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1. Introduction

1.1 Motivation

Stochastic numerical simulators have become instrumental in many fields, from the sci-
ences to economics, providing insights into understanding complex systems [Cranmer
et al., 2020, Ratmann et al., 2007, Geyer, 1992]. A crucial and challenging task in uti-
lizing these simulators is inferring the model parameters given observed data in these
models (also called simulator models). In the context of Bayesian analysis, this trans-
lates to inferring the posterior distribution. Conventional Bayesian inference meth-
ods, such as Variational Inference (VI) and Markov Chain Monte Carlo (MCMC), are
likelihood-based. However, they are not very useful for this kind of model since the sim-
ulator models’ likelihood functions are either intractable or evaluating the likelihood is
computationally extremely expensive, leading to infeasible inference [Lückmann, 2022,
Cranmer et al., 2020].

A new class of methods, likelihood-free or simulation-based inference (SBI), has
been developed in this context. SBI offers an alternative framework for Bayesian in-
ference, especially in the context of simulator models with intractable likelihoods. It
bypasses the need for explicit likelihood calculations. Instead, it uses simulated data
to approximate the likelihood and infer the posterior with the prior or directly ap-
proximate the posterior [Cranmer et al., 2020, Sisson et al., 2018]. Much research has
shown that SBI is particularly advantageous for non-differentiable models or containing
inaccessible internal random variables. This has facilitated exploration within complex
simulation domains, supported by the development of efficient algorithms and toolboxes
that streamline statistical inference after simulation-based training [Radev et al., 2020,
Tejero-Cantero et al., 2020]. Its applications have proliferated, contributing signifi-
cantly to fields such as neuroscience, particle physics, epidemiology, and cosmology
[Cranmer et al., 2020].

Within the field of SBI, initial methods like Approximate Bayesian Computa-
tion (ABC) have paved the way for understanding complex stochastic systems through
likelihood-free inference [Beaumont et al., 2002]. For example, the most classical ABC
method, Rejection-ABC, employs a rejection-sampling method to avoid evaluating the
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2 Chapter 1. Introduction

likelihood. However, these approaches often involve computationally demanding pro-
cedures for each new dataset and struggle with high-dimensional problems due to the
high computational cost of the rejection sampling process. With the development of
machine learning, especially deep learning, the field has since progressed with neural
network-based amortized inference techniques, such as Neural Posterior Estimation
(NPE), Neural Likelihood Estimation (NLE), and Neural Ratio Estimation (NRE).
Unlike REJ-ABC, these neural network-based approaches can scale better to high-
dimensional problems and amortize the inference process, allowing for efficient gen-
eralization across different instances and reducing the computational burden for new
observations [Lueckmann et al., 2021, Cranmer et al., 2020].

These SBI approaches, however, typically aim to approximate the entire posterior
or likelihood, which may not be the most efficient strategy for all applications. The
real world often demands faster, targeted inferences, especially in systems modeled
by complex simulators, where rapid point estimation is vital. In these cases, direct
output of the desired statistics, bypassing the intermediate step of complete posterior
approximation, can significantly expedite the process. Furthermore, the training of
neural networks for point estimation can be treated as a special case Bayesian decision-
making framework. This perspective shifts the focus to identifying the most informative
point estimates based on the simulations, which are similar to finding optimal actions
in a decision-making scenario. This approach is significant given that some neural
network-based SBI methods can produce only approximate posteriors that might lead
to suboptimal decisions [Gorecki et al., 2023, Alsing et al., 2023, Lacoste-Julien et al.,
2011]. By adopting a direct point estimation approach, we aim to achieve more accurate
decision-making, reflecting a more precise understanding of the underlying models.

1.2 Contributions

This thesis proposes ‘Neural Amortization of Bayesian Point Estimates (NBPE)’, an
innovative neural-network SBI method that adapts amortized inference to do a spe-
cial downstream task of Bayesian inference, point estimation. Similar to other Neural
SBI methods, NBPE can also amortize the cost of inference by leveraging the fea-
tures of neural networks; however, unlike other Neural SBI methods, it should always
first approximate posterior and then get point estimations, which could be inefficient.
NBPE trains an end-to-end network to output accurate point estimation directly in
milliseconds.

A novel feature of our approach is the implementation of a variable loss function
|θi − θpred|α, where the value of α is varied during each training epoch, the θi is the
parameter proposed by p(θ) and the θpred is our predicted result. With this training



1.3. Outline 3

method, at inference time, by varying the value of α, we can get the statistics of the
posterior we want. Typically, when α = 2, we are supposed to get the mean of the
posterior. When α = 1, we are supposed to get the median of the posterior. When α

is close to 0, we are approaching the mode of the posterior. This feature makes NBPE
output accurate and flexible regarding point estimation at inference time.

The efficacy of this method is demonstrated through comprehensive experimental
analysis, which is divided into two parts. The first part focuses on evaluating the
accuracy and efficiency of NBPE, testing it on both a toy model and a simulator model.
We compared it to the established method called Neural Posterior Estimation (NPE) in
the BayesFlow SBI software. NBPE performs with competitive accuracy compared to
NPE and can perform faster inference than NPE. The second part of the experimental
analysis concentrates on evaluating the flexible point estimation capabilities of NBPE
on three different models: Poisson-Gamma, Beta-Bernoulli, and Gamma-Exponential.
This part of the analysis aims to showcase the model’s ability to target specific point
estimates effectively across various probability distributions.

Additionally, our work illuminates the potential of viewing point estimation as a
decision-making process within the Bayesian Decision Making (BDM) framework. By
framing point estimation in this manner, NBPE simplifies the inference process and en-
riches the toolkit for downstream BDM tasks, offering novel insights and methodologies
for SBI methods used in BDM.

In summary, the contributions of this research are manifold:

1. The application of amortized inference for efficient point estimation in SBI.

2. The implementation of a variable loss function training strategy to enable rapid
and specific posterior statistic estimation.

3. Comprehensive experiments showing that the model’s effectiveness for both toy
models and simulator models.

4. Providing a new perspective on point estimation as a BDM process, potentially
enhancing decision-making in downstream applications.

1.3 Outline

The thesis is structured as follows: Chapter 2 provides the necessary background to
understand our work, beginning with an overview of Bayesian inference fundamentals,
including basic ideas of Bayesian inference, likelihood-based inference methods, and
a classical likelihood-free (simulation-based) inference method, Approximate Bayesian
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Computation (ABC). The discussion then covers neural networks, the basis for amor-
tized simulation-based inference, specifically introducing feedforward networks and the
DeepSets architecture used in this research. A comprehensive overview of Simulation-
Based Inference (SBI) is then presented, starting with Neural Posterior Estimation,
followed by Neural Likelihood Estimation, and then Neural Ratio Estimation. Sec-
tion 3 reviews related literature, focusing on existing works regarding neural point es-
timation and simulation-based inference methods in the context of Bayesian Decision
Making. Section 4 details the methodology behind our proposed Neural Bayesian Point
Estimation (NBPE) approach. This includes explaining the encoder-decoder structure
and the novel variable loss function, as well as the training process and how it aligns
with the Bayesian Decision Making framework. Section 5 describes the experiments
conducted to validate the NBPE method. Section 6 discusses the limitations of the
current research and potential future work, and summarizes the thesis. The Appendix
provides additional information to support the main content of the thesis.



2. Preliminaries

In this chapter, we cover the fundamental concepts necessary to understand our work.
We begin by introducing Bayesian Inference, a framework that allows us to update our
beliefs about model parameters based on observed data. This introduction includes
the Bayes Theorem, likelihood-based methods, such as with conjugate priors or varia-
tional inference, and finally, we cover a traditional likelihood-free or simulation-based
inference method, Approximate Bayesian Computation (ABC). Next, we cover neural
networks, which play an essential role in advanced simulation-based inference methods
and our work. Finally, we discuss how neural networks can be utilized to develop more
advanced Simulation-Based Inference (SBI) techniques, such as Neural Posterior Es-
timation (NPE), Neural Likelihood Estimation (NLE), and Neural Ratio Estimation
(NRE).

2.1 Bayesian inference

In this section, we introduce the fundamental concepts of Bayesian inference, a frame-
work for updating beliefs about model parameters based on observed data. We present
Bayes’ rule, which forms the foundation for computing the posterior distribution given
the prior and the likelihood. We also discuss conjugate priors, Variational Inference
(VI), and Approximate Bayesian Computation (ABC) as alternative inference tech-
niques.

2.1.1 Definition

In the field of statistics, there are two distinct classes of methods: Frequentist and
Bayesian. Frequentists believe that parameters exist objectively and are fixed but un-
known values. In contrast, Bayesians do not focus on the correct parameter values but
instead aim to derive posterior probabilities for statistical inference by incorporating
observed data with prior knowledge [Betancourt, 2019, Gelman et al., 1995].

In a nutshell, the Bayesian method uses prior knowledge of the unknown pa-
rameters θ, combined with the currently observed data xo, to update the belief about

5
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Figure 2.1: This set of plots demonstrates the evolution of the posterior distribution of the probability
parameter θ (representing the likelihood of a coin landing heads up) as observed data is accumulated.
Each subplot corresponds to a different number of coin toss trials (n = 5, 10, 20, 100, 500, 1000)
with the respective number of heads observed (x). The posterior distributions p(θ|x) are computed
using three different sets of Beta distribution priors: α = 0.5, β = 0.5 (blue), α = 2, β = 2 (green),
and α = 10, β = 10 (red). The true value of θ (0.6) is marked by a vertical black line in each plot.
These visualizations show how the choice of prior influences the posterior distribution, especially with
a smaller number of observations, and how the posterior distribution converges towards the true value
as more data is observed.

unknown parameters, which is the posterior probability. This updating process is
clearly illustrated by Bayes’ Theorem:

p(θ|xo)︸ ︷︷ ︸
posterior

= p(θ,xo)
p(xo)

=

likelihood︷ ︸︸ ︷
p(xo|θ)

prior︷ ︸︸ ︷
p(θ)

p(xo)︸ ︷︷ ︸
evidence

, where p(xo) =
∫
p (xo|θ′) p (θ′) dθ′. (2.1)

This formula encapsulates the essence of Bayesian learning, where the prior prob-
ability p(θ) is updated to the posterior probability p(θ|x) after considering the observed
data. Such an approach not only allows for the incorporation of prior knowledge but
also facilitates a more comprehensive assessment of uncertainty, distinguishing Bayesian
methods from traditional frequentist approaches in statistical modeling [Tipping, 2004].
We illustrate the Bayesian updating process in Figure 2.1.

2.1.2 Conjugate priors

After establishing the core principle of Bayesian inference (deriving the posterior dis-
tribution using Bayes’ theorem), the next challenge is implementing this process effi-
ciently. The computational complexity of updating beliefs about unknown parameters
becomes particularly evident when the model and data are complex. In such cases, con-
jugate priors are critical in simplifying the Bayesian updating process. A prior is said
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to be conjugate to the likelihood function if the posterior distribution is in the same
family as the prior distribution. This relationship allows for an analytical solution to
the Bayesian updating process, making the inference computationally straightforward.

