive inversion is not feasible
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because the problem is ill-posed. In the context of model (2.15), its ill-posedness
can be characterized in terms of the matrix 𝐀: Usually 𝐀 is not invertible or its
inverse is not continuous, and small changes of 𝐟 result in large perturbations of 𝐦.
For example, even without presence of noise, the linear system defined by matrix
equation 𝐀𝐟 +𝜺 can be underdetermined with 𝑛u� < 𝑛u� (data is undersampled). And
as an additional hindrance, often there is at least some of amount of measurement
noise 𝜺, often enough to prevent naive reconstruction.

Several reconstruction methods for recovering 𝐟 in (2.15) given 𝐀 and 𝜺 have
been proposed in the inverse problems literature in general and for the tomographic
reconstruction problem in particular. In context of CT, we have already described
the analytical filtered backprojection algorithm based on Radon transform. Notice
that given the algebraic formulation (2.15), an unfiltered and incorrectly weighted
’backprojection’ can be obtained by matrix multiplication of the measurement vector
𝐦 by the transpose of the projection matrix,

(2.16) 𝐟backp = 𝐀u� 𝐦.

(’Incorrectly weighted’, because in the backprojection step we would like to set each
pixel in 𝐟 according to inverse of the weight it contributes to respective measurement
pixels in 𝐦 in the forward projection.)

For the rest of this thesis, we will stick to the vector notation of (2.15) and
denote the unknown by 𝐟 for consistency’s sake. In other literature, 𝐱 is also often
used signify the values of the unknown attenuation to be recovered (instead of 𝐟),
but in this text, it refers to the coordinates of the values of the unknown function.

Note that tomographic reconstruction methods that are based on solving the
system of equations (2.15) are commonly called algebraic reconstruction techniques.
We will next review the least squares method for solving (2.15) (LSQ, also known
as singular value solution; Section 2.4) which can be improved with regularization
(for example TV minimization).

2.4 Least-squares solution

One common matrix inversion method is simply finding the approximate least squares
solution 𝐟 ∗ (LSQ solution; also Moore-Penrose pseudo-inverse solution), defined as
(if 𝐀u� 𝐀 is invertible2)

(2.17) 𝐟 ∗ = (𝐀u� 𝐀)−1𝐀u� 𝐦 ∶= 𝐀+𝐦,
2If u�u� u� does not exist, pseudo-inverse u�+ can still be defined (Appendix B) but does not have

a similarly simple formula.

18



which is a minimizing solution to the squared 2-norm error functional

𝐟 ∗ = arg min
u�

‖𝐦 − 𝐀𝐟‖2
2(2.18)

= arg min
u�

∑
u�

(𝑚u� − ∑
u�

𝑎u�u�𝑓u�)
2

(2.19)

(thus the name ”least squares”, from ”sum of the least squares”.) If there are
many solutions 𝐟 that minimize (2.18), to uniquely determine we choose the 𝐟
with the smallest norm ‖𝐟‖2. Also notice that inclusion of inverse 𝐀u� 𝐀 ’fixes’ the
backprojection equation (2.16).

In large-scale problems constructing and inverting 𝐀u� 𝐀 explicitly would require
prohibitively large amount of memory and computation time; a more common
approach is based on singular value decomposition (SVD). In problems of even
more larger scale (such as high-resolution tomographic reconstruction considered in
this thesis), iterative methods are used instead of SVD. One formulation of such
gradient-based minimization algorithm is given in a later chapter. In addition to
LSQ, there exists many other iterative algebraic reconstruction methods (ART).

In practice the LSQ solution (whether computed with the SVD algorithm or a
gradient-based minimization scheme) can often be of poor quality due to matrix
𝐀 being ill-conditioned, and thus we often want to compute regularized solutions
(Section 2.5).

2.5 Regularized reconstructions

As discussed in Section 2.4, the simple LQS-SVD method can yield suboptimal results
for ill-posed inverse problem: Recall that because the matrix 𝐀 is ill-conditioned,
the naive ’exact’ solution to equation 𝐦 = 𝐀𝐟 is sensitive to small perturbations
introduced by the noise term 𝜺 in the right-hand side of 𝐦 = 𝐀𝐟 + 𝜺. The way to
overcome this problem is to apply regularization [4, 46]. One typical regularization
technique is to add a regularization term to the objective function 𝑄. Purpose of the
term is to enforce smoothness in the solutions 𝐟 ∗ and thus dampen the irregularities
of the naive solution. In classical Tikhonov or 𝐿2 regularization [4, 47], one applies
𝐿2 norm, and in 𝐿1 regularization 𝐿1 norm is used, respectively;

To make this talk more concrete, we write down the definitions of Tikhonov and
𝐿1 regularized solutions below. Total variation minimization method covered in
Section 4.1 can also viewed as a particular kind of 𝐿1 regularization [27].

Definition 3 (Tikhonov regularization). To compute a Tikhonov regularized solution,
one minimizes an objective function 𝑄 that combines the quadratic sum of squares
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with (squared) 2-norm of 𝐟 ,

𝐟 ∗ ∶= 𝐟 ∗
Tikhonov = arg min

u�
𝑄Tikhonov(2.20)

𝑄Tikhonov = ‖𝐀𝐟 − 𝐦‖2
2 + 𝛼 ⋅ ‖𝐟‖2

2 .(2.21)

The sum-of-squares term is called data fidelity term and as in unregularized
LSQ-SVD, it measures the distance of the current candidate solution 𝐟 from the
data 𝐦. The squared norm ‖𝐟‖2

2 is the regularization term which encourages the
solutions to be small, alleviating the instability. The constant 𝛼 is a regularization
parameter.

Definition 4 (𝐿1 regularization). 𝐿1 regularized solution is computed quite the
same way as Tikhonov, but replace 2-norm with 1-norm,

𝐟 ∗ ∶= 𝐟 ∗
u�1

= arg min
u�

𝑄u�1
(2.22)

𝑄u�1
= ‖𝐀𝐟 − 𝐦‖2

2 + 𝛼 ⋅ ‖𝐟‖1 .(2.23)

2.6 Discrete tomography

The field of discrete tomography is concerned with a subset of tomographic reconstruc-
tion problems where one can utilize a priori knowledge that elements of 𝐟 are only
allowed to have values from a discrete domain of 𝐾 real values, (𝜌1, … , 𝜌u�) ∈ ℝu�

for some fixed 𝐾 ∈ ℕ. Formally, the discrete tomography problem can be stated as
version of inverse problem (Definition 2) where values of vector 𝐟 ∗ are restricted to
some set of scalars:

Definition 5 (Discrete-valued inverse problem, discrete tomography). Given the
forward model (2.15) 𝐦 = 𝐀𝐟 + 𝜺 and measurement vector 𝐦, recover a solution
𝐟discrete = 𝐟 or an estimate 𝐟 ∗

discrete that is near the original target 𝐟 ≈ 𝐟 ∗
discrete such

that 𝐟 ∗
discrete ∈ {𝜌1, … , 𝜌u�}u� , 𝜌u� ≥ 0.

Alternatively, in discrete tomography one seeks to find 𝐟 ∗ that minimizes an
objective function

(2.24) 𝐟 ∗ = arg min
u�u�∈{u�1,…,u�u�}

‖𝐦 − 𝐀𝐟‖

with respect to some norm ‖⋅‖ or norm-like measure. The discrete-value assumption
can also be seen as a particular kind of sparsity-enforcing restriction. In this
viewpoint, the sparse basis is the set of 𝐾 scalar values {𝜌1, … , 𝜌u�}, and are image
the component vectors; the major difficulty is then in finding the possibly very
complicated component vectors.
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2.7 Projection matrix and kernels

𝑖th pixel𝑤u�

𝑚u�

Figure 5: Line kernel projection model. We assume a single zero width X-ray line
per pixel 𝑚u� on the flat panel detector surface. Reconstruction domain is gridded,
and each voxel/pixel 𝑖 (dashed rectangle) in the grid is assumed to contribute to
intensity observed at detector pixel 𝑚u� according to the length 𝑤u� of the line section
that travels through it.

Let us look in more detail how the matrix 𝐀 is formed in various measurement
setups. On a discretized grid, integral in the line or pencil beam model of (2.2)
can be replaced with a weighted sum of discrete elements, illustrated in Figure 5.
The path of the X-ray 𝐬u� that arrives on the detector pixel 𝑚u� travels through
particular pixels 𝑓u� in the grid, and the negative logarithm of the observed intensity
at the detector:

(2.25) 𝑚u� = ∑
u�∈line u�u�

𝑤u�𝑓u� = log 𝐼0 − log 𝐼1.

Depending on desired level of model precision, different projection kernels can be
chosen to determine the weight 𝑤u� attributed to each pixel through which the X-ray
line travels. The projection geometry and the kernel uniquely determine the matrix
𝐀.

The simplest possible model ignores the effect of projection angles in a grid and
sets 𝑤u� = 1 for all 𝑖, resulting in a very simple approximate formula

𝑚u� = ∑
u�∈line u�u�

𝑓u�,

which results in the very simple projection matrix 𝐀 (a matrix consisting of row
blocks of 1s), but for most purposes this is deemed to be a far too coarse model.
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More refined kernels are usually used [see 48, also 42, p. 13]. Some common kernels
(that are supported by ASTRA Toolbox) are line kernel (which is illustrated in
Figure 5), strip kernel (instead of assuming a zero-width line, also the area of the
pixels is considered), and linear interpolation (Joseph kernel). [42, 31, 32]

In all numerical computations carried out for this work, ASTRA toolbox imple-
mentation of the line kernel was used.

2.8 Noise model

While working with real-world data generated by a physical system, the measure-
ments 𝐦 are often affected by some amount of noise from various sources. In the
model equation

(2.26) 𝐦 = 𝐀𝐟 + 𝜺,

the (additive) noise term 𝜺 characterizes our noise model assumptions. In our
simulated experiments we assume Gaussian white noise, which is a reasonable
approximation for typical noise profile. [7, pp. 1458–1459]
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Chapter 3

The motivating problem of
X-ray tomography of pipe weld
seams

In this chapter we describe the engineering background that inspired the simulated
and physical phantom studies in the later chapters. In the first section we review
the different kind of defects that may arise in welding process, and in the following
sections discuss some practical considerations such as relevant imaging geometries
for tomographic imaging of pipe-like target objects.

3.1 Welding process and weld defects

While a full technical treatment on welding is not within the scope of this thesis, it
stands to reason to provide some examples of defects we want to investigate and a
brief description of the process in which they may arise.

There are many different welding processes: Phillips [3, Ch. 1] mentions over 75,
including various types of arc welding, solid state welding and resistance welding.
Here we are mainly interested in arc welding. While also a great variety of arc
welding processes exist, they all share the same common working principle: molten
weld filler material is injected between the heated pieces of metal (’base metal’) that
are to be joined together. Application of heat causes the base metal and the filler
metal to fuse together. After the filler material has cooled, a lasting metallic bond
has been created. In some processes also high pressure or other energy sources are
applied; in arc welding the heat is produced by electric arc that completes an electric
circuit between the welding power source, electrode and the work piece. Filler metal
is usually supplied by a wire feed mechanism and the weld formation process is
often protected from oxidization with a shield gas (in gas shielded processes) or flux
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material (flux shielded processes). [See 3, Ch. 1, Sec. 2.1]
Many kinds of discontinuities and flaws may be created in the weld depending

on the exact details of the welding process. When the severity or number of
imperfections passes a threshold defined in the standardized code applicable for each
particular intended use case, it is classified as a defect [3, Sec. 13.1]. Here we list
some common types of imperfections and defects that of interest to us:

Porosity consists of rounded voids that contain gaseous materials; one common
cause for them is moisture. Cracks are thin discontinuities that may be caused by
multitude of reasons. [3, p. 234]

In some scenarios several passes of weld are required: for example, after a first
weld pass, another one is required on top of the first one until a joint of desired
thickness is achieved. If the weld is shielded with flux (provided in e.g. filler material
wire). When the filler melts, the flux reacts with impurities in the weld and forms a
protective coating layer of slag on the top of the weld, which should be removed
before the next weld pass. If the slag is imperfectly cleaned and some slag is left in
place before the next welding pass (and thus some slag remains inside the weld), a
defect called slag inclusion is created. [3, p. 13]

For simulation modeling point of view, we treat all defects mentioned above
(pores, cracks, slag inclusions) as sub-mm size or smaller differently-shaped regions
in the weld area that have different atomic composition than the surrounding weld
material.

