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A Compiler for Two-level Phonological Rules

Lauri Karttunen, Kimmo Kos?enniemi,
Ronald M. Kaplan *

1. Introduction

This paper describes a system for compiling two-level phonological or
orthographical rules into finite-state transducers. The purpose of this
system, called TWOL, is to aid the user in developing a set of such rules
for morphological generation and recognition. The current version of
TWOL (pronounced "tool") is written in Interlisp-D for Xerox 1100-series
workstations ("D-machines"); it will eventually be converted to Xerox
Common Lisp when this becomes generally available. The compiler
accepts as input a set of rules in the formalism of Kimmo Koskenniemi
1983 and compiles them to finite-state transducers in part using
techniques devised by Kaplan and Kay 1985 for the compilation of
ordered rewriting rules. The transducers in turn can be used by a
morphological analyzer whose task is to associate inflected and derived
forms of words and morphemes with their lexical representations either
for recognition or generation. One such system is DKIMMO—see Part II
of this report—but the output of the compiler is also compatible with
other two-level analyzers such as Koskenniemi's Pascal
implementation.

The TWOL compiler consists of three parts: (1) the FSM package that
performs operations on finite state machines, (2) the basic compiler, and
(3) a user interface. Part (1) was written by Ronald Kaplan. The FSM
package is owned and copyrighted by the Xerox Corporation. Part (2)
was written by Kimmo Koskenniemi at the University of Helsinki and
the code was modified and augmented by Lauri Karttunen at SRI
International who also wrote most of part (3). This system will be made
available to non-profit institutions and individual researchers under a
licensing agreement the details of which remain yet to be worked out
(June 1987).



We begin this report with instructions on how to use the compiler.
Section 2 is written for a novice user who just wants to try out the
compiler on a sample grammar. Section 3 gives information about the
format of a grammar file for a linguist who intends to write and compile
his own set of rules. It contains simple examples of compiler
declarations and a few sample rules. Section 4 is devoted to a more
detailed presentation of the rule formalism. Finally, section 5 discusses
the procedure by which the rules are compiled to finite-state
transducers.

2. Interface

In this section we give a quick tour of the user interface of the compiler.
The purpose is to illustrate, by way of simple examples, what TWOL can
do and how it is used. We assume that the reader is already familiar
with the basic features of D-machines: windows, menus, the mouse, and
the like. '

2.1 Getting Started

If you have the TWOL system on a floppy disk, you can use it on a
D-machine that runs the Koto-release of Interlisp-D. First copy the
contents of the floppy to a directory, connect to it—at CSLL, just can just
type (CONN (HEINLEIN:}<KIMMO>)—then load the compiler with the
command

(LOAD "LOADTWOL)

After the files have been loaded. you can start by selecting the command
TwolEdit from the background menu. As the edit window comes up, it
prompts you for a file name. If you just hit the carriage return, you get
the section headers for a new rule file. The first time around, we
recommend that you type

ENGLISH.RULES

This file contains eight spelling rules for English.



2.2 Windows and Menus

At this point, the top of the edit window looks like this:

Opdons Compile Test Intersect save

alpnaker

she A FIRYYFE Tmn g3 T uy w0y 2 ey g

The top line of the window is a menu with five items: Options (section
2.7), Compile, Test (2.3), Intersect (2.5), and Save (2.6). The first thing to
do is to compile the rules in the file you just loaded. Mousing the
command Compile brings up a submenu with two options: Selected rule,
All rules; choose the latter one. The compilation of the eight rules in the
file takes 6-8 minutes on a Xerox 1108 Dandelion. As the compiler is
working, it prints messages to the status line above the menus. For
each compiled rule, the compiler creates a small menu window labeled
with the name of the rule. By the time the compiler has finished
compiling ENGLISH.RULES, eight small menu windows have appeared on
the top of the edit window:

( mwpled Rule ( anpled Rule ( ewgaled Rule 3

Fari-w €liztan BemINation

( cowpaled Rule ( ampiled Rule ( empiled Rule ( amyuled Rule  ( ampad
T

Qurne, 4 min S@ :2cC

Optons Compile Test Intersect Save

You can get information about a rule and the corresponding transducer
by clicking the left button in the rule's window. For example, if we click
the window labeled "I-to-Y", the following menu pops up:



Zalers
Fazarmpie

The commands Describe, Display, Test, Recompile, and Delete perform
the named action on the compiled version of the rule. Describe lists the
number of the states in the transducers and shows how the rule
partitions the alphabet into equivalence classes. (Only the first symbol
of each equivalence class appears in the actual transducer.) Display
prints out the transducer in a tabular form. Delete deletes the rule
window and the transducer associated with it but it does not affect the
source from which it was compiled.

The "I-to-Y" rule itself, the source of the compiled rule, can be found in
the edit window:

" I_to-Y [1]

jiy <=> _ et -t 13

This is the rule that makes a lexical i to be realized as y in words like
dying (die-ing). More examples of simple two-level rules are given in
section 3.5 and section 4.1 discusses the formalism in detail. For now,
let us just take note of the fact that, by selecting the Display command
in the rule window, you can see the corresponding finite state
transducer produced by the compiler. Section 5 discusses the methods
by which the compiler turns rules to transducers.

[-to-Y
aei iy -t

0: 002 1 O

1. 3

2: 042 1 O

3. 5

4: 002 1 6

5. 2

6: 00 1 0

Equivalence classes:



(abcdfghjkImnopgrstuvwxyz'
fiv x:c y:i #:0 ':0) (e e:i e:0) (i) (izy)
(-:b -:d -:e -:f -1g -t1 -im -in -ip -ir -is -t -:0)

Each horizontal row represents a numbered sgate in the transducer; the
first column lists the states. State 0 is the initial state, final states are
marked with a colon (:), non-final states with a period (.). The other
columns are transition functions for a class of input symbols. The
symbol on the top of a column is the first symbol in its equivalence class:
the other members of the class are listed underneath the transition
table. The numbers in the table show for each state (row) and input
(column) what state the transducer moves to. For example, the last
column, labeled -:b, enumerates the transitions for -:b (morpheme
boundary - realized as b) and other surface realizations of -. The column
shows that on such input the transducer moves to state 0 from states O,
2. and 6, from state 3 to 5, and from 4 to 6. The two gaps in the column
show that in states 1 and 5, the transducer does not accept any symbol in
the -:b class.

2.3 Testing Rules

The command Test starts a test process in a separate window. You can
test rules either individually or in groups; If you click at Test in the
main command menu, the system prompts you for a selection. To select
a rule for testing, mouse its window with the left button. The selected
rules show'up in inverse video:

Seledt rules and Jick here
Do it! | Abort!

¢ mnrpﬂod Rule anvpilod Rule ( uq:ihd R

¢ mpnled Hule  C ompﬂod Rule (‘ompﬂcd Rule C dRuk ("mqﬂod Ru]c

[:::l__——

Zalect ruler By MGuiir Tham with rra laftogunton

Optons Compile " Test Intersect Save

To cancel a selection, mouse the rule window a second time. We suggest
that, on the first go, you select all the rules. Now click the the Do it/
command in the Selection window to initiate a test process for the



selected rules. (If you just want to test a single rule by itself, you can
also initiate the process by selecting the Test command in the pop-up

menu of the rule's window.)