For example, consider a coin toss experiment. The probability of the coin landing
heads up is denoted by θ. Our goal is to infer the value of θ based on observed coin
toss outcomes. We express our prior belief about θ using a Beta distribution:

p(θ) = Γ(α + β)
Γ(α)Γ(β)θ

α−1(1− θ)β−1, (2.2)

where α and β are the shape parameters of the Beta distribution.
The likelihood of observing xo heads in n tosses is given by the binomial distri-

bution:
p(xo|θ) = n!

xo!(n− xo)!θ
xo(1− θ)n−xo . (2.3)

By Bayes’ Theorem, the posterior distribution is proportional to the product of
the prior and the likelihood:

p(θ|xo) ∝ θα−1(1− θ)β−1θx(1− θ)n−xo = θα+xo−1(1− θ)β+n−xo−1. (2.4)

Thus, the posterior parameters become:

αposterior = α + xo, βposterior = β + n− xo. (2.5)

This shows that by using a Beta prior, the posterior also follows a Beta distri-
bution. The conjugacy ensures that Bayesian inference can be performed efficiently,
without the need for complex integrations or numerical approximations.

Challenges While conjugate priors simplify the computation of the posterior, real-
world applications often do not present such convenient scenarios. Recall the equation:

p(θ|xo) ∝ p(xo|θ)p(θ), (2.6)

in the absence of conjugate priors, the posterior p(θ|xo) does not conform to a rec-
ognizable distribution form, complicating its direct computation. Specifically, the de-
nominator of Bayes’ theorem, the marginal likelihood:

p(xo) =
∫
p(xo|θ)p(θ)dθ, (2.7)

becomes intractable due to the integral over θ, which may involve exponential com-
plexity in high-dimensional spaces or when the model structure does not allow for
simplification[Gelman et al., 1995]. Consequently, the absence of an analytical solution
for the posterior necessitates alternative computational strategies to approximate it
effectively.
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Solutions This computational complexity sets the stage for the adoption of advanced
methods such as Markov Chain Monte Carlo (MCMC) and Variational Inference (VI).
MCMC circumvents the direct calculation by constructing a Markov Chain to sample
from the posterior distribution, providing a way to approximate it in complex scenarios
[Murray, 2007]. While MCMC is known for its accuracy, it can be computationally
demanding [Wiqvist et al., 2021].

Conversely, Variational Inference offers a more computationally efficient alter-
native by approximating the posterior with a tractable surrogate distribution. This
approximation turns the problem of Bayesian inference into an optimization problem,
which is particularly advantageous in handling large-scale data and complex models
[Zhang et al., 2018, Blei et al., 2017]. In the next section, we will cover Variational
Inference, discussing its methodology, classic algorithm, and challenges when the like-
lihood function is intractable.

2.1.3 Variational inference

Idea Variational Inference (VI) is a computational technique in Bayesian inference
that approximates complex posterior distributions p(θ|x, ϕ) with a simpler, parame-
terized distribution q(θ|x, λ). The core idea involves selecting a tractable approximate
distribution q(θ|x, λ) and optimizing its parameters λ to minimize the discrepancy
between q(θ|x, λ) and the true posterior p(θ|x, ϕ).

Problem Reformulation When using the Kullback-Leibler (KL) divergence as the
distance measure, the optimization objective becomes:

λ∗ = arg max
λ

Eθ∼q(θ|x,λ)[log p(x|θ, ϕ)]− Eθ∼q(θ|x,λ)

[
log q(θ|x, λ)

p(θ)

]
︸ ︷︷ ︸

ELBO(q)

(2.8)

This formulation, known as the Evidence Lower Bound (ELBO), transforms the in-
tractable problem into a computable optimization objective involving the tractable
form of q(θ|x, λ), the known likelihood function p(x|θ, ϕ), and a predefined prior p(θ)
from the Bayesian model. For a detailed derivation of the ELBO, refer to Appendix A.2.

Coordinate Ascent Variational Inference (CAVI) CAVI is a classic VI approach
that uses a mean-field variational family to describe q(θ|x, λ) and coordinate ascent
to solve the ELBO maximization problem. The mean-field variational family assumes
independence among the hidden variables, leading to a factorized form of q(θ|x, λ).
CAVI then optimizes each factor qj(θj|x, λj) iteratively until the ELBO converges,
effectively finding the optimal variational distribution q(θ|x, λ). The efficacy of this
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Figure 2.2: This figure shows the monotonic increase in ELBO that is indicative of the variational
distribution’s convergence towards the true posterior.

approach is illustrated through an application to a three-component Gaussian Mixture
Model, as detailed in Figure 2.2, showing the iterative refinement of the variational
parameters and the corresponding improvement in ELBO. A set of papers research
more advanced VI methods from different angles. For example, applying more complex
prior distributions has facilitated a richer characterization of parameter information.
See these papers if you are interested [Tomczak and Welling, 2018, Atanov et al., 2019].

2.1.4 Challenges with Likelihood-Based Inference Methods

From the above introduction, methods like VI offer a promising strategy for Bayesian
inference when dealing with complex models by approximating the intractable true
posterior with a tractable variational distribution. Such approaches are also called
likelihood-based inference methods generally due to their reliance on the direct evalu-
ation of the likelihood p(xo|θ). Although they could be very efficient on some tasks of
Bayesian inference, the reliance on direct likelihood evaluation makes MCMC and VI
less feasible in scenarios where the likelihood function is intractable [Lintusaari et al.,
2017]. This challenge is prevalent in many scientific and engineering fields where mod-
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els have intractable likelihood functions, limiting the applicability of VI and MCMC
in such contexts [Karabatsos and Leisen, 2018]. An example of such cases is Simulator
Models.

Simulator Models Simulator models, also known as implicit models, are a class of
computational frameworks that define the data generation process without an explic-
itly defined likelihood function. These models typically appear as computer programs
and are important and widespread in various scientific fields such as particle physics
[Butanovs et al., 2021], astronomy [Alsing et al., 2018], neuroscience [Lueckmann et al.,
2017], and population genetics [Beaumont et al., 2002], where they are employed to
construct sophisticated, high-fidelity simulations with the support of modern compu-
tational resources.

Although indispensable in many scientific fields, simulator models present chal-
lenging issues in Bayesian statistical analysis due to their inexplicit likelihood functions.
This characteristic often leads to the intractability of likelihood computation, either
because the evaluations are too expensive or because explicit evaluations are simply
impossible [Cranmer et al., 2020, Papamakarios, 2019]. Such intractability significantly
hinders the application of likelihood-based Bayesian inference methods such as MCMC
and VI [Papamakarios and Murray, 2016].

These limitations have motivated the development of simulation-based inference
(SBI) methods, which circumvent the need for evaluating the likelihood explicitly. In
the following subsections, we will introduce some typical methods in simulation-based
inference, also known as likelihood-free inference, to see how these methods can perform
inference under intractable likelihood.

2.1.5 Approximate Bayesian Computation

To address the challenges posed by simulator models, alternative likelihood-free in-
ference methods have been developed. One such approach is Approximate Bayesian
Computation (ABC).

Idea The intractability of directly computing the likelihood p (x = xo|θ) for simu-
lator models motivated the development of ABC, a classical likelihood-free inference
method. ABC circumvents the direct evaluation of the likelihood function by instead
comparing observed data, xo, with simulated data, xs, using a norm function d (xs,xo)
to measure their distance. Parameter samples, θ′, that result in simulated data closely
matching the observed data are considered as samples from an approximate poste-
rior distribution. Through iterative sampling, ABC accumulates a collection of such
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samples, denoted by θ′ ∼ p̂(θ|x), where p̂ represents the ABC-approximated posterior
distribution [Sisson et al., 2018, Lintusaari et al., 2017].

Summary statistics From the earliest work on ABC, the use of summary statistics-
informative features extracted from the data has been a cornerstone of the ABC
methodology [Beaumont et al., 2002]. To manage the challenges posed by high-
dimensional data, ABC typically does not directly utilize raw data, x, but instead com-
putes and utilizes summary statistics, S(x), for comparison of the pseudo-observations.
This approach addresses the ‘curse of dimensionality‘: in high-dimensional settings,
particularly those encountered in real-world models, the sample space expands expo-
nentially with each additional dimension. This exponential growth makes the accep-
tance rate of ABC very low since it requires an impractically large number of sim-
ulations to thoroughly explore the parameter space and find parameter values that
generate simulated data closely matching the observed data[Pacchiardi and Dutta,
2022].

The use of summary statistics, S(x), helps reduce the data’s dimensionality,
therefore mitigating the curse of dimensionality. Summary statistics are carefully cho-
sen low-dimensional representations that aim to capture the most relevant information
from the high-dimensional data while discarding redundant or less informative details.
By comparing these lower-dimensional summary statistics instead of the full data, the
distance computation becomes more tractable and requires fewer simulations.

It is noteworthy that the concept of summary statistics is not unique to ABC
but is a fundamental element across almost all simulation-based inference methods. In
this thesis, for clarity and simplicity in subsequent discussions, we will use x to refer
to S(x) unless specified otherwise.

Rejection ABC For more detail, We will cover a classical ABC methodology,
Rejection ABC, which implements the foundational principles of ABC through an
acceptance-rejection scheme. This method operates on the premise of comparing ob-
served data, xo, against simulated data generated from a prior distribution over the
parameters, p(θ), of a simulator model p(x | θ). Employing an l2-norm function d(·, ·)
and setting an acceptance threshold ϵ, Rejection ABC selectively accepts parameter
samples θ′ that yield simulated data closely resembling the observed data, as described
in Algorithm 1.

Distinctively, Rejection ABC circumvents the direct computation of the likelihood
function p(x = xo | θ) by constructing a surrogate likelihood. This surrogate is derived
from the integral across the entire data space x, modulated by an indicator function
I, which assigns a value of 1 when the simulated data xs falls within an ϵ-radius of the
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Algorithm 1 Classical REJ-ABC
1: Initial: A simulator p(x|θ), a prior distribution p(θ), an observation xo, a tolerance

threshold ϵ

2: while in simulation budget do
3: Sample θ′ from p(θ)
4: Simulate xs from p(x|θ′)
5: if ∥xs − xo∥ ≤ ϵ then
6: Accept θ′

7: else
8: Reject θ′

9: end if
10: end while
11: return Accepted samples {θ′} from p (θ| ∥xs − xo∥ ≤ ϵ)

observed data xo, and 0 otherwise:

pϵ (xo|θ) =
∫
p(x|θ)I (∥xs − xo∥ ≤ ϵ) dx. (2.9)

Here, p(x|θ) is the likelihood of generating data x under parameter θ. Recall the
Bayes’ theorem Equation 5.2, we can integrate the surrogate likelihood pϵ (xo | θ) with
the prior p(θ) to formulate the ABC posterior p̂ (θ|xo) :

p̂ (θ|xo) ∝ pϵ (xo|θ) · p(θ) ∝
(∫

p(x|θ)I (∥xs − xo∥ ≤ ϵ) dx
)
· p(θ). (2.10)

In theory, given an unlimited simulation budget and as ϵ → 0, the approximate pos-
terior p̂ (θ|xo) converges to the exact posterior p (θ | x = xo), a convergence supported
by detailed proofs in the literature [Prangle, 2017].

In sum, classical REJ-ABC is a basic implementation of the ABC framework that
provides a straightforward approach to approximate the posterior distribution without
requiring the evaluation of the likelihood function.

