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Transliteration Model for Egyptian Words
Heidi Jauhiainen?!, Tommi Jauhiainen’

'Department of Digital Humanities, University of Helsinki, Helsinki, Finland

Abstract

In this paper, we describe token-based transliteration models for Egyptian words. We explain how
we created them using an automatic alignment method we devised based on the Needleman-Wunsch
sequence alignment algorithm. We use two sources where encoded Egyptian hieroglyphs and their
transliteration pairs are available. Ancient Egyptian Sentences (AES) includes a collection of texts
where c. 254,000 Egyptian words encoded using Manual de Codage (MdC) have been aligned with
their transliteration counterparts. The second source is the Ramses Transliteration Corpus (RTC), with
almost 500,000 MdC encoded words. The RTC consists of encoded hieroglyphic sentences, each on its
line, and respective transliteration lines in another file. However, unlike the AES, there is no ready
alignment of the MdC and its transliteration on the word level. In order to find word-transliteration
pairs, we align the sentences of encoded words with the respective transliterations. The alignment task
is made more difficult because many of the texts contain damaged parts and editorial additions.

Keywords
language modeling, word alignment, transliteration, hieroglyphs, Ancient Egyptian

1. Introduction

In this paper, we describe our current work on creating token-based transliteration models for
Egyptian words, which are needed for an automatic transliteration method we aim at devel-
oping. In order to create such models for transliteration, a corpus of machine-readable Egyp-
tian hieroglyphic texts with their transliterations is needed. We have identified two sources
where encoded Egyptian hieroglyphic words and their transliteration pairs are available. AES
- Ancient Egyptian Sentences, based on texts from the Thesaurus Linguae Aegyptiae (TLA) [1],
includes a collection of sentences where Egyptian words encoded using Manual de Codage
(MdC) have been aligned with their transliteration counterparts [2]. The second, even more
extensive, source of MdC encoded and transliterated words is the Ramses Transliteration Cor-
pus (RTC) [3]. MdC is the most often used encoding for hieroglyphic texts [4, 5, 6]. The RTC
consists of encoded hieroglyphic sentences, each on its own line, and respective transliteration
lines in another file. However, unlike the AES, there is no ready alignment of the MdC and
its transliteration on the word level. In order to find word-transliteration pairs, we need to
align the sentences of encoded words with the respective transliterations. The alignment task
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is made more difficult by the fact that there are damaged parts for which transliteration has
sometimes been guessed, as well as grammatical additions by editors.

We have developed a highly accurate alignment method that uses a sequence alignment
algorithm together with a dictionary of MdC - transliteration pairs generated initially from the
intact words within the AES and the sentences in the RTC corpus that have the same number of
words in both MdC and transliteration. Once the rest of the lines in the RTC were aligned, we
could extract MdC - transliteration pairs and create transliteration models. Manual inspection
of the models proved to be useful in helping to notice actual errors and inconsistencies in
the RTC transliterations. We created additional rules to handle the errors and re-created the
models. In this paper, we describe the automatic alignment pipeline and the openly published
models.

Section 2 introduces some of the challenges in Digital Egyptology and gives further con-
text on the research presented in this paper. In Section 3, we present previous work for the
automatic alignment of hieroglyphs and some research using the same sequence alignment
algorithm as this paper. Section 4 describes the AES - Ancient Egyptian Sentences and the
Ramses Transliteration Corpora. We describe the alignment method itself in Section 5 as well
as our evaluation of it using the Levenshtein distance [7]. In Section 6, we present some further
steps that were needed to produce the model and the resulting models.

2. Background

Contrary to, for example, Assyriology, which has several online corpora of cuneiform texts,’
Egyptology has no tradition of publishing machine-readable hieroglyphic texts [8]. In a hiero-
glyphic text, individual signs can be next to, above, or over another, and two or more signs
can be nested. When Egyptologists study the texts, they draw a facsimile of the object and
its inscriptions [9]. Many Ancient Egyptian texts were written by hand, which made the hi-
eroglyphs more cursive, and Egyptologists generally transcribe these cursive signs into clearer
hieroglyphs [10, 6]. Traditionally this was done by hand or by typesetting physical fonts, but
nowadays, pictures produced with computers are also possible [6]. Applying optical character
recognition (OCR) on hieroglyphic texts would produce machine-readable corpora. However,
currently, the techniques are not readily usable as annotated texts in the same handwriting
are needed for training the methods [8, 11]. When Egyptologists interpret hieroglyphic texts,
they transliterate them with Latin letters and diacritics. The transliteration method used in
Egyptology does not represent the text sign by sign, but instead, it is always an interpretation
of the text as words.