3.2 Practical considerations regarding X-ray imaging of
metal welds

3.2.1 Issues due to composition of the target object and X-ray
physics

The common industrial non-destructive testing tasks involve radiographic imaging
of metals such as steel and similar materials of high atomic density: inspection of
such objects by radiographic imaging will require high energies and long exposure
times so that any attenuation drop due to small defects can be registered reliably.
This difficulty inspires the choice of looking into sparse-angle tomography: if the
procedure of taking a single radiographic image is slow and expensive, could the
whole imaging process made faster by reducing the number of projections needed?

An additional difficulty is posed by reconstruction artifacts that are caused by
inaccurate model assumptions. As already mentioned in previously in Section 2.1,
usually in CT it is assumed that X-rays are monochromatic (i.e. X-rays have a
single energy), when in reality they are polychromatic (mixture of X-rays of various
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energies). As polychromatic X-ray beam enters the material, the high-energy photons
in the beam are absorbed at a different (lower) rate than low-energy photons and
thus the beam is ’hardened’. The mathematical model, however, assumes a simple
linear attenuation. This modeling inaccuracy tends to cause beam hardening artifacts
in CT solutions, most prominent of which are ’cupping’ or ’whitening’ artifacts
and ’streaking artifacts’. [see 43, pp. 118 – 121] As an example, some amount of
cupping effect can be seen in the ground truth FDK reconstruction of the physical
test phantom in Figure 11. Presence of beam hardening effect and other similar
model inaccuracies may complicate use of algorithms that make strong a priori
assumptions and do not account for the possibility of such effects.

3.2.2 Imaging devices and detectors

Practical imaging geometries for the CT tasks may sometimes necessitate dealing
with limited field-of-view data. In common weld CT setups it is often desirable to
use a detector that is small compared to the size of the pipe being imaged. For
example, the TomoWELD[1] hardware supports detector with sensitive area of 100
mm x 50 mm but the system is intended for inspection of pipes that have diameter
as large as 220mm.

In the following two subsections we present two different, limited-angle imaging
geometries relevant in setups like this: a tomosynthesis-like setup where the detector
or source moves parallel along the length of the pipe, and a regular tomography-like
setup where the detector-source system rotates around the pipe. In both cases, we
discuss only the two-dimensional case, that is, reconstruction of a cross-section ’slice’
of the weld.

3.2.3 Limited angle tomography in a tomosynthesis-like setup

The first setup is familiar from the traditional translational laminography and
tomosynthesis [4, Sec. 9.3.1] and illustrated in Figure 6. In this setup, we have
a point-like X-ray source that moves relative to pipe in direction parallel to its
longitudinal axis (i.e. horizontally in the Figure 6). (Alternatively, functionally
equivalent geometry can be achieved by keeping the location of X-ray source table
and moving the detector and / or pipe. Important feature of the geometry is that
acquisition of projection images of the weld seam from as wide angular range as
possible.) This imaging geometry that corresponds to traditional tomosynthesis
setup and can be viewed as a special case of traditional limited-angle tomography or
tomosynthesis imaging, thus we will refer to as ’tomosynthesis geometry’ throughout
the rest of thesis. The setup can be readily extended to a three-dimensional setting
by noting that the X-ray source and the detector will rotate around the imaged
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pipe-like object, so one can construct a 3D reconstruction by repeating the 2d limited
angle reconstruction slice by slice.

Detector

X-ray source

Figure 6: Schematic illustration of the limited angle tomography in tomosynthesis-
like geometry: X-ray source moves relative to the detector and the area of interest,
and multiple projection images are taken. Region of interest denoted in constant
light green and it contains the weld seam (denoted by dashed lines) and the nearby
area. The rest of the pipe is in light gray pattern.

3.2.4 Tomography with a limited width detector

In case of the second tomographic reconstruction geometry, we are interested in
conducting tomographic reconstructions of the pipe weld with a measurement device
similar to TomoCAR [37] or TomoWELD [38] The basic working principle of such
devices is described as follows: X-ray radiation source and detector instrument are
mounted to the device 180 degrees from each other so that the pipe lies in between
of them. The manipulator is slowly rotated around the pipe (more precisely, the
weld) and required amount of radiographic images of weld seam are taken. As
already discussed, the measurement instrument may be substantially smaller than
the diameter of the pipe being imaged1. Aforementioned devices inspire our second
imaging geometry that can be viewed as a limited-view version of regular (circular
full-angle) tomography, which is illustrated in Figure 8b.

1One could, of course, obtain a full view projection image even with a small detector by shifting
it in a direction tangential to the pipe surface and taking several limited-width projection images
which would be combined into a single projection image, but such procedure would be slow and
require a more complicated mechanical device.
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(a) Regular tomography.

Detector

X-ray source

(b) Local tomography.

Detector

X-ray source

Figure 7: Illustration of (a) regular full or global tomography and (b) local or
region-of-interest tomography. The region of interest to be recovered is denoted with
a constant color (light green in color version). In (b), the uninteresting area where
the radiation exposure should be reduced is marked by gray pattern.
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(a) Exterior tomography.

Detector

X-ray source

(b) Our narrow field-of-view tomography for pipes.

Detector

𝑟

X-ray source

Figure 8: Illustration of (a) exterior tomography and (b) our narrow field-of-view
setup for tomography of pipes with a small detector. Region of interest in green.
In (a), the obscuring region of radiologically oblique material is denoted by dark
pattern. Unused portion of detector in constant gray. In (b), the space inside the
object known to be empty is in white and the undesirable path of X-ray that would
travel a prohibitively long distance through heavily attenuating matter is marked
with the letter 𝑟 (dashed line). Hypothetical defects in the ROI denoted as small
circles: projection data about defects will be available only from limited angle.
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To summarize, in the limited-view tomographic geometry we are interested in
reconstructing a ring-like area (the unknown contents of the weld) in the transversal
cross-section of the pipe with a detector that is not wide enough to capture image of
the whole object in a single view. This is in contrast to the traditional tomography
(Figure 7a), where the common algorithms (such as the ones based on Radon
transform) often require full field-of-view tomography to reconstruct the object
reliably. (Also the full-width data would not necessary be of much use if it was
available: as illustrated in Figure 8b, the X-rays that travel along the path 𝑟 would
become so heavily attenuated that impractical exposure times would be needed to
observe reliable photon count data.) The algorithms presented in Chapter 4 seek to
address this difficulty by utilizing a variety of sources of prior information about the
object.

Above we described only a two-dimensional reconstruction setup. A simple way
to adapt it to the three-dimensional case can be obtained by moving the device by a
small distance parallel to the longitudinal pipe axis and make several measurements
and reconstructions, then stack the two-dimensional reconstruction slices on the top
of each other. A more sophisticated three-dimensional CT could be achieved by
noting that the detector is two-dimensional flat surface, and by constructing a model
for a three-dimensional geometry (resulting in the so called true three-dimensional
reconstruction in a cone-beam model). The circular tomographic setup could also
be combined with the ’tomosynthesis geometry’ described in the previous section
by letting the X-ray device rotate around the pipe once per each tomosynthesis
projection. However, such complicated geometries are not investigated in this work.

3.2.5 Related limited data geometries: Region of interest and ex-
terior tomography

We note that the two setups described above both belong in the wider category
of limited data X-ray reconstruction problems, but are different than some other
related classes of limited data problems that are also common in literature.

In interior or local or region-of-interest tomography (ROI, Figure 7b) one is
interested in the reconstruction of only a small area inside a larger object. In medical
contexts one often wants to expose the uninteresting areas to as little radiation as
possible [49, 7, p. 1439].

In exterior tomography (see Figure8a), one is (like in our situation) only interested
in an exterior area or ’shell’, but contrary to our scenario, the center area is both
uninteresting and radiologically oblique compared to the interesting area (or possibly
the object is of same density throughout but simply so large in diameter that X-rays
are not able to penetrate trough the central region). Because of this the central
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area casts a shadow on the detector and renders the mid-section of the sinogram
unusable. For example, a classical example of an exterior tomography problem is
inspection of an outer part of heavy machinery such as rocket motors. [50]

3.2.6 Limited angle geometry: typical artifacts and detectability
of cracks

Both geometries discussed above can be viewed as variations of the limited angle CT,
where one conducts classical rotational tomography but projections are available
only from limited angular range. In the tomosynthesis geometry the similarity is
self-evident: only difference is in of the X-ray source locations (source moves linearly
instead of rotating).

In the limited-view tomography geometry, the similarity can be readily noticed
if we restrict our attention to any particular fixed small region of interest in the
weld cross-section. (See Figure 8b.) As the detector-source pair rotates around
the center of the object, any region (for example, a hypothetical small defect) will
eventually pass away from the detector view, so projections images where such defect
is illuminated are available only from few angles. Thus the reconstruction task with
a small detector can be viewed as a series of many limited angle reconstructions
solved at once.

The connection between our geometries and the generic limited-angle problem is
worth noting for two reasons. Firstly, in limited angle problems the reconstructions
by the traditional algorithms based on backprojection are plagued by characteristic
’stretching’ aberrations: the details in the reconstructions are elongated in the
directions from which data is not available. The severity of the deviations in the
resulting reconstruction image increases when the angular range measured decreases
(and thus the data becomes more limited). Thus one challenge for the reconstruction
algorithms we investigate here is to recover details in the weld with minimal possible
amount of such stretching artifacts.

Secondly, it also should be noted that detectability of thin cracks in the weld
depends greatly on the positions of X-ray source and detector. Detecting certain
kinds of cracks can become an extremely difficult problem in limited angle problems:
thin cracks positioned at high angles versus the ray beam are practically invisible,
because the minimal drop in the intensity in the X-ray that pass through them. [7,
p. 1440] Consequently in geometries similar to what were presented in preceding
section, it is reasonable to expect to recover only cracks that are perpendicular to
weld surface.
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Chapter 4

Tomographic reconstruction
methods with discrete and total
variation priors

The classical reconstruction methods presented in Chapter 2 often do not achieve
the desired reconstruction quality if the available measurement data is noisy or
limited. In this chapter, we describe two families of algorithms that try to solve the
ill-posed underdetermined tomography problem by the use of prior knowledge: The
first algorithm is total variation minimization, which is viewed as a particular kind
of regularization method. The second algorithm is DART family of algorithms for
discrete tomography.

4.1 Total variation regularization

As already noted in the Chapter 1, total variation minimization (TVM) is a popular
regularization method in CT and other image processing applications. The classical
Tikhonov or 𝐿2 regularization described in Section 2.5 often manages to successfully
suppress noise, but it tends to result in smooth reconstructions. Especially in case of
many man-made objects, it is sensible to assume a piece-wise constant or piece-wise
smooth image model. Sharp transition edges present in such images are not always
captured very well by the Tikhonov method. The main idea of TVM is to tune
the regularization term so that it guides the numerical solution 𝐟 ∗ towards images
that are more consistent with our prior knowledge. This is done by replacing the
𝐿2 regularization term with a term that measures the total variation of the image,
which has a characterization as 𝐿1 norm of magnitude of the image gradient.
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4.1.1 Basic mathematical notions of total variation

The concept of total variation is related to the notion of functions of bounded
variation. We want to define a model for images (mathematically, functions) 𝑓 ∶
Ω → ℝ, Ω ⊂ ℝu�, 𝑛 = 2 that include natural-looking ’piece-wise smooth’ images, but
not others. We do this by first defining total variation in a mathematically rigorous
manner, and then defining our set of desired images as such 𝑓 that have finite total
variation, that is, functions of bounded variation. We present first in one dimension,
where the definition is remarkably simple, and then state the equivalent definition
in several dimensions.