Related work The simplicity of Classical REJ-ABC, while straightforward, is not
without limitations, particularly when the prior distribution significantly diverges from
the posterior. This discrepancy often results in inefficient sampling, necessitating an
excessive number of iterations to achieve convergence [Lückmann, 2022, Papamakarios,
2019]. Innovations in ABC methodologies have sought to mitigate this inefficiency by
utilizing previously accepted parameters to iteratively refine the proposal distribution.
Methods such as Markov Chain Monte Carlo ABC (MCMC-ABC) leverage Metropolis-
Hastings algorithms to enhance parameter proposals, thereby improving acceptance
rates [Marjoram et al., 2003]. Similarly, Sequential Monte Carlo ABC (SMC-ABC)
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Figure 2.3: Overview of different REJ-ABC algorithms.

employs importance sampling to incrementally sample from progressively refined pos-
terior distributions, effectively decreasing the tolerance threshold ϵ and enhancing the
efficiency of the sampling process [Bonassi and West, 2015, Beaumont et al., 2009,
Sisson et al., 2007]. These advancements represent a significant evolution from the
classical approach, offering more sophisticated mechanisms for parameter sampling
and posterior approximation in ABC frameworks.

Limitations Advanced ABC algorithms like Sequential Monte Carlo ABC (SMC-
ABC) have significantly improved acceptance rates over classical ABC by utilizing
iteratively refined proposal priors. Despite these advancements, a fundamental chal-
lenge persists: the acceptance rate diminishes as the tolerance threshold ϵ decreases,
particularly in high-dimensional data scenarios. The consequence is a dramatic increase
in the required number of simulations, potentially necessitating hundreds of thousands
of simulator calls for a single posterior sample, rendering the approach impractical for
many applications [Geffner et al., 2023, Greenberg et al., 2019].

The utilization of summary statistics S(x) instead of the raw data x can lead
to highly accurate posterior approximations, provided that these statistics capture
the essential information. If, however, the chosen summary statistics lack sufficient
informativeness, they can negatively impact the quality of the posterior approximation.
The challenge of identifying effective summary statistics (strike a balance between
low dimension and informativeness), which often relies on domain-specific knowledge,
remains a significant area of research within the ABC literature [Charnock et al., 2018,
Blum et al., 2013, Fearnhead and Prangle, 2012].

Furthermore, traditional ABC methods are inherently inefficient for datasets with
numerous observations. The reliance on data in the rejection process, or in guiding the
proposal distribution in more advanced algorithms, necessitates repeating the inference
process for new observations. Consequently, ABC’s suitability is confined mainly to
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scenarios with single or few independent and identically distributed (i.i.d.) data points,
limiting its applicability in broader contexts [Cranmer et al., 2020].

Recent years, due to the fast development of deep learning, advanced SBI methods
have adopted neural networks to make SBI more scalable and efficient. In the next
section, we cover some basic ideas of neural networks and introduce specific network
architectures used in our work.

2.2 Neural networks

Neural networks also known as artificial neural networks (ANNs) have emerged as a
powerful tool for approximating complex functions[LeCun et al., 2015], making them
an indispensable component of many modern machine learning and inference methods,
including SBI. At their core, neural networks are a class of flexible function approxima-
tors that can learn to map input data to desired outputs through a process of training
on examples. In this section, we will focus on Feedforward Neural Networks, the most
fundamental type of neural networks, to introduce the core concepts of neural network.
Following this introduction, we will explore DeepSets, a specific network architecture
that is integral to our methodology, highlighting its unique features and applications.

2.2.1 Feedforward neural networks

Feedforward Neural Networks (FNNs) represent the most basic and widely understood
class of neural networks. A FNN consists of layers of nodes, or “neurons”, each layer
fully connected to the next without any cycles or feedback loops-hence the term “feed-
forward”. The architecture typically comprises an input layer, one or more hidden
layers, and an output layer. Each neuron in a layer receives input from the neurons of
the preceding layer, processes this input through a weighted sum followed by a non-
linear activation function, and passes the result forward. Mathematically, a FNN can
be described through its layers and the transformations applied at each stage. Given
an input vector x ∈ Rd, where d is the dimensionality of the input, an FNN processes
this input through L layers to produce an output y. Each layer l in the network applies
a weighted linear transformation followed by a non-linear activation function σ(·) to
its input:

h(l) = σ
(
W(l)h(l−1) + b(l)

)
, (2.11)

where h(0) = x is the input layer, W(l) and b(l) denote the weight matrix and bias
vector for layer l, respectively, and h(l) represents the output of layer l. The final layer
(often without a non-linear activation for regression tasks or with a softmax activation
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Figure 2.4: An architecture of a feedforward neural network with three layers, illustrating the con-
nectivity from a 3-dimensional input to a 3-dimensional output through two 4-dimensional hidden
layers. With the flow of information proceeding from left to right without any feedback loops, char-
acteristic of feedforward neural networks.

for classification) produces the network’s output:

y = W(L)h(L−1) + b(L). (2.12)

Learning in FNNs involves adjusting W(l) and b(l) to minimize a loss function
L(y,ytrue), where ytrue is the true output. This is typically achieved using backprop-
agation to compute gradients and an optimization algorithm like stochastic gradient
descent (SGD) [LeCun et al., 2015] for updates:

W(l) ←W(l) − η ∂L
∂W(l) , b(l) ← b(l) − η ∂L

∂b(l) , (2.13)

with η being the learning rate.
Activation functions σ(·), such as ReLU or sigmoid, introduce non-linearity, en-

abling FNNs to model complex relationships. Through this structured process, FNNs
learn to approximate the function mapping inputs to outputs, showcasing their versa-
tility across a range of tasks from classification to regression.

FNNs are straightforward and efficient, excelling in tasks like regression and clas-
sification with static inputs. However, their inability to process sequential data such as
text and time series limits their application in areas where AI is rapidly advancing. To
address these limitations, neural network architectures have evolved, introducing mod-
els like Recurrent Neural Networks (RNNs)[Rumelhart et al., 1986], Long Short-Term
Memory networks (LSTMs)[Hochreiter and Schmidhuber, 1997], and Transformers for
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Figure 2.5: Simplified DeepSets architecture for permutation-invariant summary statistic extraction
from simulation sets [Lee et al., 2018]. The set X undergoes a transformation via the ϕ function,
followed by a pooling layer that computes sum or average to generate the set representation S(X).
This representation captures the essential information needed for further analysis, omitting the ρ

function to focus on encoding through aggregation.

handling sequential tasks in Natural Language Processing (NLP), and Convolutional
Neural Networks (CNNs)[Krizhevsky et al., 2012] for spatial tasks in computer vision.
These advanced structures allow neural networks to interpret contextual and temporal
information, expanding their utility across a wider range of applications.

2.2.2 DeepSets Framework

Permutation invariance is a crucial property in set data processing, referring to the
condition where the order of inputs does not influence the output of a function. For-
mally, for a set of inputs X = {x1,x2, ...,xn} and a permutation π that rearranges the
elements of X into Xπ =

{
xπ(1),xπ(2), ...,xπ(n)

}
, a function f is said to be permutation

invariant if:
f(X) = f(Xπ), (2.14)

for all possible permutations π. This condition ensures that the result of applying f
remains consistent regardless of the order of elements in X.

FNNs, such as Multilayer Perceptrons (MLPs), are designed to process inputs of a
fixed size, producing outputs that correspond directly to the input data size. This one-
to-one input-output mapping makes FNNs lack a mechanism to aggregate information
across multiple input vectors while preserving the unordered nature of sets. And some
advanced architectures such as CNNs and RNNs utilize on the order of inputs, rendering
them sensitive to permutations. Consequently, they are not inherently suitable for tasks
involving set data where order is not a defining characteristic. However, many real-
world applications involve set-structured data, such as point cloud classification tasks
in computer vision and robotics, and population statistics[Zaheer et al., 2017]. In these
scenarios, the order of elements is irrelevant, and the primary focus is on capturing the
overall properties of the set as a whole.

In response to this need, DeepSets provides a general framework for handling set
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data in a permutation-invariant manner[Zaheer et al., 2017]. The key insight behind
DeepSets is that any permutation-invariant function f over a set X can be decomposed
into an element-wise transformation ϕ followed by a permutation-invariant aggregation
operation (e.g., summation) and a final transformation ρ:

f(X) = ρ

(
n∑
i=1

ϕ(xi)
)
. (2.15)

The summation here serves as the permutation-invariant operation, satisfying the con-
dition of permutation invariance:

n∑
i=1

ϕ (xi) =
n∑
i=1

ϕ
(
xπ(i)

)
, (2.16)

for any permutation π. This ensures that f(X), the output of the DeepSets model,
remains consistent regardless of the order of elements in X, embodying the principle
of permutation invariance. It is worth noting that DeepSets proposes a generalized
approach to processing ensemble data, where the transform function ϕ and the ag-
gregation function ρ are not fixed in form. Considerable research has been done to
represent these two classes of functions using stronger and more modern neural net-
work architectures, such as the Attention-based SetTransformer[Lee et al., 2018]. Both
DeepSets and SetTransformer play crucial roles in our proposed method, see Figure
2.5.

The expressive power and flexibility of neural networks make them particularly
well-suited for learning complex posteriors in simulation-based inference problems. By
incorporating neural networks into the inference process, we can potentially overcome
the limitations of traditional methods and obtain more accurate and efficient approx-
imations of the posterior distribution. In the following section, we will cover some
advances neural network-based simulation inference methods.

2.3 Neural Simulation Based Inference

In recent years, by leveraging the powerful capabilities of neural networks, some ad-
vanced SBI methods have been developed to overcome the limitations mentioned in
Section 2.1.5.

In this section, we will cover three typical neural network-based SBI methods in
detail: Neural Posterior Estimation (NPE), Neural Likelihood Estimation (NLE), and
Neural Ratio Estimation (NRE). We will introduce their methodologies, related works
and limitations. For NPE and NLE, we will provide a more detailed discussion, while
NRE will be briefly introduced.
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2.3.1 Neural Posterior Estimation

The Neural Posterior Estimation (NPE) is initially proposed by Papamakarios and
Murray [2016]. Unlike ABC, which relies on an accept-reject framework to approxi-
mate the posterior, NPE reformulates this problem to a density estimation problem:
It leverages a neural network to serve as a conditional density estimator trained on
simulated datasets to approximate the posterior.

Methodology The procedure begins with constructing a dataset D = {(θi,xi)}Ni=1

through parameter sampling from the prior p(θ) and subsequent data generation via
the simulator p(x|θ). This dataset facilitates the training of a neural network-based
density estimator qψ(θ|x), optimizing the neural network parameters ψ to minimizing
loss function given by the the negative log probability log qψ(θ|x), that is

L(ψ) = Ep(θ)p(x|θ) − log qψ(θ|x)

≈ 1
N

N∑
i=1

log qψ (θi|xi) .
(2.17)

The idea here is to train the network to maximize the likelihood of the observed
data under the density estimator qψ(θ|x), which corresponds to minimizing the forward
Kullback-Leibler divergence KL(p(θ|x)||qψ(θ|x)), that is:

ψ∗ = arg min
ψ

Ep(x) [KL (p(θ|x)∥qψ(θ|x))]

= arg min
ψ

Ep(x)Ep(θ|x)

[
log p(θ|x)

qψ(θ|x)

]
= arg min

ψ
Ep(θ,x) [− log qψ(θ|x)] ,

(2.18)

the amortization over p(x) makes it possible to bypass the sampling or the evaluation of
the unknown posterior p(θ|x) in the second line above. Indeed, the double expectation
Ep(x)Ep(θ|x) can be rewritten as an expectation Ep(θ,x) over the joint distribution, which
we can easily sample in the forward direction as p(θ,x) = p(θ)p(x|θ) regardless of
whether the likelihood is tractable or not [Vasist et al., 2023].