The test process opens a new window:

Type a space between symbo Is

Generate Check Pairs Recognize
lesting 1-tu-Y - X-to-C - E-to- - Epenthesis - Y-ta-d - F-ta-Vv - £ Bsion - Gemnination
Lexical string: ,

Testing can be done in three modes: Generate, Check Pairs and
Recognize. To switch modes, just mouse the mode word on the top of the
test window. The current selection (initally Generate) is shown in
reverse video.

In the Generate mode, the system expects you to type lexical strings like
wolf-s
and returns with the corresponding surface forms or forms:
wolves
Please note that the current version of the rule tester expects you to type
a space between input symbols because it has not yet been equipped to
parse words into a sequences of alphabetic symbols. (A word like quick
couldmean(q u i ¢ k|, [qu i c k], [q u 1 ck],or [qu i ck] depending
on the alphabet. It could even have more than one parse because the
components of a digraph may also appear in the alphabet separately.)’

In the Recognize mode, we go from a surface form to a set of possible
lexical forms:

Type a space between symbols
Generate Check Pairs Recognize
1esting 1-to-Y - X-to-C - E-to-i - f perthesis - Y-to-i - F-to-v - f lision - Gemination

Surface string: wo Il ves
Lexical string: wo 1 f - s
Lexical string: wo 1 v - s
Lexical string: wo 1l ves




In this mode, the rule tester typically "overrecognizes” because it has no
access to a lexicon. The rules in this sample grammar do not exclude
wolves and wolv from the class of valid lexical strings. If the lexical
symbol is realized as an empty string, the recognizer expects to find a 0
(zero) in its place. For example, to test the recognition of a form like
roof-s. you should type

roofOs

because the rule tester works strictly in term of character pairs. This
limitation helps to reduce overrecognition. (The generator is more
clever in that it omits 0's when it prints out the results.)

The Check Pairs mode expects you to type either single characters or
character pairs separated with a colon. For example:

wolfiv -ies

An atomic character here means that the lexical character is the same
as its surface realization; for example, w means ‘lexical w realized as
surface w. Correspondingly, f:v means ‘lexical f realized as surface v’
and -:e is ‘the morpheme boundary - realized as a surface e’.

In the Check Pairs mode the transducers are operated in succession
rather than in parallel and each transducer reports separately whether
it accepts the offered pairings. In this case we get back:

[-to-Y: accepted
Y-to-1: accepted
X-to-C: accepted
Epenthesis: accepted
F-to-V: accepted
Elision: accepted
Gemination: accepted

If you type

wolfsv -:0s



all the other transducers accept the input, but the Epenthesis rule says
Epenthesis: FAILED in state 6: s #:0

The part after the second colon indicates that all of the string was
processed except for the last s—the word boundary marker (#:0) is
inserted automatically by the system to the beginning and to the end of
your input string. By failing at this point, the Epenthesis rule is telling
you that the morpheme boundary (-) cannot be realized as the empty
string in this environment.

2.4 Editing Rules

After you have compiled all the rules once, it is possible to modify them,
compile the modified rule or rules separately, and test them again. You
can also add new rules and compile them without recompiling any
others. This works as long as the alphabet remains the same and you do
not introduce any lex:surf pairs that the compiler has not already
encountered elsewhere. If the alphabet grows or if a new way to realize
some lexical character is introduced, all the rules must be recompiled.
(The system keeps track of this and tells you when it happens.)

There are two ways to recompile an old (possibly modified) rule. You
can pick the option Recompile from the appropriate rule window or you
can select the name of the rule with the mouse and use the option
Selected rule in the Compile menu. These do the same thing for rules
that have already been compiled once but the latter option also can be
used to compile new rules that you have just typed in. After recompiling
a rule, the compiler checks whether the resulting transducer is
equivalent to the result of the previous compilation and tells you
whether the new version of the rule is really different or equivalent to
the old one.

If the recompilation of a rule produces an automaton that is different
from the previous version, it may affect other compilation results. For
example, if the rule in question is part of an intersection (section 2:5),
the intersection should also be recompiled to bring it up-to-date.
Changes in one rule may also affect the compiled versions of other rules,



if the compiler is running in a mode in which it avoids certain types of
rule conflicts (section 2.8). The system keeps track of such
dependencies. If the recompilation of a rule makes an intersection or
some other compiled rule obsolete, the windows of the affected rules and
intersection results are crossed over: 3

Intevsected Rales

ESTINE DTS ) GO | I T

Gpwgattan of b afbar Coqads o o fGevnanton of r o afras AARTTE

Groaaation oF boarrar Sl aaarean of v beradan g

C axwpaled Rule
Am1ratd Iradatior

Broagation of booafrtar Y recoipllag o3 d1ffarent cule

Opdons Compile
d RADATIO

Test Intersect Save

Ruiles:

The lines across the windows labeled "Consonant gradation” and the
"Gradation" indicate that their contents are now obsolete because ofa
change in the "Gradation of k after VV" rule. The user can update a
window by selecting the command Recompile from the window's menu.
If the old version of a recompiled rule was being tested, the test window
is automatically re-initialized with the new version of the rule.

2.5 Intersecting Rules

The I[ntersect command prompts you for a selection of rules to be
intersected and produces a single transducer that combines the effect of
the selected rules. This is useful because having fewer transducers
makes recognition and generation more efficient. Intersecting the eight
rules in ENGLISH.RULES takes a couple of minutes and produces a single
machine with 108 states. The transducer resulting from an intersection
gets its own menu window and you can test it in the same way as
individual rules. You can also use it to form another intersection. If the
number of rules is large, it is advisable not to try to intersect all of them
at once. In the worst case, the number of states in the intersection of two
transducers could be as large as the product of the sizes of the input
machines, but if the rules represent independent generalizations, the



size may be close to the sum. It is best to start by intersecting rules in
small groups on the basis of similarity. If the resulting transducers are
not too large they can be combined with one another. There is no limit
in principle on the size of transducers although the computation may
take several hours for intersections with more than a few hundred
states. ‘

2.6 Saving the Results

The Save option writes out the results of the compilation in three
alternative modes. The standard form (explained in section 3.7) is
meant for the DKIMMO system. By sliding the mouse off to the right, you
can elect to save the results in a “tabular” mode intended for the older
implementations of KIMMO or in the “display” mode used on the screen.
You can save all the compiled rules or select with the mouse the ones
that you want to write into the file.

The file ENGLISH.8FSM on the TWOL floppy contains the result of
compiling the eight rules in ENGLISH.RULES individually.
ENGLISH.IFSM is the intersection of the rules as a single 108 state
machine.

2.7 Status Messages

While the compiler is working on a file, it prints a continuous stream of
messages about its progress to the status line above the command menu.
Most of these messages are self-explanatory. When a rule is being
compiled, you can see what part the compiler is currently working on.
The symbol <= indicates that the compiler is working on the surface
coercion part of the rule, => means that it is compiling a context
restriction. For rules that have multiple contexts, the => stage involves
several intermediate steps. The symbols 1cl <1 and >1 rcl indicate
that the compiler is marking the right end of the first left context and
the left end of the first right context with a bracket to keep track of
partially overlapping contexts; the symbols <i cp >1 indicate that it is
working on the restriction that the central part of the rule must have
matching brackets on both sides. & means that an intersection is in
progress. Once the contexts have been intersected, the auxiliary

10



brackets are no longer necessary and they are removed; the compiler
indicates this operation with the symbol -<>.