First we define TV in one dimension 𝑛 = 1. Following [e.g. 4, 51, 52, 53], we
define total variation as follows:

Definition 6 (Total variation in one dimension). Let 𝑓 be a real-valued function
𝑓 ∶ [𝑎, 𝑏] → ℝ. Total variation of 𝑓 is defined to be

(4.1) 𝑇 𝑉 (𝑓) = sup
u�u�∶u�∈ℕ

u�
∑
u�=1

|𝑓(𝑥u�) − 𝑓(𝑥u�−1)|,

where the least upper bound (if it exists) is taken over all finite partitions 𝑃u� =
(𝑥0, … , 𝑥u�) of the interval [𝑎, 𝑏], defined by

𝑥u�−1 < 𝑥u�∀𝑖 ∈ {1, … , 𝑘}, 𝑥0 = 𝑎, 𝑥u� = 𝑏.

If 𝑇 𝑉 (𝑓) < ∞ exists, 𝑓 is said to be of bounded variation. The space of functions
of bounded variation is denoted by 𝑓 ∈ 𝐵𝑉 ([𝑎, 𝑏]).

If 𝑓 is absolutely continuous on [𝑎, 𝑏], it can be shown [27, 52] that its total
variation has a particularly suggestive form

(4.2) 𝑇 𝑉 (𝑓) = ∫
[u�,u�]

|𝑓′(𝑥)|𝑑𝑥.

We generalize the concept of total variation in one dimension to ℝu� by replacing
the derivative in (4.2) with gradient of 𝑓 , where 𝑓 is a function 𝑓 ∶ Ω → ℝ, Ω ⊂
ℝu�,yielding

(4.3) 𝑇 𝑉 (𝑓) = ∫
Ω

|∇𝑓(𝑥1, … , 𝑥u�)|𝑑𝑥1, … , 𝑑𝑥u�.

Obviously we are interested in the case 𝑛 = 2. Equation (4.3) is well-defined only
for functions 𝑓 for which gradient ∇𝑓 exists. However, we want to define 𝐵𝑉 (Ω)
in a way that the space 𝐵𝑉 (Ω) would include images 𝑓 with discontinuities such
as edges, and consequently a more rigorous definition is warranted. The classical
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definition [54, 52, 55] is given as follows:

Definition 7 (Total variation in several dimensions). Let 𝑓 be a real-valued function
𝑓 ∶ Ω → ℝ, Ω ⊂ ℝu�, 𝑓 ∈ 𝐿1. The total variation of 𝑓 is defined to be

𝑇 𝑉 (𝑓) ∶= sup {∫
Ω

𝑢(𝑥) div 𝜙(𝑥) ∶ 𝜙 ∈ 𝐶1
0 (Ω, ℝ2), |𝜙| ≤ 1∀𝑥 ∈ Ω} ,

where 𝐶1
0 is the space of functions in 𝐶1 with compact support. The function 𝑓

is said to be of bounded variation if its total variation is finite, 𝑇 𝑉 (𝑓) < ∞. The
space of functions of bounded variation on Ω is denoted by 𝐵𝑉 (Ω).

When the gradient notation ∇𝑓 can be justified, for example if 𝑓 ∈ 𝐶1(Ω) or
𝑓 ∈ 𝑊 1,1(Ω) the definition coincides with equation (4.3). We state the relationship
as a theorem, but omit the proof.

Theorem 3 (Equivalence of characterizations of total variation). If 𝑓 ∈ 𝐶1(Ω),
then

∫
Ω

|∇𝑓(𝑥1, … , 𝑥u�)|𝑑𝑥1, … , 𝑑𝑥u� = 𝑇 𝑉 (𝑓).

Proof. Omitted [55].

Proof in case of 𝑓 ∈ 𝑊 1,1(Ω) would require a more detailed discussion on theory
of Sobolev spaces and weak (or generalized) derivatives, which falls outside the scope
of this thesis.

4.1.2 Total variation for images

In order to carry out any numerical computations a definition of total variation
that applies to discrete approximations 𝐟 of the ideal images 𝑓 ∈ 𝐵𝑉 (ℝ2) is needed.
This can be done by discretizing (4.3) with finite differences, which corresponds to
taking a 𝐿1-norm of a so-called magnitude of (discrete) image gradient.

Definition 8 (Image gradient). We define the gradient ∇𝐟 of two-dimensional
real-valued image 𝐟 by discrete approximation by differences. For each (𝑥, 𝑦), let

(4.4) ∇𝐟(𝑥, 𝑦) = [
𝐷u�𝐟 (𝑥, 𝑦)
𝐷u�𝐟 (𝑥, 𝑦)

] = [
𝑓(𝑥 + 1, 𝑦) − 𝑓(𝑥, 𝑦)
𝑓(𝑥, 𝑦 + 1) − 𝑓(𝑥, 𝑦)

] .

Image gradient also provides helpful intuition why minimal total variation
variation captures desirable properties of ’cartoon-like’ piece-wise constant images:
As we see soon below, TV for digital images is defined as sum over the magnitude
of the image gradient values. From the definition of the image gradient we can see
that in piece-wise constant images, there are only few transition surfaces and the
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sum will be small; in unnatural noisy images, the gradient magnitude will be large
because of many transitions between homogeneous areas.1

Two common discretization schemes, isotropic and anisotropic total variation
are commonly used in literature (and often confusingly both are called ’TV norm’).
The difference between them lies in how one chooses to characterize the notion of
’magnitude’ so that total variation can be computed for discretely sampled (grid-like)
images. Here we define isotropic TV discretization as follows:

Definition 9 (Total variation of image). Given a two-dimensional image 𝐟 indexed
by (𝑥, 𝑦), the isotropic (or 2-1) numerical total variation 𝑇 𝑉 (𝐟)2,1 of image 𝐟 is
given by

𝑇 𝑉 (𝐟)2,1 = ‖∇𝐟‖1 = ∑
u�,u�

|∇𝐟(𝑥, 𝑦)|, where

|∇𝐟(𝑥, 𝑦)| ∶= ‖∇𝐟(𝑥, 𝑦)‖2

= √(𝑓(𝑥 + 1, 𝑦) − 𝑓(𝑥, 𝑦))2 + (𝑓(𝑥, 𝑦 + 1) − 𝑓(𝑥, 𝑦))2.

In addition anisotropic discretization [see e.g. 56, 57, 58] is defined as follows:

Definition 10 (Anisotropic total variation). Given two-dimensional image 𝐟 indexed
by (𝑥, 𝑦), the anisotropic numerical total variation 𝑇 𝑉 (𝐟)1-ani of image 𝐟 is given by

𝑇 𝑉 (𝐟)1-ani = ‖∇𝐟‖1-ani = ∑
u�,u�

|∇𝐟(𝑥, 𝑦)|ani, where

|∇𝐟(𝑥, 𝑦)|ani ∶= ‖∇𝐟(𝑥, 𝑦)‖1

= |𝑓(𝑥 + 1, 𝑦) − 𝑓(𝑥, 𝑦)| + |𝑓(𝑥, 𝑦 + 1) − 𝑓(𝑥, 𝑦)|.

While both definitions involve 𝐿1-norm sum ∑u�,u�|∇(𝐟(𝑥, 𝑦))| over the discrete
gradient of the image 𝐟 , in the isotropic version we compute the regular image
gradient magnitude with the Euclidian 𝐿2-norm, and in the anisotropic case we
instead have the 𝐿1-norm of the gradient. Consequently the methods yield different
results for a given image 𝐟 . While the isotropic discretization measures the perimeter
of the objects and the shapes in the image, the anisotropic discretization sums
the lengths of the edges along the coordinate axis 𝑥, 𝑦, which encourages ’blocky’
reconstructions that might be desirable in certain applications [57].2 However, in
this text, ”total variation” refers to the isotropic approximation unless otherwise
indicated.

1See Rudin [51] for extended discussion why this is an applicable model for natural images.
2Also other characterizations exist. For example, motivated by compressed sensing literature

Lou et al. [58] propose combining the two formulations by subtracting the isotropic term from the
anisotropic one, yielding regularization term that that better approximates u�0.
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4.1.3 Practical algorithm for total variation minimization

Computing a TV-regularized solution can be stated as a task where one minimizes
an objective function 𝑄, in which the data fidelity term is regularized by a 𝐿1 total
variation term:

𝐟 ∗ = arg min
u�

𝑄u�u� (𝐟 ) where(4.5)

𝑄u�u� (𝐟 ) = ‖𝐀𝐟 − 𝐦‖2
2 + 𝛼 ⋅ 𝑇 𝑉 (𝐟)2,1.(4.6)

Many algorithms have been proposed for either minimization of 𝑄u�u� or solving
some other alternative characterization that results in a TV-regularized solution
(to name a few, projection-onto-convex-set algorithms POCS and ASD-POCS [see
eg 59, 6], primal-dual algorithm [60] and many others). Gradient descent methods
are efficient choice for the large-scale computations involved here, and simple to
implement. Here we use a gradient-descent algorithm similar to Müeller and Siltanen
[4, pp. 90–92] and Hämäläinen et al. [61, Sec. 2.4], in particular, a steepest descent
method with the step-length choice method of Barzilai and Borwein [62] and non-
negativity projection.

Applying gradient-based algorithm to minimization of 𝑄u�u� as-is, however, is
not straightforward. The issue is that the TV term in 𝑄u�u� is not differentiable at
0 because of the Euclidian norm inside the TV norm,

𝑇 𝑉 (𝐟)2,1 = ∑
u�,u�

|∇𝐟(𝑥, 𝑦)| = √(𝑓(𝑥 + 1, 𝑦) − 𝑓(𝑥, 𝑦))2 + (𝑓(𝑥, 𝑦 + 1) − 𝑓(𝑥, 𝑦))2,

which are not differentiable at 0. One efficient practical numerical algorithm can be
found by replacing the |⋅| term in TV-norm with a smooth approximation

|𝑥| ≈ |𝑥|u� = √𝑥2 + 𝛽, 𝛽 > 0 small.

Applying this approximation yields an approximate the energy functional 𝑄u�,

(4.7) 𝑄u� = ‖𝐀𝐟 − 𝐦‖2
2 + 𝛼 ⋅ ∑

u�,u�
|∇𝐟(𝑥, 𝑦)|u�,

which is everywhere differentiable, and thus fast gradient-based iterative numerical
algorithms can be utilized.

In detail, the gradient ∇𝑄u� with respect to 𝐟 = [𝑓1, … , 𝑓u�u�
] is defined as

∇𝑄u�(𝐟 ) = ∇u� 𝑄u�(𝐟 ) = [ 𝜕
𝜕𝐟(𝑥, 𝑦)

𝑄u�(𝐟 (𝑥, 𝑦))]
u�,u�

(4.8)
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and we wish to evaluate

∇u� 𝑄u�(𝐟 ) = ∇u� (‖𝐀𝐟 − 𝐦‖2
2) + ∇u� 𝛼 ⋅ ∑

u�,u�
|∇𝐟(𝑥, 𝑦)|u�.