Then, at the inference phase, NPE efficiently computes the posterior estimate
given any observations since now inference is just a simple forward pass, which signifi-
cantly amortizes the computational expense of traditional SBI methods.

Related Work From the beginning of the first NPE algorithm to the present, re-
searchers have developed many different versions of NPE primarily distinguished by
their selection of conditional density estimators. Mixture Density Network (MDN)(also
known as the mixture of Gaussians), being used as the estimator at the very beginning
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Figure 2.6: General scheme of SNPE-A proposed by [Papamakarios and Murray, 2016], here D =
{(θi, xi)}Ni=1 is the simulated data used to train MDN, algorithms can either directly use a prior to
propose parameters or use sequential refinement of the proposal. Note that this figure ignore the case
with summary statistics, in that case symbols should be changed to S(x).

[Papamakarios and Murray, 2016, Lueckmann et al., 2017], and later on the gradual
emergence of NPEs with Normalizing Flow [Greenberg et al., 2019, Winkler et al.,
2019, Papamakarios et al., 2017] and Generative Adversarial Networks (GANs) [Pac-
chiardi and Dutta, 2022, Ramesh et al., 2022, Goodfellow et al., 2014] as estimators
which have stronger representativeness than MDN for NPE. As we mentioned in the
ABC subsection, to increase the acceptance rate, SMC-ABC and MCMC-ABC achieve
this by modifying the way they propose the parameter (refining the proposal distri-
bution iteratively). Similarly, NPE has a version called Sequential Neural Posterior
Estimation (SNPE) for better simulation efficiency when we are only interested in the
posterior for a single observation xo.

The idea behind SNPE is as follows: the standard NPE uses the prior p(θ) to
propose parameters and then learns an estimator qψ(θ|x) for all x. However, since
we are only interested in the posterior at xo, simulations from parameters with very
low posterior density p(θ|xo) are not particularly informative for learning ψ, as these
simulations provide little information about θ|xo. Thus, a significant portion of the
simulation budget may be wasted on generating uninformative simulations, leading to
low simulation efficiency.

Thus, to address this issue, SNPE modify the proposal distribution p̂(θ) to be
more informative about θ|xo during the training step. This is achieved through a
sequential training procedure, where preliminary estimates of the posterior (obtained
using the exact prior p(θ)) are used as proposals for obtaining more training data. By
iteratively refining the proposal distribution to better approximate the true posterior at
xo, SNPE focuses the simulation budget on more informative regions of the parameter
space, thereby improving simulation efficiency. We illustrate the workflow of (S)NPE
in the Figure 2.6.
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However, SNPE has a crucial issue is that with the use of proposal p̂(θ) instead
of prior p(θ) in training step: the final output becomes a biased approximation of the
true posterior. This can be seen from the following equation:

qψ(θ|xo) ∝ p(xo|θ)p̂(θ), (2.19)

while our target posterior is p (xo|θ) p(θ). To address this deviation from the true pos-
terior, researchers have developed variants of SNPE, notably SNPE-A [Papamakarios
and Murray, 2016], SNPE-B [Lueckmann et al., 2017], and SNPE-C [Greenberg et al.,
2019].

The choice between NPE and SNPE primarily depends on the features of the
data we are interested in. SNPE is particularly effective for single data points, offering
enhanced simulation efficiency by focusing simulations more directly on the data point
of interest. This makes it highly suitable for tasks that derive high-quality inferences
from specific observations. On the other hand, NPE is better suited for scenarios in-
volving multiple independent and identically distributed (i.i.d) observations. Its main
advantage lies in amortized inference, which means that once trained, the model can
quickly approximate posterior distributions for new observations without the need for
re-training. This feature is highly beneficial for analyzing large datasets, where com-
putational resources and efficiency are critical considerations [Lückmann, 2022].

2.3.2 Neural Likelihood Estimation

Unlike NPE, which directly estimates the posterior, Neural Likelihood Estimation
(NLE) focuses on approximating the true likelihood p(x|θ) with a surrogate likelihood
qψ(x|θ) using neural networks.

Methodology This approach involves generating a dataset D = {(θi,xi)}Ni=1, where
each sample (θi,xi) is drawn from the joint distribution p̂(θ)p(x|θ) using the prior or
proposal distribution p̂(θ) and the simulator p(x|θ). Given this dataset, a conditional
density estimator qψ(x|θ) is trained to serve as a surrogate likelihood by maximizing the
total log-likelihood L(ψ) = Ep̂(θ)p(x|θ) log qψ(x|θ) ≈ 1

N

∑N
i=1 log qψ (xi|θi). After training,

during inference time, given an observation xo, an estimate of the likelihood can be
obtained by evaluating the surrogate at the observation point, qψ(x = xo|θ). Finally,
VI or MCMC can be employed to approximate the posterior at the observation point
with this surrogate likelihood.

Related Work Similar to NPE, the field has seen a variety of approaches in choosing
the parameterized surrogate likelihood, qψ, ranging from traditional synthetic likelihood
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Figure 2.7: General scheme of NLE proposed by [Papamakarios, 2019, Lueckmann et al., 2019], here
D = {(θi, xi)}Ni=1 is the simulated data used to train neural networks-based surrogate, algorithms
can either directly use a prior to propose parameters, use sequential refinement of the proposal or
active learning on proposal or surrogate. And like the Figure 2.6, this figure also ignore the case with
summary statistics, in that case symbols should be changed to S(x).

methods employing multivariate normal distributions, as discussed by [Wood, 2010], to
more recent advancements. Notably, [Papamakarios, 2019] utilized normalizing flows,
and [Lueckmann et al., 2019] tailored the choice of surrogate families based on a deep
understanding of specific simulators. Beyond the selection of surrogate families, like
SNPE, there are also versions of NLE that aim to improve simulation efficiency; these
methods are always called SNLE or SLE.

Two versions of SNLE are widely used. The first one is the SNLE proposed by
Papamakarios [2019], which adopted a sequential scheme similar to SNPE-A. The idea
is also proposing simulations with a proposal distribution, which is the posterior in
the previous round. Another version of SLE was proposed by Lueckmann et al. [2019],
who developed an active learning scheme to select new parameters. We illustrate the
workflow of (S)NLE in the Figure 2.6

Comparison With NPE NLE holds several advantages over NPE. Firstly, NLE
exhibits greater generality compared to NPE, which confines its flexibility to cer-
tain distribution families. For instance, SNPE-A can only be employed in conjunc-
tion with mixture of Gaussian estimators and exponential-family priors. In contrast,
NLE can be utilized with any estimator and prior distribution, as there is no con-
cern regarding issues arising from the proposal distribution (no need to correct for
proposing parameter samples from a distribution other than the prior, as shown in
Equation 2.19). Secondly, in the special case of inference with i.i.d observations
xo

1, . . . ,xo
N (N > 1), NLE is a better choice. As previously discussed, NPE di-

rectly approximates the true posterior with a density estimator qψ(θ|x), performing
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well with a single observation. However, this method lacks a clear approach to model-
ing qψ(θ|xo

1, . . . ,xo
N). Consequently, for multiple observations, NPE must be trained

with samples (θi,x1
s, . . . ,xNs ) ∼ p(θ)∏j p(xjs|θ) to obtain an amortized approximation

of the target posterior. This also incurs a significant computational cost in simulation,
as the simulator must be executed N times for each θ to obtain the complete simula-
tion. Thus, sample efficiency is reduced, especially when N is large. However, NLE
circumvents this issue as it directly models the likelihood function qψ(x|θ), which conse-
quently models the posterior qψ(θ|xo

1, . . . ,xo
N) clearly. For multiple i.i.d observations,

the surrogate becomes:

p(θ)
N∏
i=1

qψ(xo
i|θ) (2.20)

which is always tractable with the learned qψ(x|θ). Thus, because of this feature of NLE
(analytically factorizing qψ(θ|xo

1, . . . ,xo
N)), during training, it only requires single-

observation/parameter pairs, thereby maintaining sample efficiency. Nonetheless, NLE
possesses an obvious drawback. As outlined above, in contrast to NPE, which directly
models the posterior, NLE necessitates an additional step during inference to generate
posterior samples with MCMC or VI. This step can be computationally expensive or
inefficient for complex posteriors.

2.3.3 Neural Ratio Estimation

Overview The motivation behind Neural Ratio Estimation (NRE) stems from the
challenges encountered by MCMC samplers when dealing with intractable likelihoods.
MCMC methods, such as the Metropolis-Hastings algorithm (for more details, see
[Brooks et al., 2011]), aim to generate samples from the target posterior distribution
p(θ|x) by constructing a Markov chain that explores the parameter space. At each
iteration, given the current state θt, a new candidate parameter θ′ is proposed from a
proposal distribution q(θ′|θt). The acceptance probability α for transitioning from θt

to θ′ is computed as:

α(θt, θ′) = min
{

1, p(θ
′)p(x|θ′)q(θt|θ′)

p(θt)p(x|θt)q(θ′|θt)

}
. (2.21)

In scenarios where the likelihood function p(x|θ) is intractable, the evaluation of the
likelihood ratio p(x|θ′)

p(x|θt) becomes infeasible, rendering MCMC methods ineffective. To
overcome this limitation, NRE aims to model the intractable likelihood ratio directly
using an amortized ratio predictor r(x|θ′, θt) = p(x|θ′)

p(x|θt) , enabling MCMC methods to
function as intended, even in the presence of intractable likelihoods. For more details
on related methods, see [Hermans, 2022, Lueckmann et al., 2021, Hermans et al., 2020].



3. Related Work

In this chapter, we review related literature, focusing on existing works regarding neural
point estimators and SBI methods in a BDM context.

3.1 Neural Point Estimator

The concept of using neural networks for amortized statistical inference, particularly
for point estimation, was initially introduced by Chon and Cohen [1997]. They trained
feedforward neural networks (FNNs) to estimate autoregressive moving average model
parameters, demonstrating that neural networks could approximate true statistical
values, termed Bayes estimators, with high accuracy. Despite its innovative approach,
this method didn’t immediately spark widespread research into neural network-based
point estimation.

It was not until more recent advancements that the application of neural networks
for point estimation began to gain widespread recognition. Creel [2017] demonstrated
that FNNs could not only directly estimate model parameters but also augment clas-
sical or Bayesian inference methods, particularly in financial modeling contexts. This
versatility highlighted neural networks’ adaptability across various inference tasks.