2.8 User Options

The compiler can be set to check for certain types of conflicts between
rules and resolve them automatically. We will discuss these options in
section 4.3. If you click the Option item on the top of the rule window
with the left button, you can see the current setting:

Conflicts between rules|[WIRIFISEN
Lon'tcheck FEIET
G adxiali ABCRT
el DAl Rl S DA

If you decide to change the option, mouse with the left button at the
appropriate line. The new selection turns into inverted video and the
old one goes back to normal. The change becomes effective when you
click DONE. This window remains open until you select either DONE or
ABORT.

2.9 Bugs

The routine that reads in the rules is extremely fragile in the current
version. Any syntactic error in the input puts the system into a break.
The only way to recover is to do a reset (Control-D or the uparrow
command), fix the error and try again. The variable TwolGetTop is
bound to the last symbol in the input stream that was read before the
break. It can give you a hint where to look for the error. (Please send
bug reports and comments to LAURI@CSLL.STAN FORD.EDU.)

11



3. Grammar Format

Below is a small but complete example of a two-level grammar. It
consists of five sections headed by the titles Alphabet, Diacritics, Sets,
Definitions, and Rules. The first and the last are always required by the
compiler, the other three sections are optional. Each section consists of
items that are separated by a semicolon. Currently there is no facility
for adding comments; this will change in the future.

Alphabet
A:da 0:0 Uiy
abcdefghijklmnopqrstuvxywzé'd;

Diacritics

Sets :
Consonant =bcdfghjklimnpgrstvwxaz s
BackVowel = a o u o

Definitions
NonFrontContext =
.Consonant* [:BackVowel | :i | :el* :Consonant* ;

Rules

“Yowel Harmony"
Vx:Vy <=> :BackVowel NonFrontContext* _ H
where Vx in (A 0 U)
Vy in BackVowel
matched

-e

This grammar contains only one rule, titled "Vowel Harmony.” The
effect of the rule is to realize lexical A,0,and Uas 3, 0, and u, respectively,
after an occurrence of a surface a, 0, or u provided that any intervening
surface vowel is either a back vowel oran iorane. Appendices 1 and 2
are examples of larger rule systems. Let us now discuss the format of a
two-level grammar in more detail.

12



3.1 Alphabet

As the compiler goes to work on a two-level grammar, it constructs two
lists of alphabetic symbols: lex:cal alphabet and surface alphabet. Some
symbols occur only in one of these lists but the majority of symbols
usually belong to both alphabets. A symbol may consists of more than
one letter. Besides the composition of the two alphabets, the compiler
also needs to know the possible correspondences: what surface symbols
each lexical symbol can be realized as. In reading the declarations and
rules, the compiler builds a list of all valid character pairs. A character
pair is a symbol x:y where x is a symbol in the lexical alphabet and y is
in the surface alphabet. The colon is used as a separator. The compiler
does not consider any pair as valid unless the pair is licensed by a
declaration or a rule. The purpose of the Alphabet section in the
beginning of the grammar is to give the compiler a complete list of the
two alphabets and a partial declaration about valid character pairs; the
compiler will determine from the rules what other valid character pairs
there are. Here is another example of an Alphabet section:

Alphabet

N:n K:
abcdefghijklopgrstuvxywz

M :n :ng s

By convention, a symbol without a colon on either side represents a pair
of identical characters. For example, the letter b in this list indicates
that (1) b is a lexical symbol, (2) b is a surface symbol and (3) b:bisa
valid pair. If a symbol belongs only to the lexical alphabet, it is listed
with a trailing colon. In this example, N and K are lexical symbols while
m, n, and ng are only in the surface alphabet. We also see that N can be
realized as n but nothing is said here about the surface realizations of K
or the lexical counterparts of mand ng. Because nappears on the surface
side of the pair N:n, listing it separately as :n is redundant.

The compiler automatically augments the alphabet with one special
pair of symbols. The lexical side of this pair is a symbol indicating a
word boundary, the surface character is the symbol for the empty string.
What these symbols are is determined by the LISP variables

13



TwolBoundaryChar and TwolZeroChar. The default values for these
system variables are # and 0, respectively; consequently, the pair #:0 is
always included in the alphabet regardless of whether its explicitly
declared. (These variables can be reset in LISP to other values, if # and 0
are not appropriate characters to serve in these roles.) The rule tester
(section 2.3), automatically adds the appropriate boundary marker to
the beginning and end of the input it gets from the user.

3.2 Diacritics

The optional Diacritics section is a list of lexical characters that by
default are realized as the empty string. Furthermore, diacritic symbols
are "visible" only for rules that explicitly mention them. The purpose of
diacritics is to allow rules to make reference to some nonsegmental
property of a lexical form such as tone, stress, morphological class and to
provide a facility for handling exceptions. For example, because the
consonant doubling in pairs like infér-inférred vs. énter-éntered
correlates with stress, one may decide to mark non-initial stress in
lexical forms by a diacritic: in'fer. The consonant doubling rule (see
Appendix 1) can thus distinguish the two types of stems.

If the stress mark is relevant only for a certain rule or rules and the
symbol itself has no direct surface realization, it is convenient to treat it
in a special way so that other rules need not take any note of the
presence or absence of a stress mark. The declaration

Diacritics

we

has just that effect. The compiler works in such a way that diacritics
that are not explicitly mentioned in a rule are completely ignored by the
resulting transducer; they have no effect on whether the rule applies to
a given form.

14



3.3 Sets

The optional Sets section consists of declarations that associate a name
with a list of alphabetic symbols. Here is another example:

Sets
Consonant =Nbcdfghjklmnngprstvxz ;
Vowel =AQUaeiouyado :
VoicelessStop = k p t ;
VoicedStop = g b d H

Sets play the same role as distinctive features in other phonological
formalisms. Rules can be made more general by referring to symbols as
a class instead of listing them individually. As the example shows, it is
not necessary for all members of a set to be in the same alphabet. A set
name can be used as a lexical or a surface side of symbol pair, for
example, Vowe1:0. The interpretation of set symbols in such pairs
depends on what side of the colon they occur. If a set that contains both
lexical and surface characters is used on the lexical side, only the lexical
members of the set are taken into account; similarly for surface sets. We
discuss the interpretation of sets in symbol pairs in more detail at the
end of section 4.1.

The order in which the members of a set are listed can be significant in
rules that involve variables (see section 4.2). For example, by listing the
elements of VoicelessStop and VoicedStop in the manner shown above,
you can write a single voicing rule that realizes every voiceless stop as
the corresponding voiced stop; that is, k:g, p:b,and t:d.

3.4 Det‘ilnitions'

The optional Definitions section provides another way to express
generalizations. A context that is shared by several rules can be defined
just once and referred to by a name. Like the Sets section, Definitions
consists of a list of declarations; the difference is that the content part of
a definition consists of a regular expression. This expression may
contain other defined terms provided that their definitions are placed
earlier in the Definitions list. In the current implementation,

15



definitions must be constructed using concatenation, disjunction,
negation, optionality, Kleene-star and plus. Future versions of the
system will make other regular predicates available. Here are more
examples of what can go into the Definitions section:

Definitions
Sibilant = [sic] h | s | x: | 2 :
Syllable = C* v (V) C* :
LastSyllable = Syllable #:0 H

The vertical bar | indicates disjunction; square brackets are used for
grouping; concatenation is indicated by juxtaposition; optional elements
are enclosed in parentheses. The symbol x: in the definition of Sibilant
designates any valid symbol pair with x as the lexical symbol. For
example, if x and c are the only possible surface realizations of x in a
grammar, then x: designates the pairs x:x and x:c. In this case,
Sibilant means ‘sh, ch, x, x:¢, or 2" The meaning of symbols that consist
of just one half of a symbol pair, such as x:, depends on the set of valid
symbol pairs; they are defined implicitly (more about this in section 4.1).