It might seem obvious to use Unicode to produce machine-readable hieroglyphic texts. There
are indeed over 1000 Unicode hieroglyphic characters, and since 2019, there are also so-called
Format Control characters so that the signs can be presented properly in relation to each other
[12, 13, 14].2 However, the Unicode hieroglyphic characters are outside the Basic Multilingual

'E.g., Achemenet, http://www.achemenet.com; Open Richly Annotated Cuneiform Corpus (ORACC), http://
oracc.museum.upenn.edu; ORACC at the Language Bank of Finland, http://urn.fi/urn:nbn:fi:Ib-2019111601
*https://www.unicode.org/versions/Unicode14.0.0/ch11.pdf
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Plane® and are not correctly handled by commonly used software applications. While the sit-
uation with the “digital divide” [16] between languages has improved as digital support for
language diversity is expanding, many writing systems still have issues with common digital
tools and technologies [17, 18]. Since the 1970s, egyptologists have been using special text
editors to encode hieroglyphic texts so that the placement of the signs is maintained [13, 19].
Unfortunately, the machine-readable encodings have traditionally only been used for produc-
ing pictures of hieroglyphic texts and not published themselves [8].

Computer-assisted transliteration of hieroglyphic texts would aid Egyptologists in reading
the encoded texts and publishing them for digital studies. Recently, Rosmorduc [20] proposed
an automated transliteration method using neural networks. The method works on short sen-
tences, but the sentence boundaries are not indicated in hieroglyphic texts, and sentences of-
ten span from one line to the next. A new method for transliterating whole texts at a time is,
hence, needed. As Wiechetek et al. [21] have shown, using neural networks on less-resourced
languages is often not feasible, and more traditional machine learning methods could be more
effective. We have previously developed a back-off-based language identification method, HeLl
[22], which still is superior to neural network-based identifiers in many tasks [23, 24]. Hence,
the transliteration method we are currently developing is based on a similar back-off scheme,
which at its core utilizes a transliteration model of hieroglyphic words and their transliterations
together with the observed relative frequencies of the pairs.

3. Previous Work

3.1. Automatic Alignment of Hieroglyphs and Transliteration

The problem of automatic alignment of hieroglyphs and transliteration has been researched
by Nederhof [25, 26]. His starting point for alignment differed from the current work since no
word tokenization was present in the hieroglyphic texts he used. His method goes through the
individual hieroglyphs and checks how well their possible transliterations match the existing
transliteration. A customized scoring system gives varying penalties to different readings, and
in the end, the reading with the lowest penalty is chosen.

In the corpus we use, the word tokenization is already indicated. Therefore it is possible to
use much more straightforward methods for aligning the hieroglyphic words to their translit-
erated counterparts. By more straightforward, we mean that almost no expert knowledge in
hieroglyphic writing is needed as our method learns the dictionaries automatically from the
training corpus.

3.2. Sequence Alignment

In this work, we use the Needleman-Wunsch algorithm [27] to align encoded hieroglyphic text
with their transliteration. This method was designed for and primarily used in bioinformatics.
It works well, for example, when comparing proteins or genomic DNA sequences of up to tens
of thousands of nucleotides [28]. The algorithm has also been used for aligning natural lan-
guage text. Song et al. [29] evaluated several sequence alignment algorithms in identifying

*See the description by Tauber [15] for more information about the structure of the Unicode codespace.
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sentence parallelism in student essays. They found the Needleman-Wunsch algorithm to per-
form best out of five individual algorithms but attained even better results when combining
it with the others. In other areas of natural language processing, the Needleman-Wunsch al-
gorithm has been used, for example, by Lai and Hockenmaier [30] and Itoh [31] to estimate
semantic similarity in SemEval shared tasks. This method suits our needs exceptionally well
as it supposes the sequences to be in the correct order but finds the places where items are
missing from either sequence.