As the 2-norm is a quadratic form, ‖𝐀𝐟 − 𝐦‖2
2 = (𝐀𝐟 − 𝐦)u� (𝐀𝐟 − 𝐦), the first

term of the gradient can be evaluated as

∇u� (‖𝐀𝐟 − 𝐦‖2
2) = 2𝐀u� (𝐀𝐟 − 𝐦)(4.9)

= 2𝐀u� 𝐀𝐟 − 2𝐀u� 𝐀𝐦.(4.10)

The gradient of second term is found by applying chain derivative rule, resulting
in expression

𝜕
𝜕𝐟(𝑥, 𝑦)

∑
u�,u�

|∇𝐟(𝑥, 𝑦)|u� = 𝜕
𝜕𝐟(𝑥, 𝑦)

∑
u�,u�

√(𝑓(𝑥 + 1, 𝑦) − 𝑓(𝑥, 𝑦))2 + (𝑓(𝑥, 𝑦 + 1) − 𝑓(𝑥, 𝑦))2 + 𝛽

= 𝑓(𝑥 + 1, 𝑦) − 𝑓(𝑥, 𝑦)

√(𝑓(𝑥 + 1, 𝑦) − 𝑓(𝑥, 𝑦))2 + (𝑓(𝑥, 𝑦 + 1) − 𝑓(𝑥, 𝑦))2 + 𝛽

+ 𝑓(𝑥, 𝑦 + 1) − 𝑓(𝑥, 𝑦)

√(𝑓(𝑥 + 1, 𝑦) − 𝑓(𝑥, 𝑦))2 + (𝑓(𝑥, 𝑦 + 1) − 𝑓(𝑥, 𝑦))2 + 𝛽

+ 2𝑓(𝑥, 𝑦) − 𝑓(𝑥 + 1, 𝑦) − 𝑓(𝑥, 𝑦 + 1)

√(𝑓(𝑥 + 1, 𝑦) − 𝑓(𝑥, 𝑦))2 + (𝑓(𝑥, 𝑦 + 1) − 𝑓(𝑥, 𝑦))2 + 𝛽
.

The gradient descent method of Barzilai and Borwein [62] is a variation of the
classic steepest descent algorithm which itself dates back to Cauchy. In the steepest
descent method, the iterative solutions 𝐟u� are found by taking a small step in
direction in which the objective function 𝑄 seems to decrease fastest, as indicated
by the gradient ∇𝑄(𝐟u�−1) evaluated at the previous location 𝐟u�−1:

(4.11) 𝐟u� = 𝐟u�−1 − 𝑠u�−1∇u� 𝑄u�(𝐟u�−1).

The convergence to global optimum is clearly guaranteed if the objective function
𝑄 is globally convex. In traditional steepest descent, the optimal step-length 𝑠u� at
each step is chosen by line search, or equivalently, solving minimization problem

(4.12) 𝑠u� = arg min
u�

𝑄(𝐟u� − 𝑠∇u� 𝑄(𝐟u�)).

In Newton’s method for quadratic optimization task, the optimal step-length is
given by inverse of a Hessian matrix3 of 𝑄 and in so called quasi-Newton methods,

3Defined for a function u�(u�, u�) as matrix of second order partial derivatives, [ u�2

u�u�u�u� u�]
u�,u�
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by an approximate Hessian.
In the method of Barzilai and Borwein [62], the line search is replaced with a

heuristic that results in an algorithm that is faster to compute and is known to
be more robust for quadratic objectives. Let 𝐟u� be the reconstruction after 𝑘th
iteration, and 𝐲u� = 𝐟u� − 𝐟u�−1. 𝐠u� = ∇u� 𝑄u�(𝐟u�) − ∇u� 𝑄u�(𝐟u�−1). In the BB method
one selects the step-length for the 𝑘 + 1th iteration 𝑠u� to be

𝑠u� = 𝐲u�
u� 𝐲u�

𝐲u�
u� 𝐠u�

,

and the parameter 𝑠u� is the step-length on the next iteration. The BB method can
be justified as way of choosing step-length that best corresponds to the Hessian
approximation of a second-order quasi-Newton methods, but without the compu-
tational overhead involved in finding the (approximate) Hessian. For details, see
Appendix A.

In addition to the standard BB steepest descent described above, we apply a
projection step to enforce an element-wise non-negativity constraint 𝐟 > 0. Let
𝐟 ′ be the reconstruction obtained after the gradient descent step (4.11) of the 𝑘th
iteration,

𝐟 ′ = 𝐟u�−1 − 𝑠u�−1∇u� 𝑄u�(𝐟u�−1).

Then the 𝑘th reconstruction itself is obtained after a projection operation

𝐟u�(𝑥, 𝑦) = max{0, 𝐟 ′(𝑥, 𝑦)} for all (𝑥, 𝑦).

We run BB either until the algorithm hits some predefined convergence limit
(∥𝐀𝐟u� − 𝐦∥ > 𝜖residual or ∥∇u� 𝑄u�(𝐟u�−1)∥ > 𝜖g ⋅ ∥∇u� 𝑄u�(𝐟0)∥) or until a maximum
number of iterations is met.

The final resulting algorithm is given in Algorithm 1.
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Algorithm 1 Gradient descent TVM with Barzilai-Borwein step-length selection
Input:

Projection matrix 𝐀.
Measurement vector 𝐦.
Initial reconstruction 𝐟0.
Maximum number of iterations 𝑘max.
Convergence limits 𝜖residual > 0, 𝜖g.
Regularization parameter 𝛼 > 0.
TV-norm approximation parameter 𝛽 > 0.
Initial (small) step-length 𝑠0 > 0.

Output:
TV-regularized reconstruction 𝐟 ∗.

procedure TVM(𝐀, 𝐦, 𝐟0, 𝑘max, 𝜖residual, 𝜖g, 𝛼, 𝛽, 𝑠0)
𝑘 ← 1.
while not converged or 𝑘 < 𝑘max do

𝐟 ′ ← 𝐟u�−1 − 𝑠u�−1∇u� 𝑄u�(𝐟u�−1).
𝐟u�(𝑥, 𝑦) ← max{0, 𝐟 ′(𝑥, 𝑦)} for all pixels (𝑥, 𝑦).
𝐲u� ← 𝐟u� − 𝐟u�−1.
𝐠u� ← ∇u� 𝑄u�(𝐟u�) − ∇u� 𝑄u�(𝐟u�−1).
𝑠u� = 𝐲u�

u� 𝐲u�/𝐲u�
u� 𝐠u�.

𝑘 ← 𝑘 + 1.
end while
𝐟 ∗ ← 𝐟u�.

end procedure
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4.2 Algorithms for discrete tomography

4.2.1 Discrete Algebraic Reconstruction Technique

The Discrete Algebraic Reconstruction Technique (DART) was introduced by Baten-
burg and Sijbers [10]. DART and its derivatives are all heuristic algorithms. In
this thesis we did not study the original DART algorithm in detail, but opted for
an improved soft constrained version called SDART [11] and our own variant of it
that we call SDART-TV. However, as they are both based on DART and utilize
similar heuristics, their presentation benefits from a brief description of the original
algorithm.

DART is combines any continuous reconstruction algorithm 𝑀 which iteratively
solves (or finds an approximate solution to) the inverse problem 𝐀𝐟 + 𝜺 = 𝐦 with
a heuristic based on the discreteness assumption (that is, the knowledge of the
target object being composed of limited number of homogeneous materials). The
reconstruction method 𝑀 used as subroutine could be for example algebraic solver
(such as SART or SIRT), or TVM; in principle, any suitable iterative (algebraic)
method will suffice.

The fundamental assumption of the DART is that the first intermediate recon-
structions already obtained by the iterative method 𝑀 are often somewhat near
the best possible reconstruction that the algorithm 𝑀 would eventually converge
to. If the intermediate reconstruction images are segmented by thresholding to
discrete-valued images (with pixel values from a discrete set 𝝆 that is known a
priori), we hope that large swathes of area in the thresholded image will be ap-
proximately correct, and any errors in the reconstruction will be located near the
boundaries of different constant-valued regions. Thus less computational resources
needed are needed by constraining the algorithm 𝑀 to work only with pixels inside
such boundary areas.

4.2.2 Description of DART algorithm

In more detail, DART proceeds as follows: First, the iterative method 𝑀 is run for
several steps to create the first intermediate reconstruction 𝐟1 which is thresholded
to pre-set levels 𝜌1, … , 𝜌u� by thresholds 𝜏1, … , 𝜏u�−1. Then the thresholded image
𝐟1
u� in divided into two sets, free and fixed set, depending on whether the pixels

in 𝐟1
u� are near the boundaries of discrete-valued regions or not. Any pixel that

has neighboring pixel with different gray value than the pixel itself (within some
pre-defined radius 𝑟 > 0) falls in the boundary region 𝐵 and is set as free (hereafter
denoted by 𝑈); the rest of the pixels (that are located inside constant-valued areas in
𝐟1
u� ) are fixed to their current value. In addition, some pixels in the non-boundary set
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are randomly added to the set of free pixels 𝑈 with probability 1−𝑝, where 0 < 𝑝 ≤ 1
is called fix probability. Then the iterative method 𝑀 is run again for some number
of steps, except it is allowed to change values only of the pixels in the free set 𝑈 : the
pixels not in 𝑈 retain their thresholded values. This produces a new reconstruction
𝐟2, which is then thresholded again; the process is repeated until convergence or
maximum number of iterations. The combination of running of algorithm 𝑀 on
the free pixels for 𝑘′

max iterations and the subsequent thresholding and boundary
detection steps constitutes one DART iteration. Depending on exact details of the
algorithm chosen as subroutine, the procedure 𝑀 may produce noisy reconstructions,
so Batenburg and Sijbers [10] also recommend applying a smoothing operation (i.e.
a blurring effect) once per each DART iteration before the thresholding step. The
resulting algorithm is summarized as a pseudocode as Algorithm 2.

4.2.3 SDART algorithm

’Soft DART’ or SDART, as defined by Bleichrodt, Tabak, and Batenburg [11], is a
relaxed variant of DART with soft constraints instead of hard constraint of keeping
non-boundary pixels fixed. This gives us a more robust algorithm that handles noise
in measurements better.

In SDART, the alternating steps of first running the subroutine 𝑀 for 𝑘′
max

steps followed by a ”threshold and detect boundaries” operation is replaced with an
optimization task, where DART-like behavior is achieved by imposing soft constraints
on the objective function. In more detail, the algorithm proceeds as follows:

Let 𝐟u�−1 be the result of previous iteration (or the initial reconstruction 𝐟0). Like
in DART, a segmented image 𝐟u�−1

u� is obtained by thresholding 𝐟u�−1, but instead
of setting pixels either free or fixed, one builds a diagonal weight or penalty matrix
𝐃 where each pixel in 𝐟 is given a non-negative scalar value that determines how
easily the pixel is allowed to change from its current thresholded value during the
optimization phase. If 𝑑u�u� is near 0, the corresponding pixel is effectively ”free”;
the larger penalty makes the pixels more ”fixed” Like in DART, pixels that have
different-valued neighbors are to be set ”free” and pixels in constant regions are
to be ”fixed”, but in SDART the diagonal entry 𝑑u�u� is function of the number of
different neighbors. In detail, if we denote the neighboring pixels of 𝑖th pixel 𝑥u� by
𝑁u�(𝑥u�), the values of penalty matrix are given by formula

(4.13) 𝑑u�u� = 100
𝑐u�u�

, where 𝑏u� = ∑
u�u�∈u�u�(u�u�)

𝟙(𝑥u� ≠ 𝑥u�)

for each diagonal element in 𝐃 that corresponds to each pixel 𝑖 = 1, … , 𝑛u� in the
reconstruction image domain; non-diagonal elements are set to be zero. The ’penalty

40



Algorithm 2 Discrete Algebraic Reconstruction Technique DART.
Input:

Projection matrix 𝐀.
Measurement vector 𝐦.
Initial (empty) reconstruction 𝐟0 .
Maximum number of DART iterations 𝑘DART

max .
Subroutine reconstruction method 𝑀 .
Number of iterations 𝑘′

init for subroutine 𝑀 for initial step.
Number of iterations 𝑘′

max for subroutine 𝑀 per each DART iteration.
Thresholding operation 𝑇 .
Segmentation values 𝝆 = [𝜌1, … , 𝜌u�]
Respective segmentation thresholds 𝝉 = [𝜏1, … , 𝜏u�].
Convergence limit 𝜖limit > 0.
Boundary radius 𝑟 > 0.
Fix probability 0 < 𝑝 ≤ 1.