An important difference between set symbols and defined terms is that a
defined term cannot be a part of a symbol pair. An expression such as
Sibilant:0 does not make sense, given the above definition, because
Sibilant here designates a two-level environment rather than a set of
alphabetic symbols.

3.5 Rules

A two-level rule consists of a name (a quoted string) followed by a
correspondence, operator, any number of environments, and an optional
variable assignment. An environment consists of a left and a right
context (both optional) separated by an underscore (). There are four
operators: <=, =>, <=>, and /<=, We will illustrate their effect with a few
simple examples and discuss the rule formalism in greater detail in the
next section. Here is a simple example ofa two-level rule:

“Voicing rule 1"
k:g <= Vowel _ Vowel

-e
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Every two-level rule is concerned with a particular surface realization of
a given lexical string in a certain environment; in our example, the
issue is the realization of k between two vowels. The effect of the <=
operator is to make the realization of k“as g obligatory in this
environment. In words, this rule says "k is always realized as g between
two vowels." The rule does not in any way constrain the realization of k
in other environments; in particular, it allows the realization k as g
anywhere. If the user wants only intervocalic k's to be realized as g's, he
can state the restriction using the => operator:

"Woicing rule 2"
k:g => Vowel _ Vowel

Voicing rule 2 is equivalent to "k is realized as g only between two
vowels." Note that this rule does not require intervocalic k's to be
realized as g's; it only allows it and restricts it to this one environment.

Rules 1 and 2 can be combined to a single rule by using the <=> operator:

"Voicing rule 3"
k:g <=> Vowel _ Vowel

-e

In words: "k is realized as g always and only between two vowels."
Although it is useful to collapse rules when possible, it is not necessary
to do so. Rules 1 and 2 have jointly the same effect as rule 3 alone. The
main benefit of the => operator is that it can be used to allow a lexical
string to be optionally realized in a certain way without requiring that
it be always realized that way in the given context.

The fourth operator, /<=, makes it possible to state prohibitions:

"“Voicing rule 4"
k:g /<= Consonant _ Vowel

In words: "k is never realized as g between a consonant and a vowel.”
This operator would be useful in cases in which it is easier to describe

17



the environments in which something does not happen than to
enumerate the positive contexts.

A rule can have more than one environment:

"Voicing rule §"
k:g <=> Vowel _ H
_ Vowel )

Rule 5 requires a k to be realized as g both before and after a vowel and
only in these environments. Note that the two environments must be
separated by a semicolon; the second semicolon terminates the rule.
This rule is compatible with rule l—in fact, it makes rule 1
redundant—but it would not work properly in conjunction with rules 2,
3, and 4. Because rule 5 requires a prevbcalic k to be realized as g no
matter what precedes it, it can conflict with rule 4 that prohibit this
realization after a consonant. It also conflicts with rules 2 and 3 that
restrict the voicing of k to intervocalic contexts. We will return to the
issue of rule conflicts in section 4.3.

As a final example of the kinds of rules that can be written in the
two-level formalism, consider a rule that makes k be realized as g
between two identical vowels. This type of rule can be written with the
help of a variable:

"Voicing rule 6"
k:g <=> Vx _ Vx ; where Vx in Vowel H

Here Vx is used as a variable; the assignment of values to the variable is
determined in the where-clause—note again the use of ; as a separator.
This rule is equivalent to a rule that has multiple environments: a _ a4,
u _ u, and so on for each vowel. Variables do not add to the descriptive
power of the formalism but they make it possible to state many rules in
a more concise way. In section 4.2 we illustrate more sophisticated ways
of using variables.

18



4. Rule Formalism

The two-level rule formalism was first described in Koskenniemi [1983].
The version used by the current compiler contains some changes and
improvements, such as multiple environments and a more general use
of variables. The most radical change concerns the interpretation of the
formalism in the case of conflicting rules (section 4.3). When two rules
are in conflict, some valid lexical forms may be left without any surface
realization. Such conflicts are sometimes difficult to detect in practice
and their resolution typically forces the linguist to give up simple rules
in favor of more complicated variants. The TWOL compiler can detect
and resolve certain conflicts automatically in a principled way but the
user still has the option of not making use of it and treating all conflicts
as errors (section 2.8).

In this section we will discuss three issues related to the formalism: the
specification environments, the use of variables, and the principles of
conflict resolution.

4.1 Two-level Environments

All two-level rules are statements about the realization of lexical forms
as surface forms. This concerns not just the correspondence part of a
rule but also the specification of the environment. This is a subtle but
important point because traditional phonological rules are different in
this respect. It is somewhat obscured by the notational "sugar” that lets
the rule writer construct environments with simple symbols which
actually designate symbol pairs. The fact that two-level rules can refer
to both levels in their context specification makes it possible to give
simple two-level descriptions of many phenomena which cannot be
described elegantly with traditional rules without rule ordering. For
example, consider the following two rules:

Rule 1: Assimilate nasals that are unspecified as to the point of

articulation to the following stop.
Rule 2: Replace a stop with the preceding nasal.
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These rules account for a common process by which underlying Nk, Np, Nt
are realized as surface nn, m, and nn. In very traditional phonology, it is
crucial that Rule 1 is applied before Rule 2 because the application of
Rule 2 changes the environment so that Rule 1 fails to apply. Because
two-level rules can refer to both lexical and surface levels, problems of
this type generally have very simple solutions. The two-level
counterparts of rules 1 and 2 can apply simultaneously. We first give a
simple version of the rules for N and p and show in section 4.2 how to
generalize them to other stops.

"Nasal assimilation to p"

N:m <=> _ p: s

"Nasalization of p“
p:m <=> :m _ :

The subtle detail in these rules that makes them work in the desired
way is the location of the colon in p: and :m. The former is a lexical p
with some unspecified surface realization, the latter is a surface m with
an unspecified lexical source. Because one rule is sensitive to the lexical
context and the other to the surface context, they do not interfere with
each other. They realize Np as mm without any stipulation about order of
application. However, the choice of lexical vs. surface context is a
delicate matter, as we shall see shortly. (There are, of course, more
sophisticated ways of stating the rules in the traditional framework that
also produce the correct outcome without rule ordering. This is not the
issue here.)

As we mentioned in section 3.4 symbols such as p: and :m have implicit

definitions. If a lexical p can only be realized as p or m, then p: in the
nasal assimilation rule is equivalent to the disjunction (p:p | p:m]. It
is important to realize that in this formalism everything in a context
specification constrains both levels although the notation does not
always show it. In practice it often happens that a rule does not have
the intended effect because it fails to constrain one or the other level in
the appropriate way. For example, consider the effect of making a slight
change to the nasal assimilation rule. We'll just leave out the colon:
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"Nasal assimilation to p (wrong version 1)"
Nem <=> _ P 3

Because p in the context specification is just an abbreviation for p:p, the
new rule says that N is realized as malways and only in frontofa p that is
realized as p. The two rules are now in conflict: p cannot be realized as p
because then N should be realized as m which makes the pair p:p illegal
by the nasalization rule. On the other hand, p cannot be realized as m
either because that would require N to be realized as m which is now
forbidden by the first rule. Thisis a type of unintentional error that the
compiler cannot yet detect; consequently, the rule writer has to keep in
mind that a specification, such as p, that seems simpler than p: or :pis
actually more restrictive than the latter two although it does not overtly
refer to levels.