4. Corpora

In this section, we describe the two corpora from which we produced transliteration models
AFS - Ancient Egyptian Sentences [2], and The Ramses Transliteration Corpus [20].

4.1. AES - Ancient Egyptian Sentences

AES - Ancient Egyptian Sentences; Corpus of Ancient Egyptian sentences for corpus-linguistic re-
search (AES) is a collection of more than 100,000 sentences with c¢. 254,000 annotated and
transliterated words aligned with their MdC encoding [2]. The corpus was published in GitHub
under a CC BY-SA license.* AES sentence corpus is formatted as JSON, which is more suitable
for our pipelines than the TEI format of the Corpus of Egyptian Texts for the AED - Ancient
Egyptian Dictionary (AED-TEI) [32],” from which AES has been extracted. AED-TEI contains
more than 11,000 Egyptian texts and is itself based on a database snapshot from the “Strukturen
und Transformationen des Wortschatzes der dgyptischen Sprache” project [1].° This database
is also used to create the online version of the Thesaurus Linguae Aegyptiae (TLA) [33].
Figure 1 shows an example of a JSON entry for a single Egyptian word in AES. A JSON entry
consists of keyword — value pairs: “keyword”: “value”. The AES information defines the value
of the “mdc” keyword as an Egyptological transcription in MdC. What it actually means is that
in the value of “mdc”, the characters used in the transcriptions conform to the Buurman et al.
1988 transliteration scheme [4].2 The MdC allows the use of these transliteration characters
for some of the hieroglyphs in addition to the letter-number combinations which are the codes
coming from the so-called Gardiner Sign List [34], the standard reference list for Egyptian hiero-
glyphs.” The MdC equivalent of the original hieroglyphic characters we are seeking is actually
found in the value of the “hiero” keyword: M20-X1-Z2. We were hoping to use a dictionary
created from the AES to align the MdC and the transliteration in the RTC corpus. However,
the “mdc” value in AES is not similar to the RTC transliteration, as it includes extra annotation
such as the plural marker “pl” in the example. The value for the “written_form” keyword is
described to be the same as for “mdc”, but in Unicode, which seems to use the character set

*https://github.com/simondschweitzer/aes

Shttps://github.com/simondschweitzer/aed- tei

®https://nbn-resolving.org/urn:nbn:de:kobv:b4-opus4-29190

"https://thesaurus-linguae-aegyptiae.de

8For the currently most complete list of transliteration schemes for Ancient Egyptian, see https://en.wiktionary.
org/wiki/Appendix:Egyptian_transliteration_schemes.

*https://www.unicode.org/notes/tn32/Unicode-MdC-Mapping-v1.utf8
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"_id": "IBUBdx3kjk1StkQar5VP5tBFvOk",
"lineCount": "[x+7]",

"written_form": "sh,t.pl",

"mdc": "sx,t.pl",

"cotext_translation": "Feld; Weide; Marschland",
"lemma_form": "sh.t",

"lemmaID": "141480",

"zaehler": "14",

"pos": "substantive",
"numerus": "plural",
"status": "st_absolutus",

"hiero_inventar": "M20;X1;z2",
"hiero_unicode": "&#x131cf;&#x133cf;&#x133e5;",
"hiero": "M20-X1-Z2"

s

Figure 1: Example of an Egyptian word in AES corpus.

of the Werning 2013 (traditional) transliteration scheme [35]. The value for the “lemma_form”
keyword conforms to the Werning scheme and does not include extra annotation, and it is
also possible to automatically transform the Werning transliteration in the “lemma_form” into
Buurman-compliant transliteration. Thus, this is the entry we use in the automatic alignment
experiments, even though it sometimes omits information such as the plural “w” in the case of
the example in figure 1. The RTC equivalent transliteration for “M20-X1-Z2” would be “sx.wt”.

The AES corpus is very heterogeneous. The dates attributed to the texts span from the
Ancient Egyptian Old Kingdom to the Roman period, that is, for a period of over 2,500 years (c.
2600 BCE - 300 CE). Furthermore, the corpus is composed of texts from many different kinds
of genres, such as religious texts, administrative texts, letters, medical texts, rock inscriptions,
and so forth. Since the Egyptian language changed over time and different genres use different
vocabulary, the model produced from the corpus is bound to be miscellaneous.