A significant advancement was made by Chan et al. [2018], who applied a
permutation-invariant neural architecture to population genetics, overcoming the lim-
itations associated with traditional ABC methods’ reliance on hand-crafted summary
statistics. This approach enhanced inference accuracy by allowing neural networks to
directly process complex data sets. Further contributions include Banesh et al. [2021],
who utilized convolutional neural networks (CNNs) for efficient and accurate parameter
estimation in spatial data modeling, outperforming traditional Maximum Likelihood
Estimation (MLE) methods in both speed and predictive performance. Similarly, Rudi
et al. [2022]’s work on time-series data analysis confirmed the feasibility and efficiency
of neural network-based estimators for dynamic data sets.

These studies underscore neural networks’ potential in statistical inference, espe-
cially for complex simulation tasks, paving the way for future research in this promising
field.

23
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3.2 SBI-based Bayesian Decision Making

Bayesian Decision Making (BDM) is a systematic approach that integrates Bayesian
inference principles to facilitate decision-making in the under uncertainty. At its core,
BDM involves a prior p(θ) about an unknown parameter θ, a likelihood p(x|θ), and a
cost function c(θ, a) quantifies the consequences of taking a particular action a if the
true parameters θ were known. The optimal action, a∗, is defined mathematically as:

a∗ = arg min
a∈A

∫
c(θ, a) · p(θ|x)dθ

= arg min
a∈A

Ep(θ|x)[c(θ, a)],
(3.1)

where Ep(θ|x)[L(θ, a)] denotes the expected loss over the posterior of θ given the data
x.

[Gorecki et al., 2023] introduced a method called Bayesian Amortized Decision
Making (BAM), which streamlines Bayesian decision-making in likelihood-free contexts
by directly estimating the expected cost. Unlike other neural SBI methods used in
BDM, which first approximate the full posterior and then utilize methods like Monte
Carlo to estimate the expected cost for actions a:

Ep(θ|xo)[c(θ, a)] ≈ 1
N

N∑
i=1

c(θi, a) (3.2)

where N is the number of simulated data, BAM optimizes a feedforward neural
network to predict the expected action cost based on simulated data from the joint
distribution p(θ,x). During training, the loss function is the mean square error between
the predicted cost and the true cost:

L(ϕ) = 1
|N |

(fϕ(x, a)− c(θ, a))2 , (3.3)

where ϕ is the parameters of the network.
Thus, after training, given a data-action pair (x, a), the network can output the

approximate expected cost because minimizing the MSE is equivalent to approximating
the mean value of the target.

At decision-making time, given observed data xo and a set of actions, the best
action is obtained by finding the minimal expected cost. Experimental results indicate
BAM’s simplicity and efficiency over other neural SBI methods like NPE-MC, which
requires posterior approximation and subsequent Monte Carlo estimation for each ob-
servation. This research’s core idea is very similar to ours, and it opens up a different
view for us to treat our work as a downstream task of BDM and apply our work on
more general BDM, which could be a potential future work of our research.



4. Neural Amortization of Bayesian
Point Estimation

In scenarios where likelihood functions are intractable, the conventional approach in-
volves employing SBI methods to infer the full posterior distribution before calculating
point estimations. The good thing is that we can do a comprehensive Bayesian anal-
ysis with a full posterior. However, for some downstream work, such as point estima-
tion, these conventional methods have to rerun analytical computations or sampling
for each observation, making point estimating computationally intensive and not fully
amortized, which makes this task inefficient. Moreover, modeling point estimation as
a downstream task of BDM reveals that reliance on approximate posteriors could lead
to suboptimal point estimations.

To address these challenges, we introduce the Neural Amortization of Bayesian
Point Estimation (NBPE) method. This approach directly obtains accurate, desired
point estimations, particularly suited for simulator models with inherently intractable
likelihoods.

4.1 Methodology

Our methodology operates within the framework of Neural Network-based SBI. Central
to our approach is the division of the neural network architecture into two principal
components: the summary network Hϕ(x) for extracting summary statistics S(x) from
the data x, and the inference network Iψ(S(x), α) for deducing point estimates given
the summary statistics and a specified value of α.

Given a simulator model characterized by a prior distribution p(θ) and a likelihood
function p(x| θ), we begin by generating a dataset D = {(θi,xi)}Ni=1 drawn from the
joint distribution p(θ,x). The dataset serves as the training input for both networks.

To facilitate the co-training of the summary and inference networks, we optimize
a joint loss function L(ϕ, ψ), defined as:

L(ϕ, ψ) = 1
N

N∑
i=1
|θi − Iψ (S (xi) , α)|α (4.1)

25
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where θi represents parameters sampled from p(θ), and S (xi) = Hϕ (xi) signifies the
summary statistics generated for the i-th data point. This collaborative training ap-
proach ensures that the loss function guides both the summary extraction and inference
prediction processes, with α playing a crucial role in determining the focus of the esti-
mation task.

During inference, for a given observation xo, by setting the value of α, the infer-
ence network Iψ quickly provides the desired posterior statistic, be it the mean, median,
or mode. This approach ensures that our network is not merely a generic feedforward
neural network but a specialized architecture tailored for efficient and precise point
estimation within the SBI context:

Proposition 1 Let p(θ,x) be the joint distribution of parameters θ and data x. The
summary network Hϕ(x) outputs summary statistics S(x). The inference function
Iψ(S, α) estimates θ using S(x) and a specified α. It is optimized by minimizing the
powered absolute error loss:

L(ϕ, ψ) = 1
N

N∑
i=1
|θi − Iψ (S(xi), α)|α .

The choice of α targets different statistics of the posterior p(θ|x):

• α = 2 targets the mean

• α = 1 targets the median

• α→ 0 targets the mode

Proof provided in Appendix A.
Our method’s integration into Bayesian Decision Making frameworks further ex-

emplifies its novelty. BDM traditionally seeks the optimal action a∗, yet in our context,
decision-making converges on identifying the best estimate that aligns closely with real
statistics, transforming the action space into the parameter space Θ. Consequently,
the cost function in BDM becomes:

c(θ, θ̂) = 1
N

N∑
i=1

∣∣∣θi − θ̂∣∣∣α , (4.2)

with θ̂ as our predictions, reshapes the goal into finding the best estimate θ∗ by mini-
mizing the expected loss:

θ∗ = arg min
θ∈Θ

Ep(θ|x)[c(θ, θ̂)]. (4.3)

This optimization aligns with our method, predicting the optimal θ using a pa-
rameterized neural network. By conceptualizing NBPE as a downstream BDM task, we
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Deepsets MLP

Figure 4.1: Overview of the NBPE network architecture, highlighting the two-component structure
for Bayesian point estimation. The input set X is initially transformed by the summary network
Hϕ, typically implemented using Deepsets, to generate a summarized representation S(X). This
summary, along with a specified exponent α, guides the inference network Iψ, embodied by an MLP,
to produce the Bayesian point estimate Iψ (Hϕ(X), α). The system allows for the substitution of
Deepsets with SetTransformer, offering flexibility in the choice of summary statistic extractor based
on the complexity and nature of the dataset.

.

indirectly address the limitations of classical SBI approaches in BDM applications, such
as computational inefficiency and suboptimal outcomes due to approximate posteriors.

In summary, NBPE leverages the foundational theory underpinning SBI but dis-
tinguishes itself by training an end-to-end neural network-based estimator. This ap-
proach not only achieves preferred point estimation efficiently but, by theoretically
modeling it as a Bayesian decision-making task, also demonstrates its potential to
circumvent challenges faced by traditional NN-SBI methods in BDM contexts.

4.2 Networks Architecture

The network architecture employed in the NBPE method is fundamentally an encoder-
decoder structure, a paradigm widely recognized for its efficacy in various domains,
notably in natural language processing (NLP) applications as demonstrated by models
such as BART [Lewis et al., 2020] and the Transformer [Vaswani et al., 2017]. In the
context of NBPE, the encoder Hϕ’s role is to extract informative summary statistics
(S(x)) from the input data (x), capturing the essence of the data in a compressed form
that retains its critical statistical properties. This process is crucial for ensuring that
the neural network focuses on the most relevant aspects of the data for the task at
hand and hugely reduce computational cost.

For the encoder, a simplified version of Deepsets is employed(we already illus-
trated it in Figure 2.5), primarily due to its permutation-invariant characteristics.
This choice is dictated by the nature of the training data, which, being simulation



28 Chapter 4. Neural Amortization of Bayesian Point Estimation

outputs, can often be considered as sets where the order of elements is not fixed. The
permutation invariance of Deepsets ensures that the model’s output remains consistent
regardless of the input’s order, a necessary property for dealing with set data effectively.
While Deepset serves as the primary encoder, offering a balance of performance and
computational efficiency, the SetTransformer is introduced as an alternative with the
potential for higher complexity and representational capacity at the cost of increased
computational demands.

For the decoder Iψ, the architecture integrates an MLP, tasked with transforming
the summary statistics back into the domain of interest, namely the Bayesian point
estimates. This step is crucial for converting the abstracted statistical information
back into actionable insights. The whole structure is outlined in the Figure 4.1.

4.3 Training Methodology

Our training methodology is engineered to facilitate point estimation for different sta-
tistical quantities during inference by adjusting the value of α. To this end, we have
constructed a network that incorporates α as a modifiable parameter, allowing users to
specify their preferred statistical measure by setting α within a predetermined range
or from a specified discrete set.

Our approach involves two strategies for determining α. The first strategy defines
a continuous range, such as α ∈ [1/4, 2], from which values are sampled uniformly in
each training epoch. Alternatively, the second strategy employs a discrete set of pre-
defined α values, for example, {1/4, 1/2, 1, 2}. In both cases, the chosen α is introduced
into the decoding network as a constant vector, augmenting the encoded summary
statistics with an additional dimension that reflects the desired statistical measure.
This modified input is then processed by the decoder to produce the final estimation.
For convenience, we denote the range of α as A for both continuous and discrete cases.

Another consideration for ensuring the robustness of our NBPE model is its
ability to handle observations of varying sizes, which may differ from those presented
during training. To address this, we introduce a range of possible observation sizes,
specified by the hyperparameters Omin and Omax. Within each epoch, we randomly
select a simulation size (we denote it as B) from this defined range to serve as the
training data size for that epoch. This randomized approach to simulation size not
only enhances the model’s adaptability to different observational data sizes but also
enriches its learning experience, promoting better generalization for diverse datasets.
The detailed algorithm is outlined in Algorithm 2.
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Algorithm 2 Neural Amortization of Bayesian Point Estimates (NBPE)
1: Input: Simulator p(x|θ), prior p(θ), summary network Hϕ, inference network Iψ,

simulation budget N , range of α A, observation size range [Omin,Omax], training
epochs E, i.i.d observations Xo, user-specified alpha αu.

2: Initialize training dataset D = ∅.
3: for i = 1 to N do
4: Sample parameter from prior: θi ∼ p(θ).
5: Generate synthetic data using simulator: xi ∼ p(x|θi).
6: Append (θi,xi) pair to training dataset: D ← D ∪ {(θi,xi)}.
7: end for
8: for j = 1 to E do
9: Sample a simulation size Bj uniformly from [Omin,Omax].

10: Sample an αj for the current epoch: αj ∼ A.
11: Select a batch {(θb,xb)}Bj

b=1 randomly from D.
12: Compute loss for the batch: L(ϕ, ψ) = 1

Bj

∑Bj

b=1 |θb − Iψ(Hϕ(xb), αj)|αj .
13: Update ϕ and ψ parameters using backpropagation.
14: end for
15: return Trained summary network Hϕ, inference network Iψ, and desired posterior

statistics θ∗ = Iψ(Hϕ(Xo), αu).