Output:
DART reconstruction 𝐟 ∗.

procedure DART(𝐀, 𝐦, 𝐟0, 𝑘DART
max , 𝑀, 𝑘′

init, 𝑘′
max, 𝑇 , 𝝆, 𝝉 , 𝜖limit, 𝑟)

𝑘 ← 1.
Compute 𝐟1 ← 𝑀(𝐟0, 𝑘′

init).
while not converged (∥𝐀𝐟u� − 𝐦∥ > 𝜖limit) or 𝑘 < 𝑘DART

max do
Compute the thresholded image 𝐟u�

u� ← 𝑇 (𝐟u�, 𝝆, 𝝉).
Find the pixels in the boundary region 𝐵.
Set 𝑈 ← 𝐵.
Add pixels ∉ 𝐵 to set 𝑈 with probability 1 − 𝑝.
Compute 𝐟u�+1 ← 𝑀(𝐟u�, 𝑘′

max) while keeping the pixels ∉ 𝑈 fixed.
Apply a smoothing operation to pixels in 𝑈 .
𝑘 ← 𝑘 + 1.

end while
𝐟 ∗
DART ← 𝐟u�.

end procedure
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constant’ 𝑐 is set to some positive value: Bleichrodt, Tabak, and Batenburg [11]
propose 𝑐 = 3, we found that 𝑐 = 2 yielded better results in our problems.

After computing 𝐃, one then finds the next reconstruction image 𝐟u� by solving
a minimization task

𝐟u� = arg min
u�

𝑄SDART(𝐟 ) where(4.14)

𝑄SDART(𝐟 ) = ‖𝐀𝐟 − 𝐦‖2
2 + 𝛼 ⋅ ∥𝐃(𝐟 − 𝐟u�−1

u� )∥2
2

.(4.15)

To summarize, one SDART step consists of application of the thresholding operation,
computation of penalty matrix, and finally solving minimization problem. In the
original paper [11], the authors propose using CGLS or SIRT as solver. We found
that running the Barzilai-Borwein gradient descent for constant number of steps was
robust and worked well. Pseudocode of our implementation is given as Algorithm 3.

To derive the BB algorithm for minimization of 𝑄SDART, the gradient of the
objective with the respect to 𝐟 is needed. The gradient of the squared norm of the
residual was already computed for TVM; on the other hand, treating 𝐃 and 𝐟u�−1

u�

as fixed, the gradient of the smooth penalty term is

∇u� ∥𝐃(𝐟 − 𝐟u�−1
u� )∥2

2
= ∇u� (𝐃u� (𝐟 − 𝐟u�−1

u� ))u� 𝐃u� (𝐟 − 𝐟u�−1
u� )

= ∇u� (𝐟 − 𝐟u�−1
u� )u� 𝐃𝐃u� (𝐟 − 𝐟u�−1

u� )

= 2𝐃u� 𝐃(𝐟 − 𝐟u�−1
u� ).

In numerical computations instead of matrix-vector product 𝐃(𝐟 − 𝐟u�−1
u� ), one

can work with vector diag(𝐃) and element-wise vector products. Likewise, because
𝐃 is diagonal, 𝐃𝐃u� = 𝐃u� 𝐃 = elements of diag(𝐃) squared element-wise.

The reason why SDART handles noisy data better than regular DART is because
of the use of the penalty matrix 𝐃, which allows the algorithm to distribute noise and
other reconstruction uncertainty ”smoothly” over the whole image: the DART-like
behavior is implemented via the term ∥𝐃(𝐟 − 𝐟u�−1

u� )∥2
2
, which penalizes non-discrete

solutions and solutions that are far from intermediate discrete solutions, but its
effect is balanced against a data fidelity term. Unlike in DART, even the values of
relatively fixed pixels could change.

The main downside of SDART is that the numerical speed-ups achieved by not
needing to compute full matrix equations is lost, but in the setups considered in
this thesis, this did not prove a serious hindrance.
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Algorithm 3 Soft DART.
Input:

Projection matrix 𝐀.
Measurement vector 𝐦.
Initial (empty) reconstruction 𝐟0 .
Maximum number of (S)DART iterations 𝑘SDART

max .
Number of BB iterations 𝑘′

max per each SDART iteration.
Thresholding operation 𝑇 .
Segmentation values 𝝆 = [𝜌1, … , 𝜌u�]
Respective segmentation thresholds 𝝉 = [𝜏1, … , 𝜏u�].
Convergence limit 𝜖limit > 0.
Boundary radius 𝑟 > 0.

Output:
SDART reconstruction 𝐟 ∗

SDART.

procedure SDART(𝐀, 𝐦, 𝐟0, 𝑘SDART
max , 𝑘′

max, 𝑇 , 𝝆, 𝝉 , 𝜖limit, 𝑟)
𝑘 ← 1.
while not converged (∥𝐀𝐟u� − 𝐦∥ > 𝜖limit) or 𝑘 < 𝑘SDART

max do
Compute the thresholded image 𝐟u�

u� ← 𝑇 (𝐟u�, 𝝆, 𝝉).
Count the number of different-valued neighbors 𝑏u� for each pixel in 𝐟u�

u� .
Compute 𝐃 given 𝐛.
𝐟u�+1 ← arg minu� 𝑄SDART with BB for 𝑘′

max iterations starting from 𝐟u�.
𝑘 ← 𝑘 + 1.

end while
𝐟 ∗
SDART ← 𝑇 (𝐟u�, 𝝆, 𝝉).

end procedure
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4.2.4 Concerning some issues with DART-like heuristics

As a heuristic algorithm, DART (and DART-like algorithms such as SDART) may
function remarkably well in some scenarios and yet give less than satisfactory results
in some others: the suitability of the algorithm to each individual reconstruction task
must be confirmed by experiments. One typical problem with the DART heuristic
manifests itself when attempting reconstruction from extremely limited and noisy
data: if the DART algorithm misclassifies a large area of pixels during the initial
phase of reconstruction (or the initial reconstruction 𝐟0 fed to DART is far from
the true solution) and the edges of piecewise constant areas in 𝐟1 are far from their
correct shape, DART may correct the error very slowly. This is because only the
boundary pixels are set as free, algorithm tends to manipulate mostly only the
pixels in the boundary area per one DART iteration. (This is despite the random
additions to set 𝐵 with probability 𝑝.) In other words, during one DART iteration
the erroneous boundary moves usually towards its correct location only by the width
of the boundary defined by the neighborhood criterion 𝑟. Issues like this may even
lead the algorithm becoming stuck at a wrong solution. Similar issues have been
also reported at least by Zhuge, Palenstijn, and Batenburg [13, p. 456]. We noticed
similar issues also to some extent in the case of SDART.

The impact of such undesirable behavior could be reduced if the DART algorithm
could be improved to be less prone to in introduce prohibitively major reconstruction
errors in the initial and intermediate reconstructions. In case of the SDART, we
can try to manipulate objective function landscape to the effect of steering the
optimization process away from suboptimal reconstruction paths right from the
beginning. Below we discuss how to improve SDART process with total variation
prior.

4.3 Augmenting SDART with total variation minimiza-
tion

In recent years there has been some interest in improving performance of DART-like
and other discrete tomography algorithms with TV minimization or related methods.
On the other hand, TVM methods do not utilize a priori gray level information and
often have tendency to yield solutions that are not exactly discrete-valued but have
some amount of smooth variation, which is obviously non-ideal. Zhuge, Palenstijn,
and Batenburg [13] propose SDART-like variation of DART, where DART-like
behavior is induced with a choice of suitable objective function which is optimized
with a gradient method. Demircan-Tureyen and Kamasak [28] propose finding
an initial reconstruction by TVM (however, instead of the method presented in
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Section 4.1.3, they use the TVAL3 method of Li [63]) and then continuing with
regular DART iterations with refined on pixel fixing scheme and particular automatic
threshold and gray-value estimation. TVM initialization has also been suggested
by Goris et al. [64] and Zhuge, Palenstijn, and Batenburg [13]. In a more recent
paper [29], Demircan-Tureyen and Kamasak incorporate DART-like pixel fixing with
1-D TV-minimization.

In this thesis we study two different ways to combine TVM and SDART: firstly,
initializing the SDART-algorithms with TV-reconstructed solution (not unlike [28]);
and secondly, augmenting the regular SDART objective function with a TV term.
We call the latter algorithm SDART-TV and describe it in more detail in the next
section.

4.3.1 SDART-TV algorithm

The approach proposed here is similar to and inspired by the TVR-DART method
proposed by Zhuge, Palenstijn, and Batenburg [13], but the author believes it’s
conceptually simpler and possibly may prove more robust. Simply described, we
accompany the SDART optimization objective 𝑄SDART (which we view as an heuristic
implementation of a ”discreteness prior” in Bayesian probabilistic terms) with a
total variation prior (or the smooth 𝛽-approximation), resulting in updated objective
function

𝑄SDART-TV = ‖𝐀𝐟 − 𝐦‖2
2 + 𝛼SDART ⋅ ∥𝐃(𝐟 − 𝐟u�−1

u� )∥2
2

+ 𝛼TV ⋅ 𝑇 𝑉 (𝐟)2,1

(4.16)

≈ ‖𝐀𝐟 − 𝐦‖2
2 + 𝛼SDART ⋅ ∥𝐃(𝐟 − 𝐟u�−1

u� )∥2
2

+ 𝛼TV ⋅ ∑
u�,u�

|∇𝐟(𝑥, 𝑦)|u�.(4.17)

Algorithm otherwise proceeds in the same way as regular SDART, alternating
between computation of 𝐃 and minimization of the objective with a gradient
method. If SDART is viewed as a smooth relaxation of DART where 𝑀 is replaced
by minimization of a LSQ residual, the SDART-TV is nothing more than relaxation
of DART where 𝑀 is replaced by TVM. This is in contrast to TVR-DART, where
the TV assumption and DART-like discreteness prior are incorporated into a single
objective function,

𝑄TVR-DART = ∥𝐀𝑆u�,u�(𝐟 ) − 𝐦∥2

2
+ 𝛼 ⋅ 𝑇 𝑉 (𝑆u�,u�(𝐟 )),(4.18)

where 𝑆u�,u� is a smooth segmentation (’staircase’) function. Again, the objective
𝑄TVR-DART is minimized by applying a gradient method. The idea is to have a
differentiable optimization function that penalizes segmented solutions 𝑆(𝐟) that
both result in large residual error and have large TV norm, and there is no separate
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step for boundary detection / computation of penalty matrix 𝐃. Full treatment on
TVR-DART falls outside the scope of this thesis, but some remarks about differences
between TVR-DART and SDART-TV are in order:

Because of the chain derivatives involved in the gradient ∇u� 𝑄TVR-DART, the
numerical gradient of 𝑄TVR-DART may become very small (and thus the current value
very slow to update!) for pixel (𝑥, 𝑦) if 𝑓(𝑥, 𝑦) ≈ 𝑆(𝑓(𝑥, 𝑦)) while 𝑓(𝑥, 𝑦) is still far
away from the ideal solution. Authors of [13] anticipate this behavior and recommend
starting from initial reconstruction 𝐟0 that is initialized from a TVM solution. In
the SDART-TV algorithm, both data fidelity term and the TV regularization term
depend directly on 𝐟 , so the gradient will always carry information which is the locally
best update direction for 𝐟 in TVM sense; the discrete solutions are encouraged
separately with the SDART penalty term. The assumptions are balanced against
each other by the choice of regularization parameters 𝛼.

4.3.2 TV initialization of discrete algorithms

Another way to combine TV and DART(-like) algorithms is to build an intermediate
reconstruction by TVM and then feed it as the initial reconstruction 𝐟0 to the
discrete-valued algorithm. Here the use of DART-like algorithm can be viewed as an
intelligent way to do the segmentation of a continuous solution to a discrete-valued
image with the help of our imaging model 𝐀 and measurements 𝐦. This and other
similar approaches are quite common: the first step of DART (Algorithm 2) is to
build an initial reconstruction with a subroutine 𝑀 (which could be TVM). See also
e.g. [13, 28].