4.2. The Ramses Transliteration Corpus

The Ramses Transliteration Corpus, V. 2019-09-01 (RTC) was created by Rosmorduc [20] for
training and testing his automated transliteration method [36]. The corpus was published
in Gitlab'® and Zenodo'! under CC-BY-NC-SA license, and it contains sentences of encoded
hieroglyphic text and respective lines of their transliterations in separate files [3]. Original
hieroglyphic texts do not include word boundaries. However, since the data was originally
collected in the Ramses Project [37] and is available for word searches in Ramses Online,'? the
corpus contains, in addition to texts without word boundaries, also separate versions of the
files where words have been separated with underscores. In order to find word-transliteration
pairs, we use the files with word boundaries. Examples of lines from these files can be seen in

https://gitlab.cnam.fr/gitlab/rosmorse/ramses-trl
https://doi.org/10.5281/zenodo.4954597
2http://ramses.ulg.ac.be
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M17 Z7 _ M17 Z7 _ A1 _ D21 _ S29 G36 D21 N35A A2 _ M17 G17 _ 1I9 _

U23 G17 D21 G37 _ LACUNA V30 _ LACUNA

04 Ff1 N35 G1 Ff1 Ff1 01 F35 I9 D21 Al _

G41 G1 _ 04 D21 Z7 N5 Z1 _ N35 _ MISSING G41 G1 _ W25 N35 W24 Z7 Y1 Z2

iw_iw_=1_1r_swr _m_=f _
mHr LACUNA _ _nb _ LACUNA _
hyn-nfr_
PA_hrw_mn_ms_pA_inw_

Figure 2: Four corresponding lines from the “src-sep-train.txt” and the “tgt-train.txt” files which are
part of the RTC training set.

Figure 2. These examples also demonstrate the fact that what we refer to as a word actually
means a token, such as “A1” corresponding to “=i”, which is a suffix pronoun. Both AES and
RTC consider these as separate tokens from the words they are connected to.

Egyptian texts are often fragmentary and damaged in places. In RTC, there sometimes exists

a possible transliteration for these damaged parts, whether individual signs or longer passages.

Furthermore, grammatical forms not present in the hieroglyphic text have often been added
in the transliteration. These guesses and additions have been marked in a variety of ways as
transliterations have been produced by numerous scholars.

The RTC comprises over 71,000 sentences of Late Egyptian texts (c. 1550-1069 BCE). The
texts are all from a single phase of the Ancient Egyptian Language, and the text types in Ramses
Online are less varied than the ones in AES. The sentences are in random order, and there is
no indication of which text they belong to. The training corpus contains 66,693 encoding and
transliteration line pairs, whereas the validation set has 1,841 and the test set 2,729 line pairs.

All sets of the RTC were preprocessed to remove inconsistencies as far as possible. We
inspected the sign values present in the training and the validation sets. As mentioned earlier,
the Mdc allows using transliteration for certain signs, and, indeed, the corpus does include some
annotations using transliteration rather than the Gardiner sign list keys for seven different
signs.'® In the first preprocessing step, we replaced them with the codes used elsewhere in the
corpus for these hieroglyphs.'*

Hieroglyphic texts in the RTC were originally written on papyri or so-called ostraca, that
is, pieces of limestone or pottery. The texts that have survived until today have often suffered
damage, particularly to their edges. When part of the text is missing or illegible, this is usually
marked in the encoding. For missing parts of words, shading is often used. The Ramses corpus
includes three different annotations, “SHADED1”, “SHADED2”, and “SHADED3”. There was no

apparent reason for the different numbers, so we unified these three annotations as “SHADED”.

An entire illegible or missing word is in the corpus marked with “LACUNA” or “MISSING”.
A “LACUNA” in the hieroglyphic text usually corresponds to a “L. A C UN A” in transliteration.
When a hieroglyph or word is marked as missing, it may correspond to transliteration or not.