5. Experiments

This chapter demonstrates the ability of our proposed method to perform accurate
and flexible point estimation by selecting the value of the power of the loss function α,
during inference time. We conduct experiments on three different models to assess the
performance of our approach.

First, we compare the accuracy and efficiency of our method with another amor-
tized inference method, NPE, from the BayesFlow SBI software, using a toy 4D Gaus-
sian model. This comparison serves as a basic validation of our method’s capability to
produce accurate and fast point estimates.

Next, we further demonstrate this capability on a more complex model, the
Bernoulli-Gaussian Linear Model (GLM), which is a typical simulator model with an
implicitly defined likelihood. This experiment aims to showcase the competitiveness of
our approach compared to existing neural methods on complex simulator models.

Finally, we demonstrate the flexible point estimation feature of our method using
a Poisson-Gamma model. By measuring the change in distance from the true mean,
median, and mode as α varies, we illustrate how our method can effectively target dif-
ferent desired statistics of the posterior distribution. Additional experiments and brief
analyses for flexible point estimation are provided in Appendix A.4 as supplementary
material, as their results are somewhat redundant, and hence, we have moved them to
the appendix.

5.1 Performance Metrics

In the experiments we will use the following metrics to measure the performances: R2

score and mean squared error(MSE).

5.1.1 R2 Score

To measure the accuracy of point estimations, that is, the capacity to retrieve the
model’s ”true” parameters, we propose using the R2 score, commonly known as the
coefficient of determination.
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The R2 score is a statistical measure of the strength of the linear relationship
between two variables. In the context of model performance, it measures how well the
predictions of a regression model correspond to the true parameters. The R2 score is
defined as:

R2 = 1−
∑N
i=1(θi − θ∗

i )2∑N
i=1(θi − θ̄)2

(5.1)

where N is the number of parameters, θi represents the true parameter values, θ∗
i

denotes the estimated values from the model, and θ̄ is the mean of the true parameter
values.

An R2 score of 1 means the model’s predictions perfectly match the true param-
eters. In contrast, an R2 score of 0 means the model’s predictions do not correspond
to the true parameters, performing no better than simply predicting the mean of the
true parameters for all inputs. Negative R2 values indicate that the model performs
worse than predicting the mean. This score provides an easy-to-understand measure
of a model’s accuracy, with higher values indicating better performance.

In our experiments, we compare the R2 scores of our NBPE with those of MAP
and BayesFlow estimations. The R2 score allows us to get a straightforward way to
see how well our method can match or even outperform other methods in recovering
true parameters.

5.1.2 Mean squared error

Mean Squared Error (MSE) is a widely used metric for quantifying the accuracy of
estimators in statistical models. In the context of our NBPE method, MSE is defined
as:

MSE = 1
N

N∑
i=1

(θ∗
i − θi)

2 .

MSE is suitable for our study as it is sensitive to large errors. This characteristic is
particularly relevant when evaluating the performance of NBPE across different values
of the exponent α, as it can accurately reflect the divergence of the estimated point
from the true parameter value.

5.2 Performance Evaluation of Parameter Recov-
ery

Accurately and rapidly recovering true data-generating parameters is a crucial test for
any parameter estimation method. It demonstrates the method’s ability to produce
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accurate and useful approximations to serve as reliable inputs for downstream analyses
and applications. If a parameter cannot be recovered with reasonable precision, we
cannot trust its estimate, making it unsuitable for further utilization. To thoroughly
evaluate the parameter recovery capabilities of our NBPE method, we conducted ex-
periments on two different types of statistical models and compared the performance of
these models with the NPE method from the BayesFlow SBI software; the first model
is a toy 4D Multivariate Gaussian model and the second one is a complex simulator
model called Bernoulli-Generalized Linear Model (Ber-GLM).

5.2.1 Toy 4D Multivariate Gaussian model

We begin our empirical investigation with a relatively simple 4D Gaussian model, a
widely used toy example in parameter estimation. This initial experiment validates our
method’s fundamental performance on a tractable problem where the true parameter
values are available, enabling precise accuracy assessment. To demonstrate the power
of our method, we also applied NPE to approximate the posterior with neural posterior
estimation and learned summary statistics [Radev et al., 2020], as implemented in the
BayesFlow software for amortized Bayesian workflows [Radev et al., 2023]. After we get
the approximate posterior, we compute the posterior mean by the Monte Carlo method
to recover true parameters and then compare it with the results of our method, which
end-to-end recovers parameters without the full posterior.

Model Description The 4D Gaussian model under consideration takes the following
form:

µ ∼ ND(0, σ0I)
x ∼ ND(µ, σ1I)

(5.2)

where ND denotes a multivariate Gaussian density with D dimensions, which we set
at D = 4 for the current example. For simplicity, we will also set σ0 = 1 and σ1 = 1.

Set up Our neural architecture employs DeepSets as the summary network, process-
ing tensors of shape (Nsim, Nobs, D), where Nsim is the number of simulations, Nobs

is the number of simulated data points per proposed parameter, and D is the data
dimensionality. The output of the summary network is 2D tensors of shape (Nsim,
Dsummary), where Dsummary = 10 is a hyperparameter that should not be lower than the
number of parameters in the model, as suggested by Radev et al. [2020]. A Multi-Layer
Perceptron (MLP) with two hidden layers of 32 neurons each serves as our inference
network. Since we are only interested in the ability to recover parameters, we take
a fixed α = 2 (targetting posterior mean) for training and evaluation. In NPE, the
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invariant network is used as the summary network, and the conditional Invertible Neu-
ral Network (cINN) is used as the inference network (for more details about these two
networks, see [Radev et al., 2023]). The Dsummary is also 10. We use the Monte Carlo
method to get the posterior mean with the approximate posterior.

For training NBPE, we use the default Adam optimizer, set the epoch count at
5000, and the simulation batch size per epoch at 32. Since we aim to demonstrate
the accuracy and efficiency of our model in recovering parameters, we set the power
of the loss α = 2 (we do not use this experiment to show that by changing α, we can
approximate different statistics of the posterior, as the Gaussian model’s mean, median,
and mode are identical). The range of observation size [Omin, Omax] is set between
1 and 50. For training NPE, we use the default training method implemented in
BayesFlow, typically Adam optimizer with a learning rate of 5e-4 and a cosine learning
rate decay from 5e-4 to 0. We also set the epoch count at 5000 and the simulation
batch size per epoch at 32 to keep the simulation budget the same as ours. And The
range of observation size [Omin, Omax] is also between 1 and 50.

For evaluation, we conduct two sets of experiments. In the first set, we assess the
inference accuracy of NBPE by comparing it with the NPE. We generate a dataset with
a shape of (1000, 50, 4), where 1000 represents the batch size or simulation size, 50 is
the fixed observation size, and 4 is the dimensionality of the 4D data. We then feed
this dataset into both NBPE and NPE methods and compute the R2 score and MSE
between the estimated parameters and the true parameters to evaluate the accuracy
performance. To ensure robust and reliable results, we repeat this process 100 times
and report the mean R2 score, mean MSE, and their respective standard deviations.

In the second set of experiments, we investigate the computational efficiency of
NBPE in terms of inference speed. We first generate a large dataset with a shape of
(10000, 50, 4) from the simulator. Then we perform three tests on this dataset, each
with a different batch size: 100, 1000, and 10000. For each batch size, we measure the
time required for inference using both NBPE and NPE methods. Consistent with the
inference accuracy evaluation, we repeat this process 100 times to obtain stable and
reliable results, and report the mean inference time and its standard deviation for each
batch size and method.

Results Analysis Table 5.1 and Figure 5.1 illustrate that NBPE achieves a very high
R2 score (>0.9) and a very small value of MSE on this toy model, indicating its ability
to successfully recover the majority of the true data-generating parameters. Moreover,
upon comparing with the results of NPE, we observe that NPE can achieve slightly
better performance than NBPE. In our opinion, this can be attributed to the stronger
network architecture employed in NPE, which tends to approximate the true posterior
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more accurately in this particular toy model, leading to more precise corresponding
point estimates. However, Table 5.2 clearly shows our method is way more efficient
than NPE: on each different size of the dataset, NBPE can perform approximately 200
times faster than NPE. This observation is valuable since it demonstrates the advantage
of our end-to-end method; we can save the inference time hugely by skipping the extra
time-consuming step (compute the point estimation) and just lose a small quantity of
accuracy.

In summary, this experiment demonstrates that NBPE can attain competitive
accuracy in point estimation compared to NPE while being significantly more efficient.

Metrics
R2 MSE

NBPE 0.964±0.021 0.035±0.002
NPE 0.975±0.017 0.025±0.001

Table 5.1: Comparison of inference accuracy metrics (R2 score and Mean Squared Error) between
NBPE and NPE methods on the toy 4D Gaussian model, with results produced from 100 repetitions
reporting the mean and standard deviation.

Batch Size NPE NBPE
100 177.609±32.957 ms 0.802±0.408 ms
1000 821.872±78.599 ms 3.496±1.236 ms
10000 8599.183±129.594ms 54.339±8.764 ms

Table 5.2: Comparison of mean inference time in milliseconds and standard deviation for different
batch sizes between NPE and NBPE methods on the 4D toy Gaussian model, obtained from 100
repetitions.

5.2.2 Bernoulli-Generalized Linear Model

In this experiment, we evaluate our proposed NBPE method on a simulator model to
assess its ability to accurately recover parameters. We begin with a relatively straight-
forward simulator model, where the simulating process is not overly expensive, and the
model parameters are relatively easier to infer compared to other simulator models.

Model description The model we are working on is a 10-parameter Generalized
linear model (GLM) with Bernoulli observations and Gaussian prior with a covariance
matrix, which encourages smoothness by penalizing the second-order differences in the
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(a)

(b)

Figure 5.1: Comparison of parameter recovery using NPE and NBPE (our method) for a 4D Gaussian
model. (a) shows the results using the NBPE, our proposed method, while (b) presents results from
the NPE. Each column corresponds to one of the four parameters of the Gaussian model. The top
row of each subplot illustrates scatter plots of the estimated versus true parameter values, with the
coefficient of determination

(
R2) provided for each parameter. The bottom row shows histograms

comparing the distributions of parameter estimates. In these histograms, the true parameter values
are labelled as ’True’, and the estimations from NBPE or NPE are labelled as ’Estimated’.
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vector of the parameter [De Nicolao et al., 1997]. Mathematically, the prior of this
model could be expressed as:

β ∼ N (0, 2)

f ∼ N
(

0,
(
F⊤F

)−1
)
,

(5.3)

where F is defined such that Fi,i−2 = 1,Fi,i−1 = −2,Fi,i = 1 +
√

i−1
9 , and Fi,j = 0

for j ̸= i − 2, i − 1, i, with 1 ≤ i, j ≤ 9. Since the expression of the simulator for this
model is overcomplicated, we are not showing the simulator here. We recommend to
read [Lueckmann et al., 2021] for more technical details about this model.

Set up Our neural architecture here also employs DeepSets as the summary network,
the summary dimentionality Dsummary here is 32. A MLP with three hidden layers
of 16 neurons each serves as our inference network. We also take a fixed α = 2
(targetting posterior mean) for training and evaluation. In NPE, the invariant network
is used as the summary network, and the cINN is used as the inference network. The
Dsummary is also 32. We use the Monte Carlo method to get the posterior mean with
the approximate posterior.