Overspecifation does not always lead to a conflict, it can also have the
opposite effect.  Consider another faulty version of the nasal
assimilation rule:

"Nasal assimilation to p (wrong version 2)"
N:m <=> _ p:m H

The replacement of p: by p:m in the right context seems completely
innocuous; after all, lexical p should be realized as m when the preceding
nasal is realized as m. The problem with this version is that it does not
force N to be realized as m in front of a p that is realized as something
other than m, and the nasalization rule does not require the realization
of p as m except when if follows a surface m. If N is generally realized asn,
the rules now allow two realizations for Np, namely, np and mm.

Set symbols are similar to alphabetic symbols in that they, too, are
interpreted as symbol pairs when they are used without a colon. For
example, if VoicelessStop is defined as the set k, p, t; as part of a context
specification, VoicelessStop is an abbreviation for the pair
VoicelessStop:VoicelessStop. The interpetation of a symbol pair
containing a set name is perhaps not immediately obvious but it is easy
to get used to. Such pairs also have implicit definitions: VoicelessStop
designates an alternation consisting of valid pairs x:y such that x and y
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are voiceless stops. Depending on the grammar, that might mean just
(k:k | psp | t:t] but if the grammar happens to allow k to be realized
as p in some environment, then the pair k:p is also included in the
environment VoicelessStop. Pair symbols consisting of a set name and
an unspecified other half are interpreted in the same way. For example,
VoicelessStop: designates all valid pairs x:y in which x is a voiceless
stop. The identity of y does not matter, provided that the pair itself is
licensed by some declaration or rule. Consequently, VoicelessStop: is
in general less restrictive than VoicelessStopasa context specification.

4.2 Variables

Suppose we wish to extend the simple nasal assimilation rule for p in
section 4.1 to other stops. One solution would be to write three separate
rules that realize Nk, Np, and Nt as ng, mm, and nn, respectively, but that
would conceal a generalization. Although the two-level rule formalism
does not have a facility for factoring out the common element in these
rules in terms of distinctive features, it can achieve a similar result with
the help of sets and variables. Let us assume that the alphabet and sets
Velar and VelarOrDental have been defined as follows:

Alphabet

N:
abcdefghijklopqrstuvxyz
mo:n :

Sets
Velar = g k ;
VelarOrDental s k gt ds 1rn;
Vowel = a e i ou;
VoicelessStop = k p t 3
VoicedStop = g b d 3

Here are more general versions of the two rules in section 4.1:

"Nasal assimilation"

N:Cx <=> _ Cy: ; where Cx in (n m)
Cy in (VelarQrDental Labial)
matched ’
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"Nasalization"
Cx:Cy <=> N: _ ; where Cx in VoicelessStop

Cy in (g m n)
matched . ;

The effect of the nasal assimilation rule is that a lexical N is realized
either as n or m depending on the following consonant; the nasalization
rule makes k, p, and t be realized as g, m, and n, respectively, after a
lexical N. These rules would be a bit more natural if we did not follow
the orthographic convention of using ng to represent a velar nasal.

As these examples indicate, a rule may contain more than just one
variable. The range of values for variables is declared in a where-clause.
The range may be indicated by a set, for example, VoicelessStop, or by a
list. The list may consist of alphabetic symbols, as in (g m n), or sets, as in
(VelarOrDental Labial) or defined terms. The use of the variable must of
course be consistent with the values that are assigned to it. Only
alphabetic and set symbols can form symbol pairs (Cy:, Cx:Cy); defined
terms do not make sense on either side of a colon because they already
designate two-level contexts.

The assignment of values to a group of variables can be coordinated by
using one of three keywords: matched, mixed, or freely. When the
keyword is matched, as in our example, the values are assigned to all
variables in the group simultaneously starting from the leftmost value
in the range of each variable. For example, in the case of the nasal
assimilation rule, this mode of assignment produces two instances of the
rule:

"Nasal assimilation (Assignment 1)"
N:n <=> _ VelarOrDental: 3

"Nasal assimilation (Assignment 2)"
N:m <=> _ Labial: s

The keyword mixed means that no two variables in a group ever have
corresponding values; that is, when one variable has the ntk value of its
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range, all other variables have something other than the nth value of
their range. This makes it possible to write rules that involve
dissimilarity; for example, we can a write a rule that deletes the last one
of two non-identical vowels:

-

"Vowel truncation”
Vx:0 <=> Vy: _ ; where Vx in Vowel
Vy in Vowel
mixed ;

If the keyword were changed to matched, this rule would pertain to a
sequence of two identical vowels, and freely would mean a sequence of
any two vowels. If no assignment mode is specified, the compiler
defaults it to freely.

A rule may contain any number of variable groups, each with its own
assignment mod; the groups must be separated by and. For example,
the following rule realizes a voiceless stop as the corresponding voiced
stop between two identical vowels:

"Voicing of stops"
Cx:Cy <=> Vz _ :Vz ; where Cx in VoicelessStop
Cy in VoicedStop
matched
and Vz in Vowel

If a variable group contains just one variable, as the second group in this
example, there is no difference between matched, mixed, and freely.

4.3 Rule Conflicts

As we pointed out in section 4.1, a grammar may contain rules that are
in conflict with one another: one rule prohibits something that another
rule requires. The two-level formalism gives rise to two types of
conflicts between rules: environment conflicts ("=> conflicts™) and
realization conflicts ("<= conflicts”). The => side of two rules are in
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conflict when the correspondence part is the same but the contexts
differ; for example, the rules

HRu"e 1“
k:0 <=>Vv _VCC : .

llRu‘Ie 2"
k:0<=>C _VCC ;

conflict in the => direction. Rule 1 says that k is realized as O in the
environmentV _ V C C whereas Rule 2 calls for the environment C _ V
C C. If the sets V and C are disjoint, the two rules cancel each other out
completely: k cannot be realized as 0 anywhere.

The second type of conflict arises when two rules have the same lexical
side, different realizations, and the environment of one rule is subsumed
by the environment of the other. Consider the rule

"Rule 3"
kv <=>u _uCC 3

Because every instance of the contextu _ u C Cis also an instance of V
_V C C,Rule3and Rulelarein conflict with respect to how k should be
realized in the environment of Rule 3. Note that there is no conflict here
in the => direction because different realizations are involved. In
traditional phonology, the problem could be solved by ordering Rule 3
before Rule 1 but in a two-level system, this solution is not available.

Both types of conflicts can of course be avoided by making appropriate
changes in the conflicting rules although this generally involves
making the rules more complicated. If the conflict arises in one
assignment of a value to a variable, a general rule may have to be split
into a number of separate rules. In this matter the compiler can help
the linguist in two ways. Before a set of rules is compiled, the user can
instruct the compiler to check for both types of conflicts and report them
as the rules are compiled. This is done by selecting the appropriate
command (Report only) from the Option menu (section 2.8). In this
mode, TWOL prints the following messages when it compiles rules 1, 2,
and 3:
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Rules "Rule 1" and "Rule 2"
overlap with respect to k:0.

=> conflict between "Rule 1" and "Rule 2"
with respect to k:0 .

<= conflict between "Rule 1" and "Rule 3"
with respect to k:0 and k:iv

These messages are rather specific because a conflict might involve only
a particular assignment of value to some variable in a more general
rule.