The encoding files do not indicate a token break after “LACUNA” or “MISSING” as is done in

13“11”, “A”, :(fs:’ “t”, “i”, “l’lTI'W”, and “nn”
14“N35n’ “Gl”, “19”, “Xl”, “M17”, “RSA”, and “M22 M22”
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the transliteration, so we added an underscore after these in the encoding files used.®

5. Alignment Method

The Needleman-Wunsch algorithm [27] was originally developed to align long protein se-
quences. It finds the tokens that are the same, and when there is a mismatch, it either aligns
the two tokens or inserts a gap finding the optimal alignment. To use the algorithm for hi-
eroglyphic sentences, we need to align the transliterated words with the encoded words, and,
therefore, we need a dictionary to compare these two. Our alignment method is, hence, based
on creating a dictionary of pairs of encoded words and their transliteration and using it together
with the Needleman-Wunsch algorithm. We tested three slightly different ways of producing
the dictionary from words in the RTC assumed to be aligned without further processing. The
dictionaries were tested with the various configurations of the Needleman-Wunsch algorithm
on a manually aligned part of the validation set.

5.1. Gold Standard Alignment

In order to assess the efficacy of the developed method, we created a gold standard alignment
from the RTC validation set. We created an alignment test set by choosing the first 100 pairs
that had an unequal number of tokens. Dividing the tokens into columns in a Microsoft Excel
spreadsheet provided an easy and fast way to manually verify and correct the existing align-
ments. An example of an encoding-transliteration pair in its original and manually aligned
forms can be seen in Table 1.

orig. D37 77 0290101271 G7 S34U28S29 D21 T10 X1 Z1 A1 Z3A N35
rdi <wi> pr-aA a.w.s r <Hry>
gold D37 727 - 029 0101271 G7 S34U28S29 D21 -
rdi <wi> pr-aA a.w.s r <Hry>
Table 1

Example of original and correctly aligned encoding transliteration pair from the validation set.

5.2. Dictionaries

We experimented with using dictionaries created from both the RTC and the AES corpora with
our implementation of the Needleman-Wunsch algorithm. The dictionaries are files consisting
of tab-separated values for tokens together with all their possible transliterations. Figure 3
shows an entry for the token “M17 Z7” from the third RTC dictionary. The token has five
possible transliterations “in-iw”, “ir”, “iw”, “iwf”, and “r”. The number in the third column
indicates the frequency of the MdC - transliteration pair; however, this information is not
used in the alignment algorithm.

BExamples of both “LACUNA” and “MISSING” can be seen in the second and fourth rows of the Figure 2.
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M17 27 in-iw 1

M17 27 ir 3
M17 Z27 iw 3856
M17 z27 iwf 1
M17 Z7 r 9

Figure 3: Example entry from the third RTC dictionary. The Egyptian token “M17 Z7” has five possible
transliterations.

The dictionary from the AES corpus was built using each token that had a value for both
the hiero and the lemma_form keywords. For our dictionary, the AES values written using the
Werning scheme were automatically converted to the Buurman-compliant transliteration.

The three dictionaries from the RTC were built using the training set. After the preprocess-
ing described in Section 4.2, quite a large portion of the encoding-transliteration pairs in the
RTC training set had the same number of tokens in the encoding and the transliteration and
were, therefore, assumed to be correctly aligned. This large number of correctly aligned pairs
enabled us to create a token dictionary from the line pairs with an equal number of tokens
with high confidence. When building the first and second versions of the RTC dictionary, we
did not include any pairs of lines that had broken or partially broken transliteration, e.g., lines
containing characters “[”, “/”, or “?”, or inserted words that are not present in the encoding
indicated by character “<” or parenthesis around the entire transliteration of a word.

For the first RTC dictionary, we used pairs of lines that did not contain annotations “SHADED”,
“LACUNA”, or “MISSING” in the encoding line. There were 31,938 such intact line pairs in the
training material and the dictionary contained 32,023 words. To create the second version of
the RTC dictionary, we did use the lines with “LACUNA” if none of the other indications of
broken text or insertion were present. The total number of lines from which the second RTC
dictionary, with 36,891 words, was created was 42,541. For the third RTC dictionary, we used
all 56,752 pairs of lines with an equal number of tokens and gathered 45,225 words. However,
when adding words to the third dictionary, we still left out the word pairs that contained the
characters mentioned above or “SHADED” or “MISSING” as annotations on the encoding line.