For training NBPE, we use the default Adam optimizer, set the epoch count at
10000, and the simulation batch size per epoch at 32. The range of observation size
[Omin, Omax] is set between 1 and 15. For training NPE, we use the same setting for
the Adam optimizer as our privous Gaussian experiment. We also set the epoch count
at 10000 and the simulation batch size per epoch at 32 to keep the simulation budget
the same as ours. The range of observation size [Omin, Omax] is also between 1 and
15.

For evaluation, we also conduct two sets of experiments. In the first set, we
assess the inference accuracy of NBPE by comparing it with the NPE. We generate a
dataset with a shape of (1000, 15, 10). We then feed this dataset into both NBPE and
NPE methods and compute the R2 score and MSE between the estimated parameters
and the true parameters to evaluate the accuracy performance. To ensure robust and
reliable results, we repeat this process 100 times and report the mean R2 score, mean
MSE, and their respective standard deviations.

In the second set of experiments, we investigate the computational efficiency of
NBPE in terms of inference speed. We first generate a large dataset with a shape of
(10000, 15, 10) from the simulator. Then we perform three tests on this dataset, each
with a different batch size: 100, 1000, and 10000. For each batch size, we measure the
time required for inference using both NBPE and NPE methods. Consistent with the
inference accuracy evaluation, we repeat this process 100 times to obtain stable and
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reliable results, and report the mean inference time and its standard deviation for each
batch size and method.

Result Analysis Similar to the previous experiment, Table 5.3 and Figure 5.2 show
that NBPE achieves a competitive parameter recovery performance compared to NPE,
with a slightly lower R2 score and higher value of MSE. More interestingly, Table 5.4
clearly demonstrates NBPE’s superior efficiency, being approximately 200 times faster
than NPE on average across different dataset sizes. This experiment further demon-
strates that NBPE can provide accurate point estimation while offering substantial
computational efficiency gains.

Metrics
R2 MSE

NBPE 0.909±0.049 0.149±0.010
NPE 0.947±0.033 0.087±0.006

Table 5.3: Comparison of inference accuracy metrics (R2 score and Mean Squared Error) between
NBPE and NPE methods on Bernoulli GLM, with results produced from 100 repetitions reporting
the mean and standard deviation.

Batch Size NPE NBPE
100 170.402±42.578 ms 0.389±0.290 ms
1000 238.367±27.961 ms 1.679±1.959 ms
10000 1121.802±67.317 ms 5.341±1.092 ms

Table 5.4: Comparison of mean inference time in milliseconds and standard deviation for different
batch sizes between NPE and NBPE methods on the Bernoulli GLM, obtained from 100 repetitions.

In summary, through experiments on a toy 4D Gaussian model and the Bernoulli
GLM simulator model, we have shown NBPE’s ability to perform accurate point es-
timation competitive with NPE, while significantly outperforming NPE in terms of
inference time efficiency.

5.3 Performance Evaluation of Flexible Point Esti-
mation

After testing the accuracy of the point estimations outputted by our method, we further
demonstrate that our method can output different statistics of the target posterior
distribution.
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(a)

(b)

Figure 5.2: Comparison of parameter recovery using NPE and NBPE (our method) for a Bernoulli-
GLM. Scatter plots show the relationship between true and estimated parameter values, with the R2

score indicating the accuracy of recovery.
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5.3.1 Experiment on Poisson-gamma model

Model description Formally, the model can be expressed as follows:

λ ∼ Gamma(2, 5)
x ∼ Poisson(λ)

(5.4)

Here, the Gamma distribution with a shape parameter α = 2 and rate parameter β = 5
provides the prior for the rate λ of the Poisson distribution.

The Poisson-Gamma model is a conjugate pair, meaning that the posterior dis-
tribution is also a Gamma distribution. This makes calculations of posterior mean,
median, and mode relatively straightforward under this Bayesian framework. Given
the prior Gamma distribution parameters α = 2 and β = 5, and the likelihood coming
from a Poisson distribution, the posterior parameters for λ after observing the data x
will be updated as follows:

αpost = αprior +
N∑
i=1

xi, βpost = βprior +N (5.5)

where ∑N
i=1 xi is the total count of events observed and N is the number of observations.

The posterior mean of a Gamma distribution is given by α
β
, and thus, the posterior

mean for λ is:
Meanpost = αpost

βpost
(5.6)

The mode of a Gamma distribution with shape parameter k and scale parameter θ (or
rate parameter β = 1/θ ) is (k − 1)θ when k is greater than 1 , so the posterior mode
is:

Modepost = αpost − 1
βpost

(5.7)

For the median, there is no closed-form expression for the median of a Gamma distribu-
tion. The median must be computed numerically. In this experiment, we approximate
the posterior median using 1000 samples from the true posterior Gamma distribution
and the torch.median() function.

Setup Our neural architecture employs SetTransformer as the summary network
configured to an output dimensionality of 64. A MLP with 2 hidden layers of 32
neurons each serves as our inference network.

During training, we use the Adam optimizer with default settings, set the epoch
count to 5000, and the simulation batch size per epoch to 500. The range of observation
size [Omin, Omax] is set between 1 and 20. The chosen range for the power of the loss
function, α, denoted as A, spans from 0.25 to 2. Values of α below 0.25 were avoided
due to vanishing gradients, which hindered the network’s learning.



5.3. Performance Evaluation of Flexible Point Estimation 41

α = 0.25 α = 1 α = 2
MSE from mean 1.07e-3±2.84e-5 2.30e-4±1.68e-5 1.81e-4±9.24e-6

MSE from median 4.31e-4±2.45e-5 8.15e-5±1.30e-5 6.68e-4±1.63e-5
MSE from mode 1.23e-4±9.88e-6 7.39e-4±1.41e-5 2.60e-3±2.69e-5

Table 5.5: Mean Squared Error (MSE) and standard deviation over 100 runs for inferring mean,
median, and mode statistics at α values of 0.25, 1, and 2. Each cell contains the mean MSE ± one
standard deviation, reported in scientific notation.

To evaluate the inference performance, we generate a new simulation dataset of
size 1000 and consider a discrete set of 10 values for the parameter α, ranging from
0.25 to 2. For each value of α in this discrete set, we compute our predictions and
assess the discrepancy between the true statistics and our predictions using the MSE
metric. To ensure the robustness and reliability of our results, we repeat the evaluation
process 100 times.

Our findings are presented through a figure that clearly illustrates the error trend
for each true statistic as α varies from 0.25 to 2. Additionally, we provide a table
that directly shows the numerical mean MSE values and their corresponding standard
deviations between our predictions and each true statistic for the considered range
of α values. The mean and standard deviation of this score are reported over 100
replications.

Results Analysis Table 5.5 and Figure 5.3 demonstrate results consistent with our
expectations. By changing the power of the loss function (α) used during training from
0.25 to 2, we observe that when α is close to zero, our result is nearest to the posterior
mode. As α approaches 1, our result is closest to the posterior median, and when
α reaches 2, we are closest to the posterior mean. These results clearly demonstrate
the effectiveness of our NBPE method in outputting the preferred point estimate at
inference time. After training our network with a reasonable range of α values, we can
obtain the desired statistic of interest at inference time.
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Figure 5.3: Average error between the predicted and true posterior statistics (mean, median, and
mode) for the Poisson-Gamma model as a function of the loss power α. The orange line represents
the average error from the true posterior mean, the red line represents the average error from the true
posterior median, and the blue line represents the average error from the true posterior mode. As α

increases from 0.25 to 2.00, the predicted statistic transitions from being closest to the mode (lowest
red line error) to the median (lowest orange line error) and finally to the mean (lowest blue line error),
demonstrating the ability of the proposed method to target different preferred posterior statistics by
varying α.



6. Discussion

In this final chapter, we will first discuss the limitations of our work and future work
directions. Then, we will make conclusions about the thesis.

6.1 Limitations & future work

Limited experiments for flexible point estimation

In our work, we tested NBPE’s ability to do flexible point estimation on three different
models. However, these toy models always have closed-form mean, median, and mode,
making the experiments straightforward to analyze. We do not demonstrate this ability
on any simulator models, and this is where SBI can show its true value. Thus, one
future work must be more experiments on this ability, especially on simulator models.

Neural network is not powerful enough

In our work, NBPE employs a Deepsets or SetTransformer as the summary network
and an MLP as the inference network. Our method’s choice of the summary network
looks good enough, while the inference network looks too simple. We can see clearly
from our experiments in the toy Gaussian model that when the neural network has
converged, our method cannot exceed NPE. Thus, we worry that our method will
likely underfit if we meet some very complex models. In the future, we can explore
more advanced network architectures for NBPE, especially the inference network.

The optimization method is simple

In all our experiments, we can see that we can not set the power of loss α to a minimal
value (typically < 0.25). This is because, in that case, the network will become ex-
tremely hard to train. However, the consequence is that we sometimes cannot clearly
observe whether our predicted value will be close to the mode when α approaches 0.
Thus, in order to extend the min value we can choose for α, one possible way could
be to enrich our optimization method; in our work, we just use the default Adam op-
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timizer; in future work, we can employ more training tricks on that such as learning
rate scheduling.

6.2 Comparison with BAM

Our work shares some similarities with Bayesian Amortized Decision Making (BAM)
[Gorecki et al., 2023], as both methods aim to train an end-to-end neural network to
find the best solutions. The main difference between these two works is that we in-
troduce the variable loss function |θi − θpred|α, which enables flexible point estimation
by adjusting the value of α. This allows NBPE to target different posterior statis-
tics (e.g., mean, median, mode) using a single pretrained network without additional
computations.

6.3 Conclusions

In this thesis, we explore applying the SBI method directly to point estimation. Unlike
other SBI methods that first approximate the posterior and then require additional
steps to compute point estimations (e.g., using analytical expressions or sampling-based
methods), our approach learns an end-to-end model to output the point estimations
directly. Furthermore, we introduce a novel training method that enables flexible point
estimation, allowing us to target different posterior statistics, such as mean, median,
or mode, without extra computational cost during inference time.

More precisely, we propose NBPE (Neural Amortization of Bayesian Point Es-
timation), a novel neural SBI method for point estimation. By utilizing the powerful
features of neural networks, we amortize the inference process and put most of the
computational cost on training networks. Besides, utilizing a variable loss function
|θi − θpred|α enables direct prediction of the desired posterior statistic by simply ad-
justing the value of α. Experiments on toy and simulator models show that NBPE can
perform accurate and flexible point estimation.

For future work, several ways could be explored to further improve NBPE. Firstly,
more comprehensive experiments focusing on flexible point estimation should be con-
ducted since the current experiments may not be entirely convincing. Secondly, explor-
ing more complex model architectures could potentially enhance NBPE’s performance.
Thirdly, trying some advanced optimization tricks could allow NBPE to explore a
broader range of α values. We believe our work has the potential to be applied in
real-world scenarios and contribute to the SBI community.
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Appendix A.