4.4 Use of global a priori knowledge about pipe geom-
etry

In addition to local neighborhood prior such as TVM and DART-like priors, a priori
information of the geometrical structure of the target object can be leveraged to
improve reconstruction quality and speed. As already discussed before, in case of
pipe welds we know that the region inside the pipe is empty and the non-weld parts
of the pipe are supposed to consist of uniform matter (such as steel).

One way to take this kind of information into account is by application of a
simple ’mask-like’ constraints on the solution space: the areas in the reconstruction
image domain 𝐟 that are known to have uniform composition are fixed to a constant
value during all iterations. Also, the pixels that are fixed (or ’masked away’)
can be dropped out from the gradient computations altogether to speed up the
computations: because the pixels in masked region are forced to have constant value,
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we know that the gradient inside those regions naturally would be zero.
Unfortunately, while this method to reduce the number of unknowns in the

matrix equations appears very attractive, it has some practical problems. In theory,
we would like to set the masked pixels inside the pipe to the attenuation coefficient
of air (which is in practice radiologically opaque matter and thus 0). However,
application of a a priori mask naively can cause numerical problems: Firstly, we
need to account for noise and cupping-like artifacts that arise from the imperfect
radiological model. Setting the areas known to be empty in 𝐟 to exact zero can
cause additional artifacts when the algorithm tries to use the pixels in non-masked
area to explain observations in 𝐦 that are best explained in our numerical model
by producing a cupping artifact inside the masked area in the reconstructed image.
To accommodate for this, we usually set the fixed (’masked’) pixels in 𝐟 to small
constant 𝑏 > 0, in practice 𝑏 = 0.0001..0.0005 instead of 𝑏 = 0, which appears to help
somewhat in reducing artifacts. Additionally the numerical gradient can become
ill-behaved at the transition boundaries between masked/not-masked areas: a fixed
pixel is usually going to have a slightly different value than its neighboring free
pixels. We address the numerical problems in gradient calculations by enforcing a
boundary criterion where the pixels near the mask transition boundary in 𝐟 are also
forced to have zero gradient (i.e. do not change their value). In our test cases, this
approach seem to result in reasonable reconstructions that are improved over the
non-masked ones. For detailed discussion on the numerical results, see Chapter 6.

4.5 Estimation the gray-value thresholds

The discrete reconstruction methods studied in this thesis require segmentation
by thresholding and thus method for obtaining sensible values for thresholding
parameters 𝝉, 𝝆 is needed. In simulation studies we naturally can use the exact
values 𝝆 that were used to generate the projection data in the first place. For
physical objects with known material composition (such as our test object, see
Section 5.4), the estimates could be derived from the chemical properties of the
constituent materials and other parameters of the imaging setup, but we found that
physics-agnostic methods that utilize the measured sinogram data work reasonably
well. Initial experiments with automatic parameter estimation methods (such as
PDM-DART [65] or TVR-DART [13]) were found to be finicky, and are thus not
discussed in this thesis.

4.5.1 Manual estimation of thresholding parameters from sinogram

We can easily calculate an estimate for 𝜌 from the projection data with the Beer-
Lambert equation 2.3 if we can assume that (i) X-rays are monochromatic, (ii) that
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they pass through an area that is known to be constant or piece-wise constant, and
(iii) we have exact knowledge of the geometry of the area the rays pass through.

In case of metal pipes, the measurement of the intensity 𝐼0 at the unobstructed
area of detector surface and the intensity 𝐼1 after a portion of pipe known to be
solid both are almost always available. Thus finding the estimate is a matter of
simple calculation

𝜌est = log 𝐼0 − log 𝐼1
𝑠

where 𝑠 is distance traveled by the X-ray inside the solid metal (𝑠 can be easily
calculated from the knowledge of the imaging geometry).

After obtaining estimates for 𝜌u� and 𝜌u�+1, a reasonable choice of the thresholding
parameter 𝜏u� can be chosen as the midpoint between them, 𝜏u� = (𝜌u� + 𝜌u�+1)/2.
However, in studies with the physical test piece where data did not exactly conform
to the discrete-value assumption, it turned out to be necessary to often tweak to
the initial choices of 𝝆, 𝝉 found be the procedure described above by trial and error.

4.6 Choice of regularization parameter

All methods defined in preceding sections incorporate a regularization parameter 𝛼
that controls the ’strength’ of the prior relative to the residual norm (also known
as data fidelity term). An optimal choice of the parameter 𝛼 results in a solution
where neither the prior assumption is too weak (where noise and artifacts are not
suppressed) nor too strong (where the prior dominates at the expense of loss of
reconstruction detail). While many methods that seek to find either an optimal
value 𝛼 or at least a principled guess have been proposed (for example, L-curve
method [4, Section 5.4.2]), here we chose suitable value of parameter 𝛼 by manual
experimentation and visual inspection of the intermediate reconstructions after a
couple of iterations.
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Chapter 5

Simulation and experimental
studies

In this chapter we describe the experiments that were conducted and the evaluation
metrics used to assess the results. The feasibility of the algorithms was first assessed
in tests with simulated phantom, which is described in Section 5.3. The simulation
study was followed by an experimental study with a purposed-made physical phantom.
The construction of the test object and the other details of experimental setup of X-
ray study are described in Section 5.4. The results of the experiments are presented
and analyzed in Chapter 6.

Technical limitations necessitate use of a rather small physical object compared
to real-world industrial scale pipe welds. To maintain consistency between the
results of the simulations and the physical experiments with the test object, the
simulated phantoms were scaled to match the test object instead of the hypothetical
industrial cases.

5.1 Summary of the algorithms studied

The theoretical groundwork of the algorithms studied in this thesis has been laid
out the preceding chapters. The algorithms that were included in the experiments
are summarized in the list below:

1. FDK. In the experimental study of circular X-ray tomography of the physical
object, the standard FDK algorithm (see Section 2.2) and full, dense circular
projection data was used to build the high-resolution, high-quality ground
truth reconstructions.

2. TV. The TV algorithm described in the subsection 4.1.3. We set the absolute
value smooth approximation parameter 𝛽 = 0.001. The effect of regularization
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parameter 𝛼 on reconstruction quality was evaluated in preliminary tests where
the value of 𝛼 ranged through 𝛼 ∈ (0.01, 100). We performed 𝑛 iterations,
which was usually more than enough to reach acceptable convergence.

3. TV-S. The basic TV algorithm is continuous. To compare it with the discrete-
valued algorithms, the resulting TV-reconstruction was segmented by a thresh-
old operation.

4. TV(-S)-A. This is used to denote the TV(-S) reconstructions that utilize the a
priori mask.

5. SDART. The SDART algorithm [11] as presented in Subsection 4.2.3. As in
the case of TVM, the reconstructions were again computed for different values
of the regularization parameter 𝛼. The results marked ’SDART’ denote the
final reconstruction 𝐟u� obtained by minimizing 𝑄SDART after the final round
before the last thresholding step.

6. SDART-S. The thresholded SDART reconstruction 𝐟 ∗
SDART = 𝑇 (𝐟u�, 𝝉 , 𝝆).

7. SDART-TV. The variant of SDART with the inclusion of TV regularization
term in the objective function, as described in Subsection 4.3.1. Like SDART,
’SDART-TV’ is the ’continuous’ result before the final thresholding operation.

8. SDART-TV-S. The thresholded SDART-TV reconstruction.

As discussed in Section 4.3.2, we also investigated initializing discrete (SDART)
algorithms with a preliminary TV-reconstruction or from default matrix filled with
constant 0, 𝐟0 = 0. The details of the initialization methods used for each particular
algorithm is mentioned in the Results chapter.

5.2 Evaluation metrics

To assess the quality of the reconstruction images, we quantitatively inspect the
images and also employ several quantitative metrics. In numerical studies, the
reconstructions could be compared against the original numerical phantom that was
used to generate the simulated projection data in the first place. In the experimental
study with the physical object, similar perfect reference image is not available. When
applicable, we used a very high-quality FDK reconstruction as our ground truth
reference. Also the geometry of the test object was known down to mm precision.

5.2.1 Visual comparison

An intuitive method to evaluate the quality of the results is simply the visual
inspection of the reconstruction images, and attempting to evaluate which defects
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known to be inside the target (whether in the simulated phantom or the physical
object) are present in the reconstructed image, and how exactly their location and
size are recovered.

5.2.2 Mean squared error of reconstruction

The first quantitative error measure we use is the classic MSE, defined as follows:

Definition 11 (MSE). Denoting the ideal image as 𝐟 and the computed solution
as 𝐟 ∗, the mean squared error or deviation is defined as

𝑀𝑆𝐸(𝐟 ∗) =
‖𝐟 − 𝐟 ∗‖2

2
𝑛u�

=
∑u�,u�(𝐟 (𝑥, 𝑦) − 𝐟 ∗(𝑥, 𝑦))2

𝑛u�
.

5.2.3 Total reconstruction pixel error after segmentation

The second numerical measure we employ is the total reconstruction pixel error after
segmentation, or simply the pixel error of a reconstruction [10].

Definition 12 (Pixel error). Let us denote the ideal (discrete-valued) image by 𝐟 ,
where 𝐟 (𝑥, 𝑦) ∈ {𝜌1, … , 𝜌u�} and the computed (also discrete-valued) solution as 𝐟 ∗,
the pixel error is defined as

𝐸𝑟𝑟𝑜𝑟(𝐟 ∗) = ∑
u�,u�

𝟙(𝐟(𝑥, 𝑦) ≠ 𝐟 ∗(𝑥, 𝑦)),

where 𝟙(𝑥 ≠ 𝑦) = 1 when 𝑥 ≠ 𝑦 and 0 elsewhere.

While both MSE and pixel error measure the fundamentally the same property
(how different 𝐟 ∗ is from the ideal true reconstruction 𝐟 i.e. the phantom), notice
that unlike in MSE, the pixel error is well-defined for discrete-valued images. Thus
the image reconstructions by the algorithms that produce smooth reconstructions
(such as TV, SDART, and SDART-TV) need to be thresholded first for the error
measure to be meaningful. Furthermore, the error score is influenced only by the
amount of misclassified pixels; the extent of the error (how far the pixel is from the
correct value) does not have an effect.

To enable easy comparison of results between reconstructions of different size,
we also define relative pixel error, which is the pixel error normalized by the number
of non-zero pixels in the phantom:

Definition 13 (Relative pixel error). Relative pixel error1 is defined as

𝑅𝑒𝑙𝐸𝑟𝑟𝑜𝑟(𝐟 ∗) = 𝐸𝑟𝑟𝑜𝑟(𝐟 ∗)
∑u�,u� 𝟙(𝐟(𝑥, 𝑦) ≠ 0)

.

1Also called relative Number of Misclassified Pixels (rNMP) [65].
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5.3 Materials for simulation studies

Here we describe the simulated test phantom created for the computational experi-
ments.

The first series of experiments consisted of a study with simulated numerical
phantom to validate the soundness of the methods. The phantom A.1 in Figure 9
corresponds to the regular circular tomography of a pipe weld with some small,
localized voids. Simulations were carried out in Matlab and with ASTRA toolbox.

As discussed in Section 2.8, the real-world projection data 𝐦 always has some
amount of noise. To study the robustness of the algorithms in the presence of noise,
we added varying amounts of i.i.d. Gaussian noise to the simulated projection data
𝐦.

5.3.1 Simulated phantom for tomography geometry

For simulations the circular tomography setup, we created one phantom (A.1) that
simulates a single two-dimensional cross-section along the girth weld seam of the pipe.
As already discussed, we want the simulation to match the physical experiment, and
thus the object is assumed to be rather small with diameter of 50mm and thickness
2mm. The pipe weld is assumed to contain only a single group of two small void-like
defects: the voids have diameters 0.3 mm and 0.5 mm , their centers have distance
of 0.6 mm and 1.0 mm from the outer surface and they have horizontal displacement
of 0.0 mm and 1.0 mm (as measured from the vertical center line), respectively.