5.3. Needleman-Wunsch

In the Needleman-Wunsch algorithm, a two-dimensional array represents all possible pairs of
the units to be aligned. Only the pathways from the last items of the sequences to the first
have to be considered. For each pair of encoded (x) and transliterated (y) sentences, we first
construct an array of size length of x + 1 times length of y + 1 (see Fig. 4). The cells where
x = 0 are filled with numbers descending from 0. The same is done to the cells where y = 0.
The rest of the cells are filled according to Equation 1.

[x — 1,y — 1] + dscore
[x,y] = max{ ([x,y—1]-1) (1)
(x-1yl-D
That is, the cell is assigned the maximum of the scores in either the cell to the top left plus a
dictionary score dscore, the cell to the left minus the penalty point (-1), or the cell above minus
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the penalty point (-1). The value of dscore is based on whether the transliteration is found in
the dictionary entry for the encoding of the words under consideration (5 points) or not (-1
points). In Figure 4, only two encoded words (110 D46 and 19) have a matching transliteration
(Dd and f, respectively) in our dictionary. For all the other pairs, the dscore is -1.

LACUNA Dd <n> f iA.tw n-aDA
0 -1 -2 -3 -4 -5 -6
LACUNA -1 \ -1 -2 -3 -4 -5 -6
110 D46 -2 -2 \ 4 el 3 2 1 0
19 -3 -3 3 3 \ 8 7 6
M17 G1 Z7 X1 A30 A2 -4 -4 2 2 7 \ 7 6
N35 D36 U28 G1 M17 27 G37 -5 -5 1 1 6 6 \ 6

Figure 4: The Needleman-Wusch algorithm used on a encoding - transliteration sentence pair. The
optimal alignment is found by backtracing the arrows that indicate from where the value assigned to
the cell was received. Only the word pairs marked with red are found in our dictionary and get the
dscore 5. See Table 2 for the final alignment.

Another array is constructed simultaneously and filled with the information from which
direction - left, top, or top left — the maximum score was found. In Figure 4, the relevant
directions are conveyed with arrows. After both arrays have been filled, the best alignment is
found by starting from the cell [length of x][length of y], that is, from the bottom right cell. The
encodings and transliterations are aligned, starting from the last word and moving toward the
first. If the score came from the top left, the encoding and transliteration x and y are aligned. If
the score was received from the left, the transliteration is aligned with an empty slot, marked
by “-”. When the score comes from the above cell, it is the transliteration that is left empty.
One then moves on to the cell where the maximum score came from until reaching the top left
corner of the array [x = 0][y = 0]. For the alignment of the sentences in Figure 4 see Table 2.

Encoding LACUNA 110 D46 - 19 M17G1Z7 X1 A30 A2 N35D36 U28 G1 M17 Z7 G37
Transliteration | LACUNA Dd <n> f iA.tw n-aDA
Table 2

The final alignment of the sentence pair in Fig. 4. In the figure, the word pair 110 D46 - <n> gets its
score from the cell to its left (indicated by the horizontal arrow) and, therefore, the transliteration <n>
has been aligned with an empty slot.

When the sentence is long or has many words not present in the dictionary, the maximum
score for a cell may sometimes be received from several directions; that is, there are multiple
optimal alignments. In order to find out which passage is best, we sum up the dscores for
each pair on every possible passage. The highest scored alignment is then returned. In case
there are several alignments with the highest score, we favor the diagonal alignment and, since
additional words are more common in transliteration, left over top.
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5.4. Evaluation of the Segmentation Method

We evaluated the method using the Levenshtein distance, which calculates the minimum num-
ber of single token edits to change one string to the other.!® Levenshtein distance was also
used for assessing the correctness of transliteration of hieroglyphic texts by Rosmorduc [20].
We implemented the method according to “Algorithm X” described by Wagner and Fischer
[38]. Like in the Needleman-Wunsch algorithm, when comparing strings x and y, one uses a
two-dimensional array, but the cells where x = 0 are filled with numbers ascending from 0 in-
stead of descending. The same is done to the cells where y = 0. Like in the Needleman-Wusch
algorithm, when assigning a score to a cell, one always considers the score in the cells to the
left, top left, and above. A penalty point is added to the scores to the left and above and, if
the tokens to compare are not the same, also to the score in the top left cell. After filling the
array, the Levenshtein distance is retrieved from the cell [length of x][length of y]. We used
one as a penalty point. We compared both lines produced with our alignment method, that is
the encoding line and the transliteration line to the respective ones in the gold standards. This
means that, in fact we always compared 200 lines. The smaller the Levenshtein distance, the
more similar the lines are.