A.1 Code and hardware settings for experiments

All code related to the proposed methodology and experiments in this thesis
is available in a public GitHub repository at https://github.com/swagylee/
amortized-estimation. This repository contains the necessary scripts, data, and
documentation to reproduce the results presented in this work. All experiments were
conducted on a MacBook Pro 13-inch, 2019 model with the following specifications:

• CPU: 2.3 GHz 4-cores Intel Core i5

• GPU: Intel Iris Plus Graphics 655 with 1536 MB of memory

• RAM: 8 GB 2133 MHz LPDDR3

A.2 The derivation of the Evidence Lower Bound

Starting from the KL divergence minimization objective:

λ∗ = arg min
λ

KL(q(θ|x, λ)|p(θ|x, ϕ))

= arg min
λ

∫
θ
q(θ|x, λ) log q(θ|x, λ)

p(θ|x, ϕ)dθ
(A.1)

We can expand the fraction inside the logarithm using Bayes’ theorem:

p(θ|x, ϕ) = p(x|θ, ϕ)p(θ)
p(x|ϕ) ⇒ q(θ|x, λ)

p(θ|x, ϕ) = q(θ|x, λ)p(x|ϕ)
p(x|θ, ϕ)p(θ) (A.2)

Substituting this back into the KL divergence expression:

KL(q(θ|x, λ)|p(θ|x, ϕ)) =
∫
θ
q(θ|x, λ) log q(θ|x, λ)p(x|ϕ)

p(x|θ, ϕ)p(θ) dθ

=
∫
θ
q(θ|x, λ) log q(θ|x, λ)

p(x|θ, ϕ)p(θ)dθ +
∫
θ
q(θ|x, λ) log p(x|ϕ)dθ

=
∫
θ
q(θ|x, λ) log q(θ|x, λ)

p(x|θ, ϕ)p(θ)dθ + log p(x|ϕ)
∫
θ
q(θ|x, λ)dθ

(A.3)
Since q(θ|x, λ) is a probability distribution, its integral over the entire space is 1.
Therefore:

KL(q(θ|x, λ)|p(θ|x, ϕ)) =
∫
θ
q(θ|x, λ) log q(θ|x, λ)

p(x|θ, ϕ)p(θ)dθ + log p(x|ϕ) (A.4)
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Rearranging the terms:

log p(x|ϕ) = KL(q(θ|x, λ)|p(θ|x, ϕ))−
∫
θ
q(θ|x, λ) log q(θ|x, λ)

p(x|θ, ϕ)p(θ)dθ (A.5)

The second term on the right-hand side is the negative of the ELBO:

ELBO(q) =
∫
θ
q(θ|x, λ) log p(x|θ, ϕ)p(θ)

q(θ|x, λ) dθ

=
∫
θ
q(θ|x, λ) log p(x|θ, ϕ)dθ −

∫
θ
q(θ|x, λ) log q(θ|x, λ)

p(θ) dθ

= Eθ∼q(θ|x,λ)[log p(x|θ, ϕ)]− Eθ∼q(θ|x,λ)

[
log q(θ|x, λ)

p(θ)

] (A.6)

Therefore, the log-evidence can be expressed as:

log p(x|ϕ) = KL(q(θ|x, λ)|p(θ|x, ϕ)) + ELBO(q) (A.7)

Since the KL divergence is always non-negative, the ELBO serves as a lower bound
on the log-evidence. Maximizing the ELBO with respect to the variational parameters
λ is equivalent to minimizing the KL divergence between the approximate posterior
q(θ|x, λ) and the true posterior p(θ|x, ϕ).

A.3 Proof for proposition 1

To prove the proposition that the choice of α in the loss function targets the mean,
median, and mode of the posterior distribution, respectively, for α = 2, α = 1, and
α→ 0.

For α = 2(Targeting the Mean), the loss function is the Mean Squared Error
(MSE):

L(ϕ, ψ) = 1
N

N∑
i=1

(θi − Iψ (S (xi) , 2))2 . (A.8)

To find the value of Iψ that minimizes L(ϕ, ψ), we take the derivative w.r.t Iψ
and set it to zero:

∂L

∂Iψ
= − 2

N

N∑
i=1

(θi − Iψ (S (xi) , 2)) = 0 =⇒ Iψ = 1
N

N∑
i=1

θi (A.9)

Therefore, minimizing the MSE loss (α = 2) yields the mean 1
N

∑N
i=1 θi of the

true parameters.
For α = 1(Targeting the Median), the loss function is the Mean Absolute Error

(MAE):

L(ϕ, ψ) = 1
N

N∑
i=1
|θi − Iψ (S (xi) , 1)| (A.10)
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Let’s consider a set of N observations θ1, θ2, . . . , θN sorted in ascending order.

The median m is defined as: m =


θN+1

2
, if N is odd

θN
2

+θN
2 +1

2 , if N is even
Now, let’s consider an arbitrary point a ̸= m. We will show that moving a

towards m will decrease the sum of absolute deviations.
Case 1: a < m If we increase a by a small amount ϵ > 0 such that a+ ϵ ≤ m, the

sum of absolute deviations will change by:

N∑
i=1
|θi − (a+ ϵ)| −

N∑
i=1
|θi − a| =

∑
θi<a

ϵ+
∑

a≤θi<a+ϵ
(θi − a− ϵ) +

∑
a+ϵ≤θi

(−ϵ)

Since a < m, there are more points greater than or equal to a than there are points less
than a. Therefore, the net change in the sum of absolute deviations will be negative,
indicating a decrease.

Case 2: a > m Similarly, if we decrease a by a small amount ϵ > 0 such that
a− ϵ ≥ m, the sum of absolute deviations will change by:

N∑
i=1
|θi − (a− ϵ)| −

N∑
i=1
|θi − a| =

∑
θi<a−ϵ

(−ϵ) +
∑

a−ϵ≤θi<a

(a− ϵ− θi) +
∑
a≤θi

ϵ

Since a > m, there are more points less than or equal to a than there are points
greater than a. Therefore, the net change in the sum of absolute deviations will again
be negative, indicating a decrease.

In both cases, moving a towards m decreases the sum of absolute deviations. This
process can be repeated until a reaches m, at which point no further improvement can
be made. Therefore, the median m minimizes the MAE.

For α → 0(Targeting the mode), the loss function converges to the indicator
function:

lim
α→0

L(ϕ, ψ) = 1
N

N∑
i=1

1 (θi ̸= Iψ (S (xi) , 0))

where 1(·) is the indicator function that equals 1 if the condition inside the parentheses
is true and 0 otherwise.

To minimize this loss function, we need to maximize the number of exact matches
between the true parameters θi and the predictions Iψ (S (xi) , 0). In other words, we
want to find the value that appears most frequently in the set of true parameters
θ1, θ2, . . . , θN .

In summary, by varying the value of α in the loss function L(ϕ, ψ) =
1
N

∑N
i=1 |θi − Iψ (S (xi) , α)|α, we can target different statistical measures of the pos-

terior distribution p(θ|x). Setting α = 2 targets the mean, α = 1 targets the median,
and α→ 0 targets the mode of the posterior distribution.
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A.4 Additional experiments for flexible point esti-
mation

In this section, we present further experiments to investigate the NBPE’s ability of
outputting flexible point estimations in two different models: the Beta-Bernoulli model
and the Gamma-Exponential model.

Beta-Bernoulli model In this model, a binary random variable is also known as
a Bernoulli variable and follows the Bernoulli distribution. The parameter of the
Bernoulli distribution is π ∈ [0, 1], the probability of the event happening in each
trial. A common goal is to learn the parameter π given a sequence of observations{
x1
o, . . . ,xNo

}
. Here, xio = 1 means that the event happens (a ’hit’ or a ’success’) and

xio = 0 means that the event does not happen (a ’miss’ or a ’fail’) on the i-th trial.
The likelihood is

p
(
xio = 1

)
= π

p
(
xio = 0

)
= 1− π.

and we select a prior p(π) over the Bernoulli parameter (i.e., the probability of the
event).

If the prior is chosen to be a Beta prior, Beta (α0, β0), with α0, β0 > 0, then the
posterior is also a Beta distribution,

p (π|xobs) = Beta (π|αpost , βpost ) , αpost = α0 + nhit , βpost = β0 + nmiss

where nhit ≡
∑N
i=1 xio is the number of ’hits’ and nmiss ≡

∑N
i=1 (1− xio) is the number

of ’misses’.
When we have a Bernoulli likelihood and a Beta prior, the posterior distribution

is a Beta distribution. Specifically, the posterior distribution is given by:

Beta(αpost, βpost) = Beta(α0 + nhit, β0 + nmiss)

where nhit is the number of successes and nmiss is the number of failures.
The mode, mean, and median of the Beta distribution are given by: Mode:

αpost−1
αpost+βpost−2 (for αpost, βpost > 1) Mean: αpost

αpost+βpost
Median: Approximated by

αpost− 1
3

αpost+βpost− 2
3

(for αpost, βpost > 1)

Gamma-Exponential model The Gamma-Exponential model is commonly used
to model waiting times or inter-arrival times in various applications. In this model,
the waiting times are assumed to follow an Exponential distribution, while the rate
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parameter of the Exponential distribution is modeled using a Gamma distribution as
the prior.

The likelihood of the model is given by the Exponential distribution. The prob-
ability density function of the Exponential distribution is:

f(x|λ) = λe−λx

where x is the waiting time and λ is the rate parameter.
The prior distribution for the rate parameter λ is assumed to be a Gamma dis-

tribution with shape parameter α and rate parameter β:

g(λ|α, β) = βα

Γ(α)λ
α−1e−βλ

Given observed waiting times x1
o, . . . ,xNo , the posterior distribution of λ is also a

Gamma distribution with updated parameters: 1.Shape parameter of the posterior
(αpost ) = α + n, where n is the number of observations. 2.Rate parameter of the
posterior (βpost ) = β +∑N

i=1 xio.
The posterior mean of λ can be calculated as: αpost

βpost
. The posterior median of

λ has no closed form. The posterior mode of λ can be calculated as: αpost −1
βpost

(for
αpost > 1 ).

Experiments set up For Beta-Bernoulli model, we use Deepsets as summary net-
work with Dsummary = 8, a two hidden layers MLP as inference network and train
NBPE for 5000 epochs with default Adam optimizer. And for simulation parameters
we set simulation size per epoch to 96 and observation size from 10 to 20.And the range
of α is from 0.5 to 2.

For Gamma-Exponential model, we use Settransformer as summary network this
time with Dsummary = 16, a two hidden layers MLP as inference network and train
NBPE for 2000 epochs with default Adam optimizer. And for simulation parameters
we set simulation size per epoch to 96 and observation size from 20 to 30. And the
range of α is also from 0.5 to 2.

Results analysis Figure A.1 presents the results of the Beta-Bernoulli and Gamma-
Exponential models. The result on Gamma-Exponential model closely aligns with our
expectations regarding the output change as the parameter α varies. The result on
Beta-Bernoulli model also shows a similar trend, although there is some uncertainty
about the point estimation’s proximity to the mode when α → 0. Nevertheless, the
overall trend in both models is promising.

These additional experiments further validate our method’s ability to perform
preferred point estimations effectively. The results demonstrate the robustness and
applicability of our approach across different models and scenarios.
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(a)

(b)

Figure A.1: Comparison of the average error from the mean, median, and mode for different values
of α in the (a) Beta-Bernoulli model and (b) Gamma-Exponential model.
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