5.3.2 Geometry in simulation study

In all simulations with the phantom A.1, the focal point of the X-ray source was
assumed to be located 200 mm from the center of the object and the detector (width
of 100 mm, 10 pixels per 1 mm) mirrored exactly on the other side of the object,
also 200 mm from the center of the object. We assumed a fan beam model and line
kernel.

5.4 Experimental study of physical object

A physcial test object was created at the Workshop of the Department of Physics of
University of Helsinki for radiographic experimental study. Two sets of measurements
were done: one series to obtain the regular circular tomography data, and another
to study the tomosynthesis-like limited angle problem. All measurements were
conducted in University of Helsinki X-ray Micro-Imaging Laboratory with a GE
Phoenix Nanotom device.
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Figure 9: Phantom A.1 (single area of localized defects).

5.4.1 Description of the test object

The physicial phantom object consists of two uniform aluminum pipe sections
(length 100mm each, outer diameter 50mm, wall thickness 2mm), which when joined
together form a single pipe that is 200mm long. The transversal surfaces of both
segments were milled with CNC machine to be as smooth and level as possible (so
that the pipe sections could be joined practically seamlessly to create a single pipe),
and three holes were drilled into one surface to simulate voids: the holes become
voids enclosed inside a ’weld’ when the sections are joined. (The voids had outer
diameters 0.3 mm, 0.5mm and 0.8mm, each 1mm deep, located at uniform 120
degree intervals from each other.) The segments were joined and held together by
wrapping aluminum coated adhesive tape around the seam (which also simulates
rough outer weld surface). The construction of the test object is illustrated in the
Figure 10.

5.4.2 Circular tomography geometry and FDK ground truth

In the first series of measurements a regular CT scan was performed: the object was
attached in up-right position to a sample manipulator located between a X-ray tube
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50mm

2mm

100mm (each)
200mm (when surfaces touch)

drilled void

0.3mm

0.5mm0.8mm

Figure 10: Illustration of the test object construction (not to scale). Two 100mm
long pipe segments are pressed together to form a single 200mm pipe with three
’voids’ enclosed in a seam; approx 25mm wide and <1mm thick layer of aluminum
adhesive tape (dashed rectangle) is wrapped around the seam to keep them joined
and simulate the rough weld surface.
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and a detector panel.2 The object was rotated full 360 degrees, and total of 1080
projections were taken (a 1/3 degree step between each subsequent projection).3

The full tomography data was used to build a three-dimensional FDK reconstruc-
tion of the object. The relevant horizontal slice of the reconstruction was extracted
and it serves as our ground truth reference image in our reconstruction algorithm
studies. The reference FDK reconstruction slice is shown in the Figure 11.

Figure 11: Transversal slice of FDK reconstruction at the void depth midpoint.
Notice the tape layer and the light cupping artifact. (Color curves adjusted for
printing.)

2The exact geometry was as follows: Distance between X-ray source and the center of object
(focus-origin distance, FOD) was 220 mm, distance between X-ray source and detector (focus-detector
distance, FDD) 400 mm, detector width 12 cm.

3The X-ray tube’s operation parameters were as follows: acceleration voltage 90u�u� , X-ray tube
current at 200u�A; no filtering was used. Parameters for the imaging device: single projection
imaged constructed by 4 images taken at 250 ms exposure each and computing an average; voxel
size 0.055 mm
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5.4.3 Tomosynthesis geometry

The second series of measurements were conducted in the tomosynthesis geometry:
The phantom object was placed in a horizontal position between the X-ray tube and
a (simulated4) 36cm wide detector. While in the description of the tomosynthesis
geometry outlined in Section 3.2.3 we discuss a setup where X-ray source moves
in relation to a pipe and a detector that remain in a fixed position (see Figure 6),
this particular arrangement was not possible with the machinery available in the
laboratory, so the equivalent geometry was achieved by moving the pipe and cutting
the sinogram accordingly. A total of 31 projection images were taken with 10 mm
step (and thus the total pipe movement was 300mm). We note that the computer
controlled manipulator was not available and the phantom was shifted manually.

Based on the previous experience from the first measurement series, the X-ray
tube and imaging parameters were also adjusted slightly.5

4 To enable as large ’angle of view’ as possible, each single projection image was in fact a
composition of three images. The detector that is 12cm wide was moved horizontally by its width
between each measurement.

5Acceleration voltage 70u�u� , tube current 150u�A. Exposure time for a single projection was
1000 ms.
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Chapter 6

Results and discussion

In the previous chapter we have described the simulation and experimental studies
that were conducted. Here we present and discuss the results of the aforementioned
experiments.

6.1 Reconstructions in regular circular tomography

In regular tomographic geometry, even the smallest voids both in simulations and
physical experiment could be recovered in regular tomography setup with relatively
sparse angular sampling and full-width detector. With a limited-width detector, some
precision is lost but the 0.5mm pore in the physical phantom could be reconstructed
quite reliably. We first present the results of simulated phantom with full detector
width and two angular sampling schemes to validate and compare the different
methods, followed by validation with physical phantom (Subsection 6.1.1), and
then the results with physical phantom with reduced FOV and sparse sampling
(Subsection 6.1.2). For the simulation studies, here we assumed that segmentation
parameters 𝝆, 𝝉 are approximately known beforehand.

6.1.1 Sparse-angle tomography and the effect of the global prior

Simulated phantom

The results of the algorithms with varying number of projections are presented in
Figures 12,13,14 and 15 for the phantom A.1; in this series of reconstructions, we
assumed a full-width detector and a prior mask. To demonstrate the effectiveness of
the prior mask, also the ground truth and the results of TV reconstruction without
prior mask are included.

The details of the numerical results for the simulations studies (both the notes
and quantitative error measures could be computed against the simulated phantom)
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are included in Table 6.1. Notice wide discrepancy between the numerical errors
between TV and SDART(-TV): while both methods recover the voids with similar
precision, the ring-like band in the TV solution is slightly too wide.

Looking at the simulation study results (Figures 12 and 13), we can see that
guiding TV with a priori mask is useful, resulting in less pronounced artifacts
after 𝑘 = 20 BB iterations (and details such as small void near the weld surface is
correctly rendered as an enclosed inside the object and not as a hole on its surface as
in 12d). Similar improvement can also be seen in the numerical measures recorded
in Table 6.1.

Table 6.1: Numerical details of reconstructions of phantom A.1. (Figures 12, 13,14,
15.)

Algorithm Notes No. pr. MSE Error1

TV 𝛼 = 80, no a priori mask 108 739.5213 -
𝐟0 = 0, iterations 𝑘max = 20 54 1183.3203 -

TV-S same as TV above + 108 926.566 32.3993
manual thresholding params 𝝉, 𝝆 54 1220.8376 32.4499

TV-A same as TV but with a priori mask, 108 453.7563 -
no thresholding 54 516.3895 -

TV-S-A same as TV but with a priori mask 108 693.4730 32.2450
+ ideal threshold params 𝝉, 𝝆 54 687.4714 32.2492

SDART 𝛼 = 0.01, 𝑟 = 2, 𝑘SDART
max = 5, 𝑘′

max = 15, 108 309.3478 -
𝑘′

init = 10, 𝐟0 = 0, a priori mask, 𝑐 = 2, 54 388.4435 -
manual threshold params 𝝉, 𝝆

SDART-S same as SDART above + 108 318.5870 0.5183
final threshold step 54 462.3124 0.5393

SDART-TV 𝛼TV = 5, 𝛼SDART = 0.01, 𝐟0 = 0 108 244.2580 -
(all others same as in SDART) 54 417.9092 -

SDART-TV-S same as above + final threshold 108 176.7547 0.5520
54 478.9612 0.5481

1relative pixel error after threshold
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(a) Phantom A1. (b) A priori mask for A1.

(c) TV, no threshold, no mask. (d) TV-S, thresholded, no mask.

(e) TV-A, no threshold, with a priori. (f) TV-S-A, thresholded and with a priori.

Figure 12: Comparison of TV reconstruction results (108 projections, full detector
width) on simulated phantom A1.
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(a) TV, no threshold, no mask. (b) TV-S, thresholded, no mask.

(c) TV-A, no threshold, with a priori. (d) TV-S-A, thresholded and with a priori.

Figure 13: Continuation of Figure 12; Comparison of TV reconstruction results (54
projections, full detector width) on simulated phantom A1.
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(a) SDART before final threshold. (b) SDART-S (after final threshold).

(c) SDART-TV before final threshold. (d) SDART-TV-S (after final threshold).

Figure 14: SDART and SDART-TV reconstruction results (108 projections, full
detector width) on simulated phantom A1.
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(a) SDART before final threshold. (b) SDART-S (after final threshold).

(c) SDART-TV before final threshold. (d) SDART-TV-S (after final threshold).

Figure 15: SDART and SDART-TV reconstruction results (54 projections, full
detector width) on simulated phantom A1.

(a) abs(TV-S-A - A.1). (b) abs(SDART-S - A.1) .

Figure 16: Highlight of reconstruction differences: absolute difference between
TV-S-A/SDART-S and simulated phantom A1 (108 projections, full detector width).
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Physical test piece phantom

The results for physical phantom in full data (108projections , full detector width)
are presented below. The numerical details are given in Table 6.2. Results are in
line with the simulation experiments, but the reconstruction task is more difficult.

In the full-angle reconstructions with TV Figure 17a, even the smallest sub-
micrometer anomalies (such as air bubble under the tape that holds the pipe segments
together) can be seen.

When the number of projections available for reconstruction is decreased, pre-
dictably some of the precision is lost. Nevertheless, even the smallest 0.3mm
void can be recovered.

6.1.2 Effect of width of the detector and TV initialization

We studied how our algorithms fared in the limited-width detector task by symmet-
rically cutting off portion of the observed full-view sinogram to 301 px ’limited-view’
sinogram (which corresponds to using a detector that is approximately 30mm wide;
given the pipe diameter and the distances between the phantom and the detector
and the X-ray tube, in thus restricted view about 34% of the pipe can be seen).
Here we present only results for the physical phantom.

The results of TV, SDART and SDART-TV algorithm with 54 projection images
and with simulated 301 px detector width are presented in Figures 18, 21 and 23.
The numeric parameters used to create reconstructions are recorded in Table 6.3.
The prior mask method was applied as indicated.

As expected by the geometric analysis presented in Section 3.2.4 of Chapter 3,
limiting the width of the detector increases the difficulty of the recovery task for
all algorithms. To further illustrate the effect of the mask, in Figure 18 we have
included a comparison between a reconstruction by TV-algorithm for 301px case
without the mask and with a constant zero mask.

As discussed in Section 4.3.2, given already a good intermediate reconstruction
obtained by TVM, a couple of SDART or SDART-TV iterations seem to function
as an improved segmentation method compared to a naive thresholding of TV
reconstruction for same 𝝆, 𝝉 . This is demonstrated in Figures 21b and 21c.
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Table 6.2: Numerical details of reconstructions of test object (tomography setup,
full detector width) in Figures 17, 19 and 22. The algorithms ran full 𝑘max iterations
unless otherwise indicated.

Algorithm Notes No. pr. Det. width
TV-A 𝛼 = 10, 𝑘max = 20, with a priori mask, 𝐟0 = 0.002, 108 full 1128 px

no threshold, 𝜖residual = 𝜖g = 0.01
TV same as above but no mask, converged at 𝑘 = 12 108 full

SDART 𝛼 = 0.1, 𝝆 = [0.0001, 0.01], 𝝉 = [0.006] and [0.008] 108 full
𝑟 = 2, 𝑘SDART

max = 5, 𝑘′
max = 15, 𝐟0 = 0.0001

SDART-S same as SDART but with final threshold step 108 full
SDART-TV 𝛼TV = 5, 𝛼SDART = 0.1, 𝝆 = [0.0001, 0.01], 𝝉 = [0.008] 108 full

𝑟 = 2, 𝑘SDART
max = 5, 𝑘′

max = 10, 𝐟0 = 0
SDART-TV-S same as SDART-TV but with final threshold step 108 full

Table 6.3: Numerical details of reconstructions of test object (tomography setup,
limited detector width).