If such conflicts arise by mistake, the grammar writer can correct the
errors and recompile the rules. Another option (Report and Resolve) is
to let the compiler not only check for conflicts but to alter its compilation
method to achieve a particular intended effect. In the case of =>
conflicts. the context part of both rules is modified to include the context
of the conflicting rule as an alternative. In resolving the environment
conflict between rules 1 and 2, the compiler compiles the => part of these
rules with a common context:

v_vcecC ;

c _vecec

.
,

Note that the methods of resolving => and <= conflicts may involve
changing the compilation of a general rule just under a particular
assignment of values to variables leaving other instances of the rule
unchanged.

In resolving the realization conflicts, the compiler follows the principle
that the more specific rule should take precedence. (This is often called
the "Elsewhere Principle.”) The specific rule is compiled in the normal
way but the general rule is altered so that it does not interfere with the
specific one. For example, the compiler resolves the conflict between
rules 1 and 3 by weakening the <= side of Rule 1 so that it requires k to
be realized as either 0 or v in its environment. The effect is that k is
realized as v between two u's because Rule 3 requires and Rule 1 now
allows it. Between other vowels k is deleted because Rule 3 does not
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permit it to be realized as v whereas Rule 1 requires that it either be
deleted or realized as v. Section 5.3 discusses this in more detail.

The effect of the automatic conflict resolution can be seen in the
transition tables for Rule 1 under the two modes of compilation.
Although it is generally rather difficult to associate the states and
transitions of the automaton with any details of the source rule, some
general relationships are 2asy to discern.

Without Resolution With Resolution

RuTe 1 Rule 1

abkakzo abkak:O

0: 100 0: 122

1: 1020 3 1: 1240 3

2: 4000 2: 1220 3

3. 5 3. 5

4: 1760 3 4: 6220 3

5. 88 5. 717

6: 4 0 6: 1890 3

7: 1 0 7. 22

8. 00 8: 1 0 3

9: 6 0 3

Equivalence classes Equivalence classes:
aefou) aefou)
bcdfghjlpar bcdfghElpqr
stvxaz stvxzKkiy
(k k:v) (y #:0) (k:0) (k) (y #:0) (k:0

Note that the distribution of k:0 is less restricted when the rule is
compiled in the Report and Resolve mode. This results from the addition
of the context of Rule 2 to the environment of Rule 1. Another
significant change is that, in the second version of the rule, the k:v pair
has moved from the small k-class—the forbidden realizations of k in the
rule's environment—to the large b-class that contains all the consonant
correspondencies that the rule is not concerned about. This difference is
due to the resolution of the <= conflict between Rule 3 and Rule 1.

Appendix 2 contains a set of seven rules that deal with consonant
gradation in Finnish. These rules give rise to multiple conflicts of both
types. If the compiler did not have the facility to resolve them, these
rules could not be as simple as they are.
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5. Compilation

The TWOL compiler derives from unpublished work by Ronald Kaplan
and Martin Kay in the early 1980's. Kaplan and Kay proved that
standard phonological rules of the type a =B /A _ p define regular
string relations and thus can be modelled by finite-state transducers.
(Johnson 1972 also argued that finite-state mappings are powerful
enough to model a wide variety of phonological processes.) Kaplan and
Kay developed a technique for compiling a system of ordered rewrite
rules to a cascade of transducers that could be further composed to a
single such device. In the summer of 1985, Kaplan and Koskenniemi
worked out the principles that made it possible to apply the method to
Koskenniemi's two-level rules. The first version of the compiler was
written by Koskenniemi in 1985-86 [(Koskenniemi 1986] and
re-implemented in Common Lisp by Maarit Kinnunen (1986]. The
present version contains a number of improvements due to Karttunen,
including a better user interface, a more general treatment of variables,
and the facility for resolving rule conflicts. Most of the low-level
computation is done by Kaplan's FSM package; the resulting automata
are minimal and deterministic. (A rule compiler that produces
non-deterministic automata for a simpler two-level formalism has been
developed by G. D. Ritchie et al. 1985.)

5.1 Overview

In the first stage of the compilation, the input file is parsed and the
definitions and rules are converted to LISP structures. Except for
defined terms, all atomic symbols in the rules are converted to symbol
pairs and the basic components of each rule (correspondence part, left
contexts, right contexts) and all the definitions are parsed into regular
expressions. As it processes the input file, the compiler carefully tracks
all pairs that consist of alphabetic symbols (valid pairs).

The next step is to remove all variables from the rules by replacing
every original rule that contains variables by a set of subrules, one for
each value assignment. In general this process produces new valid
pairs. If a variable is used in the correspondence part of a rule, one
instance of the whole rule is produced for every value assignment;
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variables that only occur in the context part produce a new instance of
the context for each assignment of value to the variable. For example,
the expanded version of

Cx:0 <=> Vy _ Vz : where Cx in (k p t)
and Cy in (a o u)
Cz in (a o u)
mixed s

consists of three subrules for k:0, p:0, and t:0, and each subrule has six
contexts: a_0,a_u,0_a,0_u,u_a,andu_o.

After all the rules have been instantiated to sets of subrules, the
compiler has the final list of possible lexical-to-surface correspondences.
It uses this information to compute a definition for all implicitly defined
terms, such as 1: and Vowel:Vowel, whose content depends on the list of
valid pairs. If the compiler detects any errors, for example, an
undeclared symbol in the alphabet or an implictly defined term that
doesn't designate anything, it reports the problem and asks the user at
this point for a decision:

Errort . Frocas or 2ports o ARart,
lri. - E— -
Options Compile Test Intersect Save
P A OO0
alphabet
shedafghiyrlapagr s tuwy . ¥2

In the next stage, all definitions, which at this point are regular
expressions, are individually compiled to automata. These automata
are ordinary finite-state machines (FSM) except that the transition arcs
are labeled by symbol pairs. The compiled definitions are stored and a
copy of the automaton is used in compiling expressions that contain the
defined term.

Before the compiler starts to work on the rules, it makes a preliminary
pass during which all the components of every subrule are individually
compiled to an FSM. This s useful because the compiler can in the next
stage use semantic methods—predicates that are defined on

29



FSMs—rather than the syntax of regular expressions to find out what
rules are in conflict.

In the beginning of the final stage, each source rule is represented by a
set of subrules and a subrule may have several contexts. All the
subrules are first compiled separately and the resulting FSMs are
successively intersected to produce a single FSM. A menu window is
created to give the user access to the result.

5.2 Compilation of a Rule Set

Unless the compiler is working in the Don t check mode, every subrule is
first scanned for possible conflicts against all the other subrules in the
grammar. This extra work seems to nearly double the total compilation
time. If a conflict is detected, a message is printed on the screen and the
conflict is recorded on the subrule so that it is available when the
relevant part of the rule is compiled. The resolution of <= conflicts only
requires a modifcation of the more general subrule, but both parties
have to be modified to resolve a => conflict (section 4.3).

Before the actual compilation begins, the compiler first considers the
alphabet of the rule. Although the automaton that it is about to produce
must function correctly with the full alphabet of the grammar, it is
usually possible to ignore many symbols during the compilation. A
reduced alphabet means fewer transition arcs and less work for the
compiler. In order to define a minimal alphabet for the rule, the
compiler canvasses all the individually compiled components in the rule
set. Any two symbols that never appear on transitions that lead to
distinct states are equivalent, as far as the particular rule is concerned:
they can be represented by just one symbol. On that basis, the total
alphabet is partitioned to a set of equivalence classes; each equivalence
class is ordered alphabetically and the first symbol is picked to
represent the whole class. All the other transitions in the component
FSMs are pruned.