The Levenshtein distance of our alignment test set to our gold standard was 124 before doing
any aligning. Examining the lines showed there were sometimes long sections of insertions,
even at the beginning and the end of the sentences.

Initially, in our Needleman-Wunsch algorithm, we simply checked whether the translitera-
tion was in the entry of the encoded word we were trying to align it with. Since a hieroglyphic
word could be written in many ways by using different sign combinations, we tested various
slightly different ways of finding out whether the encoding and the transliteration refer to the
same word.

The basic matching scheme in the alignment algorithm was to compare the transliteration
to be aligned with all possible transliterations for the encoded hieroglyphic token. In case of
a match, the dscore is 5. Already in the initial matching scheme, the “Simple”, if there was no
match for the first rule, the alignment was additionally considered a match if the transliter-
ation or any of the possible transliterations started with and completely contained the other.
This partial match gave a dscore of 4. Using the simple scheme, the performance of the AES
dictionary was worse than expected, giving a distance of 147, which means there were more
mistakes than in the original alignment. Using our first Ramses dictionary gave a distance of
40, which was topped by 30 by the second dictionary and 26 by the third one (see Table 3).
Adding AES to each of the Ramses dictionaries improved the results slightly to 38, 28, and 24,
respectively.

In our second matching scheme, we added the “First 3” rule, i.e., taking the first three MdC
codes from the encoding under scrutiny and adding the transliterations of all the words starting
with those three codes to the list of possible ones before checking. If neither of the simple
scheme rules matched, the “First 3” rule gave a dscore of 4. The distance with the AES dictionary
improved to 98 while the first Ramses dictionary gave 16, and the second and the third 10. This
rule seemed to work especially while using the AES dictionary with the first and second Ramses

16See example analyses by Kruskal [7] (Section 4. Levenshtein And Other Distances) on how to calculate the
Levenshtein distance.
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Distance
Dict. Simple +First 3+ Logogram
AES 147 98 81
RTC 1st 40 16 8
RTC1 + AES | 38 12 6
RTC 2nd 30 10 2
RTC2 + AES | 28 6 2
RTC 3rd 26 10 2
RTC3 + AES | 24 6 2

Table 3

Evaluation of the the first 100 lines of the validation set with unequal number of tokens against our
gold standard using the first and second dictionaries with various matching methods in the Needleman-
Waunsch algorithm.

dictionaries. The first RTC gave 12, and the second 6. The rule had no effect with the third
dictionary compared to the second.

In the third matching scheme, a “Logogram” rule was added. With this rule, only the first
sign of the encoding is considered. We used the sign similarly to the second rule of the “Simple”
scheme. If none of the previous rules was usable, the “Logogram” rule gave a dscore of 3. This
resulted in a small improvement of the Levenshtein distance with all the dictionaries: AES 81,
the first Ramses dictionary 8, and the combination of these 6. All the other dictionaries gave
the distance 2.

6. Transliteration Models

Since we wanted to align the sentences as well as possible and produce good-quality transliter-
ation models, but we could not achieve Levenshtein distance 0 in our evaluation, we resorted
to using a corpus-specific addition in the alignment method. The dscore was set to -5 if the
transliteration contained any of the characters indicating an insertion by the annotator, i.e.,
parenthesis or angle brackets around the word. These could be possibly preceded by “=”, indi-
cating that a suffix pronoun was meant. This measure gave the distance 0 with all three Ramses
dictionaries, even with the simple matching scheme.