Algorithm Notes No. pr. Det. width
TV 𝛼 = 10, 𝑘max = 20, 𝐟0 = 0.002, converged at 𝑘 = 13 5 301 px

no threshold, 𝜖residual = 𝜖g = 0.01
TV-A same as above but with mask, converg. 𝑘 = 13 54 301 px

SDART same as full data SDART but 𝝉 = [0.008], 𝐟0 =TV-A 54 301 px
SDART-S same as SDART but with final threshold step 54 301 px

SDART-TV same as full data SDART-TV but 𝐟0 =TV-A 54 301 px
SDART-TV-S same as SDART-TV but with final threshold step 54 301 px

6.2 Reconstructions in limited-angle tomosynthesis ge-
ometry

We also present some reconstructions of the test object in the tomosynthesis geometry.
Because of the limitations of the test setup (as discussed in Section 5.4.3, projection
geometry had to measured manually which incurred some loss of precision), the
results are not as good as in the tomographic geometry (where we were able to move
the test piece be moved with computer guided machinery). However, the single 0.5
mm void can be seen in the TV solution, and its outline can be improved in the
segmented solution by SDART-TV with appropriate choice of masks and threshold
parameters. The reconstructions are shown in Figures 24.

2hit convergence limit at u� = 3
3manually estimated from TV solution
4See Fig. 26b: changes are allowed only in the region of interest.
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(a) TV-A, 108 proj., full width. (b) TV, 108 proj., full width.

Figure 17: TV reconstructions, 108 projections and full detector. Notice that while
TV-A reconstructs the voids more clearly than non-mask TV, this comes at the
price of ring-like artifact near the inner mask boundary.

(a) TV-A, 54 proj., 301 px width. (b) TV, 54 proj., 301 px width.

Figure 18: TV reconstructions, 54 projections and limited detector. Comparing
the with-mask reconstruction (TV-A) to regular TV reconstruction that does not
utilize a priori information, it is clear that the prior constraints become crucial for
obtaining a solution of any quality. The voids in TV-A reconstruction are elongated
along the angular directions which correspond to the limited-width projection images
𝐦 where the respective void is within the 301 px field of view.
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(a) SDART-S, 108, full width, with mask,
u� = 0.006.

(b) SDART, 108, full width, with mask
(before final threshold).

Figure 19: SDART reconstructions, 108 projections and full detector width. Com-
pared to TV, the SDART reconstructions are noisier but conform better to the
discrete-valued assumption. The smallest void can be observed in the continuous
reconstruction, but thresholding.

(a) SDART-S, 108, full width, u� = 0.008. (b) SDART, 108, full width, u� = 0.008.

Figure 20: SDART reconstructions, 108 projections. Otherwise same as in Fig. 19,
but with different threshold parameter for comparison against Fig. 22.
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(a) Unsegmented TV-A reconstruction
used as u� 0.

(b) Thresholded TV-A reconstruction
with u� = 0.008.

(c) SDART-S, 54, 301 px. (d) SDART, 54, 301 px, before final thresh-
old.

Figure 21: SDART reconstructions, 54 projections and limited data. In limited data
case SDART needs an already good initial solution 𝐟0, but the algorithm manages to
improve the segmentation result (Fig. 21c) compared to naive thresholding (Fig. 21b).

67



(a) SDART-TV-S, 108, full width, with
mask.

(b) SDART-TV, 108, full width, with
mask (before final threshold).

Figure 22: SDART-TV reconstructions, 108 projections and full data. Compared to
SDART solutions with same projection data (even to SDART with same threshold
parameters as in Fig 20), the smallest void can be seen more clearly. As a drawback
the ring-like artifact near the inner mask boundary is stronger.

(a) SDART-TV-S, 54, limited width, with
mask.

(b) SDART-TV, 54, limited width, with
mask (before final threshold).

Figure 23: SDART-TV reconstructions, 54 projections and limited data. Also
initialized with TV-A solution. In limited data case we don’t have much improvement
over regular SDART.
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(a) TV-A, zoomed in to region of interest. (b) The full TV-A solution.

Figure 24: TV reconstruction in limited-angle tomosynthesis geometry.

(a) SDART-TV, zoomed in to region of
interest.

(b) The full SDART-TV solution.

Figure 25: SDART-TV reconstruction in limited-angle tomosynthesis geometry.
Choice of masks results in some artifacts near the mask boundaries (and masked
parts of initial solution are not updated), but the void can be seen clearly.

(a) The mask used in TV-A reconstruc-
tion.

(b) The mask used in SDART-TV recon-
struction.

Figure 26: Masks used in limited-angle tomosynthesis geometries.
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Table 6.4: Numerical details of reconstructions of test object (tomosynthesis geome-
try) in Figures 24 and 25.

Algorithm Notes Projections
TV 𝛼 = 5, with a priori mask, 𝜖resid. = 𝜖g = 0.52 5 projections, 3cm step

𝐟0 = 0.006× mask
SDART-TV-S 𝛼TV = 5, 𝛼SDART = 0.01, 𝐟0 = TV solution (same as above)

𝝆 = [0.0001, 0.006], 𝝉 = [0.0055]3 and
a more restrictive mask4

6.3 Discussion on gray level and threshold estimation
in discrete algorithms

To produce the results presented above, the segmentation parameters were assumed
to be known a priori, either from the construction of phantoms (in simulation studies)
or estimated from the sinogram (Section 4.5.1) and initial TV reconstructions with
the knowledge of structure of the target object (experimental study). The best results
for DART-like algorithms could be obtained only by the manually selecting the
optimal thresholds with the help of initial continuous reconstructions and knowledge
of object structure, which can be impractical and unreliable in more realistic imaging
situations.
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Chapter 7

Conclusions

In this work we have studied how certain tomographic reconstruction algorithms
(TVM, SDART, SDART-TV) can be used to solve the problem of determining
sizes and locations of small, gaseous voids in metal tubes with computerized X-ray
tomography. The problem is inspired by real-life task of non-destructive testing and
quality control of steel pipe welds. The algorithms studied in this thesis were based
on total variation regularization and DART-like methods of discrete tomography. We
have also given a thorough introduction to theoretical background of X-ray computed
tomography and basics of linear inverse problems, which included description of the
classical FBP algorithm based on the Radon inversion formula.

The performance of the algorithms was investigated in numerical experiments
with simulated phantom and X-ray imaging experiments with a physical aluminum
tube phantom. For example, the algorithm SDART-TV was capable of distinguishing
a 0.5mm empty void inside a 2mm thick aluminum pipe of diameter 50mm using
54 projections around the object, compared to classical FBP reconstruction which
require 1080 projections.

However, all methods studied come with limitation that they require some
amount of manual calibration. In TVM, SDART, and SDART-TV, a regularization
parameter must be chosen. We here used ad hoc method where we chose the best
parameter value after constructing several initial tries; in future studies, investigation
of a more principled method for choosing the parameter would be in order.

The algorithms based on discrete-value assumption (that is, DART-like algo-
rithms SDART and SDART-TV) also require a method for choosing the segmentation
parameters (gray value levels and thresholds). In our experiments with imaging of
a physical test piece, it was found that obtaining optimal choices of 𝜌, 𝜏 required
some amount of hand-tuning; such difficulties may be attributed to the presence
of distortions in measurement data and model that mildly violate the discrete-
value assumption in the reconstruction image domain. However, the amount of
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hand-tuning required is significant for any practical applications. This suggests
that in order to successfully implement DART-like algorithms for NDT tasks in
industrial environments, a (possibly lengthy) calibration step may be required for
each individual configuration of measurement equipment and object of interest.

Also, while the prior information about pipe geometry was utilized and deemed
useful, use of it was implemented by simply applying fixed masks (fixed in both
shape and value), which can become problematic in real-life in-service situations
because full exact knowledge might not be available (as opposed to a study of
purpose-made phantom). A proper probabilistic prior model that quantifies both
our assumptions and their uncertainty could prove fruitful.

The experiments with computer simulations and physical phantom suggest that
computed tomography provides a plausible method for detecting porous defects, and
modern algorithms such as TVM and DART-like methods enable use of relatively
limited data. However, both simulation and physical models considered here were
relatively simplistic, and a full proof-of-concept work of non-destructive testing of
steel pipe welds would require more extensive models and larger scale tests with
real-sized steel objects.
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Appendix A

Gradient descent with
Barzilai-Borwein step-length
selection

Here we explain the reasoning for BB step-length rule of Barzilai and Borwein [62]
in more detail.

A.1 Quasi-Newton algorithms

As already discussed in Section 4.1.3, solving for line search equation (4.12) results
in Newton iteration step

(A.1) 𝐟u�
Newton = 𝐟u�−1 − 𝐁−1∇𝑄(𝐟u�−1).

In regular Newton’s method 𝐁 = 𝐁u�−1 is Hessian of 𝑄 at point 𝐟u�−1. In quasi-
Newton methods, an approximation of 𝐁u� is chosen to satisfy the secant equation,

𝐁u� ⋅ (𝐟u� − 𝐟u�−1) = ∇𝑄(𝐟u�) − ∇𝑄(𝐟u�−1)(A.2)

𝐁u�𝐲u� = 𝐠u�,(A.3)

where 𝐲u� = 𝐟u� − 𝐟u�−1 and 𝐠u� = ∇u� 𝑄u�(𝐟u�) − ∇u� 𝑄u�(𝐟u�−1).

A.2 Derivation of BB algorithm

In the Barzilai-Borwein method, we want to choose a step-length 𝑠u�−1 such that
the BB iteration

(A.4) 𝐟u�
BB = 𝐟u�−1 − 𝑠u�−1∇𝑄(𝐟u�−1)
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is near the quasi-Newton iteration, 𝐟u�
BB ≈ 𝐟u�

Newton or

𝐁−1∇𝑄(𝐟u�−1) ≈ 𝑠u�−1∇𝑄(𝐟u�−1).

From the secant equation (A.3) we can derive

𝐁u�𝐲u� = 𝐠u�

(𝑠u�𝐼)−1𝐲u� ≈ 𝐠u�

and thus 𝑠u� that approximates quasi-Newton update best can be found by solving

𝑠−1
u� = arg min

u�−1
∥𝑠−1𝐲u� − 𝐠u�∥2

2

= 𝐲u�
u� 𝐠u�

𝐲u�
u� 𝐲u�

𝑠u� = 𝐲u�
u� 𝐲u�

𝐲u�
u� 𝐠u�

.

Symmetrically one can also derive an alternative BB update rule 𝑠′
u� by noting

that equivalently one can write

𝐁u�𝐲u� = 𝐠u�

𝐲u� = 𝐁−1
u� 𝐠u� ≈ 𝑠′

u�𝐠u�.

The 𝑠′
u� then can be found by solving

(A.5) 𝑠′
u� = arg min

u�
‖𝐲u� − 𝑠𝐠u�‖2

2 ,

which results in
𝑠′

u� = 𝐲u�
u� 𝐠u�

𝐠u�
u� 𝐠u�

.

One can choose to use either the rule 𝑠u� or the rule 𝑠′
u�, or alternate between them.
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Appendix B

Moore-Penrose pseudo-inverse

Here we define the Moore-Penrose pseudo-inverse [66, p. 4] 𝐀+ as a matrix that
satisfies

𝐀𝐀+𝐀 = 𝐀

𝐀+𝐀𝐀+ = 𝐀+

(𝐀𝐀+)u� = 𝐀𝐀+

(𝐀+𝐀)u� = 𝐀+𝐀

where 𝐁u� denotes the complex conjugate of matrix 𝐁. The equation (2.17) for
invertible 𝐀u� 𝐀 then follows

𝐀𝐟 = 𝐦

𝐀u� 𝐀𝐟 = 𝐀u� 𝐦

𝐟 ∗ = (𝐀u� 𝐀)−1𝐀u� 𝐦.
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