The first step in compiling a subrule is to expand the left (Ic) and the

right (rc) context FMSs to their full length. In the two-level formalims,
as well as standard phonology, it is customary to specify only that part
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of the total environment that is constrained by the rule. Implicitly, the
environment of every rule extends to infinity in both directions. In
extending the context, the compiler concatenates the context FSMs with
a pruned version of a machine, let us call it pt*, that represents every
possible string over the two-level alphabet. The pi* FSM is also handy
for other purposes as we shall see shortly. We use the symbol cp for the
FSM that represents the correspondence part of the rule; «lc and rc—
designate the extended context FSMs:

«1¢c = pi* lc
rc- = rc pi*

The next step depends on the operator of the rule. Rules that involve
just a one-sided arrow (<= or =>) or the prohibition operator /<= (section
3.5) can be compiled in one step, rules with the <=> operator are
compiled twice, once with <= the other time with => and the results are
intersected.

5.3 Left-Arrow Rules and Prohibitions

Let us assume, for the time being, that we are dealing with a rule that
has just one context. The purpose of a <= rule is to require that a lexical
string, usually a single symbol, is realized in a certain way in some set
of environments. In order to enforce this requirement, the compiler uses
the cp FSM as a basis for another FSM, call it anti-cp. The anti-cp is
identical to the cp machine as far as the lexical side is concerned but has
a different surface side. The surface side of anti-cp includes all possible
surface realizations of the lexical string except the realization specified
by cp. For example, if the cp machine represents the pair k:0, and the
other valid k-pairs in the two-level alphabet are k:k, k:v, and k:J, then
the anti-cp FSM corresponds to the disjunction [k:k | kiv | kijl. (We
use | to represent the operation that combines two FSMs to produce an
automaton whose language is the union of the languages of the input
machines.)

If the rule in question conflicts with other <= or <=> rules that have a

more specifc environment and the compiler is running in the Report and
resolve mode, the conflicts are resolved at this point. This is
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accomplished by removing from the anti-cp machine the cp strings of the
conflicting rules. schematically:

anti-cp' = anti-cp - [cpy | cpp | ... | cppl

Here anti-cp is the original version and cp; ... cp, are the cp-parts of the

conflicting more specific rules. (We use - for relative complementation:
m, - m, is an automaton whose language consists of the strings that are

in the language of m, but not in the language of m,.) This modification

amounts to a weakening of the <= part of the rule because realizations
that would have been disallowed by the original anti-cp FSM now
become permissible.

The effect of the <= rule is achieved by building an automaton that
prevents the occurrence of anti-cp’in the context of ~lc _ re—. We first
construct, by concatenation, the following intermediate FSM:

Fsml = «1c anti-cp' rc-

Fsml is an automaton that accepts any string that contains an
occurrence of a string from the language of anti-cp’sandwiched between
an ~lc string and and rc— string. This of course just the opposite of
what we want, so the final result, Fsm2, is formed with negation. The
most efficient way to do that is to take the complement of Fsml with
respect to the pi* machine:

Fsm2 = pi* - Fsml

Fsm2 is a machine that accepts every string in the language of pi*—the
total set of strings over the reduced two-level alphabet—except for
strings that belong to the language of Fsml and thus contain an
unwanted realization of the lexical side of cp in the context ~lc _ re—.

The compilation of a /<= rule is even simpler in that the cp part itself
plays the role of the forbidden correspondence. The FSM for a
prohibition rule is constructed in accordance with the formulas:

Fsml = «1c cp rc=
Fsm2 = pi* - Fsml .
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So far we have assumed that the rule in question just has one context.
What if there are several ~lc _ rc— pairs? We repeat the same
procedure for each environment. The final result could be obtained by
intersecting the intermediate results but the compiler uses another,
equivalent method. When it has finished ct').mpiling the rule for one
environment and goes on to the next one, the result of the first
compilation is used, instead of pi*, for complementation at the point
where Fsm2 for the next environment is constructed. In that way, the
compilation procedes incrementally so that the process is finished when

the Fsm2 for the last context has been compiled.
5.4 Simple Right-Arrow Rules

The compilation of => rules is a bit more complicated, especially when
there are several contexts. Even if the source rule has only one
environment, the resolution of => conflicts may add more contexts. If
the compiler is running in the Report and Resolve mode, its first action
is to augment every subrule with the contexts of conflicting subrules.

Let us first consider the case in which there is only one environment.
The purpose of a => rule is to limit the occurrence of the cp part to the
~lc _ rc— context. The first step is again to construct the FSMs that
represent the two situations that we wish to exclude, namely: the
occurrence of a cp string after a string that is not in the language of ~lc
and the occurrence of cp string in front of a non-rc— string. Let us use
Tc and 765 to designate the complements of ~c and rc— with respect to

pi*.
=T = pi* - «lc
fc+ = pi* - rc-
The machines that represent the two unwanted cases are Fsml and

Fsm2.

Fsml = ¥T¢ cp pi*
Fms2 = pi* cp rC~

Fsml is an automaton that accepts any string that contains an
occurrence of cp preceded by a non--«~lc string regardless of what
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follows, Fsm2 is the symmetric automaton for the right context. The
negations of these machines encode the desired restrictions:

Fsm3 = pi* - Fsml
Fsm4 = pi* - Fsm2 .

FsmJ is a machine that rejects strings containing an instance of cp that
is not preceded by the proper left context. In the language of Fsm4 every
occurrence of cp, if any, is followed by the proper right context. From
here we could get the final result by intersecting the two automata but
the compiler actually does it slightly differently; in compiling the Fsm4
machine, it does the final complementation with respect to Fsm3
instead of pi*:

Fsmd = Fsm3 - Fsm2.

This produces the desired effect: an automaton that blocks if a cp string
occurs without an ~ic string on the left and rc— string on the right.

5.5 Right-Arrow Rules with Multiple Contexts

Let us now consider a => rule that with several environments. The
purpose of such a rule is to constrain the occurrence of the cp part so that
it satisfies at least one of the alternative context restrictions:

*1C1 _ e, "1C2 _TC*2s cee "1Cn _rce,

This constraint is more complicated to implement than the
corresponding case for <= rules because we need, in effect, to take the
union of «c; ... ~lc, and the union of rc—, ... re—, without losing the
connection between the matching «lc; _ rc—; pairs. Another

complication is that a string of symbol pairs that constitute the cp part
on one application of the rule may overlap with the «lc or rc— part of
another rule application. We return to this problem section 5.6.