In order to verify the reliability of the alignment of sentence pairs with an uneven number of
words in the RTC, we used the third Ramses dictionary and all the matching rules, including the
corpus-specific addition, for aligning the entire Ramses training set. We then made a wordlist
out of the aligned lines and studied that manually. The broken words and additions are omit-
ted from the word lists used for producing the transliteration model, but they were retained
for this step of the process. When intact words were found to be paired with a ’-’, we studied
the sentence where that happened. We found several sentences where the MdC and translit-
eration did not match. For example, some names of kings were always written as one word
in the encoding but as two words in the transliteration. We made rules to align these names
properly. For creating the transliteration model, we added these rules to the preprocessing
step. Occasionally, some of the hieroglyphs had also been left untransliterated, and sometimes
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there were transliterations that had been deduced from the context but with no counterpart in
the MdC. Often this did not matter as our method could detect the missing words, but for some
sentences, we just could not align properly, so we made a list of sentences to ignore.

Once we were content with the dictionary built from the aligned lines, we used the dictio-
nary to build the transliteration model. The various dictionaries contain information on the
frequency of each MdC-transliteration pair and can be used as transliteration models of the
specific corpora they were built from. In order to publish the models in a more structured for-
mat, we made a script to write them using the JSON scheme. The script allows one to build a
transliteration model from a desired number of word lists. We build JSON-format models from
the AES words, the words in the Ramses training model, and a combined AES-Ramses model.

{

"encoding": "M17 Z7",
"interpretations": [

{
"transliteration": "iw",
"freq": 8142,
"relFreq": 99.75

by

{
"transliteration": "r",
"freq": 13,
"relFreq": 0.16

s

{
"transliteration": "ir",
"freq": 4,
"relFreq": 0.05

s

{
"transliteration": "in-iw",
"freq": 2,
"relFreq": 0.02

s

{
"transliteration": "iwf",
"freq": 1,

"relFreq": 0.01

]
3

Figure 5: Example of an Egyptian word in the transliteration model created from the RTC training
corpus.

The models have been published under an open license on Zenodo and GitHub.!” The models
are JSON files with separate entries for each MdC token, as seen in Figure 5. The token in the
example, “M17 Z7”, is the same as in Figure 3. The “encoding” keyword gives the MdC for the

7http://doi.org/10.5281/zenodo.7991240, https://github.com/MaReTEgyptologists/TranslitModels
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token, and all attested transliterations are collected under the “interpretations” keyword. For
each transliteration, the frequency “freq” is indicated as is the observed probability, “relFreq”, of
the transliteration for the given MdC token. Due to being able to align the different length MdC
— transliteration pairs, the number of “iw” transliterations for “M17 Z7” more than doubled even
though the number of lines only grew from c. 57,000 to 67,000. This difference is due to the
fact that misalignment occurs more often in longer sentences than in short ones.

The Table 4 shows the sizes of the different versions of the published models.

Model # of unique tokens  Total frequency  # of unique MdC - transliteration pairs
AES 43,416 250,909 46,811
RTC 48914 447,719 55,049
AES + RTC | 84,558 698,628 97,777

Table 4
The published transliteration models and their sizes.

7. Conclusions

Our alignment method manages to align even complex sentences with the difference of several
words in the original encoding and transliteration lines. Increasing the size of the dictionary by
including more pairs of words improved the results every time. Using a penalty for the obvious
insertions by annotators was needed to align the original lines and our gold standard perfectly.
In order to build good-quality transliteration models, some additional corpora-specific rules
were needed. Although the alignment method depends on the corpus format, which is cur-
rently unique to this export done by Rosmorduc [20], we have published the software used
for building the dictionaries and aligning the sentences. They cannot be used off-the-shelf for
other corpora, but we believe that they can be modified for or at least give an example of how
the Needleman-Wunsch can be used for aligning sentences that do not have the same format.

We have published a combined transliteration model by using the words from the AES and
the RTC corpora. However, our attempts to use the AES for aligning MdC and transliteration
sentence pairs in the RTC corpus were unsuccessful and showed that the corpora are very
different. We assume that the separate models built from each of the corpora will be more
useful.

The most obvious thing for future work would be to evaluate the alignment method using
the test set in the Ramses Transliteration Corpus. However, as we wish to use the test set to
evaluate the forthcoming automatic transliteration method, we are hesitant to look at it, which
is needed for manual alignment.

We have used the RTC Transliteration Model in our first experiments on automatically seg-
menting hieroglyphic texts into words, a task that is needed before automated transliteration.
We noticed that information on two or more words in a window might be useful for the task.
Hence, we intend to produce additional token n-gram transliteration models from the texts we
have aligned.
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