In order to accomplish its task, the compiler adopts the technique
devised by Kaplan and Kay (1985] to handle similar overlaps in ordered
rewriting rules. It uses pairs of indexed brackets for bookkeeping: <,

>,. <y >g.... <, >,, one pair for each context. These brackets are
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symbols disjoint from the alphabet so they cannot be confused with
other parts of the rule. The pi* automaton and all the component FSMs
of the rule are modified so that they freely allow auxiliary brackets to
occur anywhere; that is, every state of the modified automata has a
transition back to the same state over ever}; bracket. Let us call the
augmented context automata pt*’, lc'and rc’, with the convention that,
for any automaton x,

x' = x With <) >1, <2 224 «.. 4 < >p OCCUrTing freely

The first step is to associate every context pair with a matching pair of
brackets. We want each left bracket to be preceded by the corresponding
left context, and each right bracket to occur in front of the corresponding
right context. The compiler constructs an auxiliary automaton, Fsml,
that embodies these constraints. Fsml is derived by compiling the
following two simple rules:

<y => ]ci‘

|
>i => - rci

for all i from 1 to n in an incremental way so that the final result is
equivalent to the intersection of all the instances:

Fsml = <; => Tcy' _ & > => _ rc;' & ... &
<y 2> 1cp' _ & >, = rcn'
These rules are compiled just as we described in section 5.4; the result of
one compilation is used for complementation in the next round so that
all the constraints at the end come together in the same automaton. The
only difference is that we are using the modified version of pi*. pi*’ in
extending the left and right contexts. The resulting automaton, Fsml,
accepts strings in which any occurrence of < is immediately preceded

by the first left context and any occurrence of >, is immediately

followed the corresponding right context; similarly for the other
contexts and brackets.
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The second step is to compile the main part of the rule using pairs of
brackets to represent the multiple environments. A second auxiliary
machine, Fsm2, is constructed by compiling the rule

Cp => <i _ >1 *
separately for each value of i and by applying the Kleene-star operation

to the disjunction of the results. Here, too, contexts are extended to
their full length with pi*" Schematically,

Fsm2 = [cp => <y _ > | ..o | cp=><q _>pl*

Fsm2 accepts strings in which any occurrence of cp is surrounded by a
pair of matching brackets. We now combine the constraints encoded in
Fsml and Fsm2 by intesecting the two automata. (The intersection
operation, &, produces an automaton whose language is the intersection
of the languages of the input machines.)

Fsm3 = Fsml & Fsm2

Fsm3 is an automaton that accepts strings in which any occurrence of cp
is in the context

pi*! 1C1' <3 _ %5 ?‘C," pi*!

for some i between 1 and n. This is almost what we want except for the
spurious brackets. To remove them, we first convert all bracket
transitions in Fsm3 to epsilon transitions and then determinize and
minimize the result. This final modification of Fsm3 leaves in effect just
the constraint we wished to express: every occurrence of cp is licensed by
at least one of the alternative contexts.

5.6 Overlapping Contexts

The compilation technique in section 5.5 may seem overly complicated.
Couldn't we get the same result without any brackets from the formula
we just used to derive Fsm2? At the first glance there appears to be no
reason why the following method would not give the right result:

Fsmd = [ cp => lcy _rep | ... | cp=>lcy _rcy |*
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Each of disjuncts from which Fsm4 is composed requires that any
occurrence of cp be flanked by a particular left and right context.

In many cases, this method does indeed prodyce the same result as the
more complicated procedure in section 5.5 but there are situations in
which the results are not equivalent. Consider the following simple
rule:

"A-to-8"
a:b => a: _ H

The "A-to-B" rule says that a lexical a is realized as a b only when it
either follows another lexical a or precedes another surface b. If we
compile the rule following the steps we used in the previous section, we
get the following transducer

A-t

0:
l:
2.

Fsm3 (correct)
a:b

Q-
a :
1 2
l 1
1

oo0o0U ™

The formula for Fsm4 leads to the following resul t:

A-to-B Fsmd (incorrect)
abawb

0: 10 2

1: 10 1

2. 0 2

The two transducers differ with respect to just one transition on the
bottom of the rightmost column. In state 2 (non-final), Fsm3 has an a:b
arc to state 1 whereas the a:b arc in Fsm4 loops back to state 2. (Note
that, the symbols a and b here are abbreviations for a:a and b:b.
respectively.)

Let us examine the behavior of these transducers with the help of
diagrams. We represent a transducer as box with two scanning heads.
The upper tape is the lexical side of the correspondence, the lower tape
represents the surface side. The number in the box indicates the state of
the machine; a colon shows that the state is final, a period marks the
state as non-final.
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Consider the realization of the lexical string aa as the surface string ab.
As the following sequence of snap shots shows, Fsm3 accept this

correspondence.

=
owv -
ee 3
1)
—un
3
=
—uu o
. al—v

ab{ ,a| b | a| b |

This is as it should be, because the rule in question allows (but does not
require) a lexical a to be realized as b after another lexical a. The
behavior of Fsm4 is the same; both machine make the same moves over

this pair of tapes.

The difference between the two transducers becomes manifest when we
consider the realization of lexical aa as surface bb. Fsm3 accepts it:

b b| b b | b

a a a a a
sm Fsm
2. 2.
y y

b b b b b
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Which machine is correct? It is easy to see that Fsm4 is in error in
rejecting the correspondence. The realization of the first a as b is
licensed by the fact that it precedes a surface b; the realization of the
second a as b is licensed by the preceding lexical a, hence Fsm3 is
faithful to the rule but Fsm4 is not. )

The characteristic feature of this example that brings out the difference
between the two machines is that the cp part of the rule, a:b, overlaps
with a context specification. The flaw in the simple technique that gave
rise to Fsmd4 is that it does not allow for the possibility that some
correspondence—here the first a:b pair—which is sanctioned by one
disjunct in the rule, may at the same time be a crucial part of the context
in another disjunct that validates some preceding or following
correspondence—in this case, the second a:b pair. In Fsm4 the two
environments are compiled in a way that makes this type of interaction
impossible: one alternative environment cannot start to "take-over"
until the other one has "finished." As Kaplan and Kay showed for
rewriting rules, the role of the auxiliary brackets is to break up the
environments so that this can happen while the link between the left
and the right side of the same environment is maintained with the aid of
the indices.

5.7 Compiler Output

When a rule is compiled, the compiler first partitions the total two-level
alphabet to a set of equivalence classes and then picks just one symbol
pair to represent all the symbol pairs in the same class. In order to use
the results of the compilation, we of course need to know how each
symbol in the full alphabet is represented in the local alphabet of each
machine. If we think of the automata in a tabular form, this mapping is
a function that assigns to every symbol in the alphabet one column from
each transition table, for that reason, we call refer to it as an
"alignment” function.

Consider the following mini-grammar:

Alphabet
A:e a g e :k H
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Rules

"Harmony"

A:a <=> :a [g: | :al* _ 3
“Devoicing"

g:k <=> _ #: ; -

The first rule realizes a lexical A as a after a surface a provided that all
the intervening symbols either have g on the lexical side or a on the
surface side. The second rule realizes a lexical g as k in front of a word
boundary.

On the screen, the output from the compiler is shown in a tabular
format. The columns are labeled with the symbols of the minimal
alphabet chosen by the compiler and the other symbols they represent
are shown by listing the equivalence classes for the rule:

Harmony Devoicing
a e A:a Aze g g:k #'0
0: 0 0: 0
1: l 0 1 1 l.
2: 02 1
Equivalence classes:
a) (e #:0) (g g: k) Equivalence classes:
A:a) (A:e i k)Aza )e) (9)
g:

When the compiler writes out the results of the compilation into a file
(section 2.6) in LISP format, the automata and the alphabet are listed
separately:

(AUTOMATA
(("Harmony" 2 §)
(0T100-0)

(1TLO11l-))
(("Devoicing" 3 4)

(0T0210)

(L NIL - - -0)

(27021 -)))
(ALIGNMENTS

(aall)(ee?2l)(gg3 ) (Aadl)
(AeS51) (gk33) (#0234

In the LISP format, each state is represented by a list that resembles the
corresponding row in the tabular representation. The difference is that

40



blanks are converted to dashes (= no transition) and the finality of the
state is encoded separately (T = final, NIL = nonfinal).
The list of alignments consists of entries of the form

(<lexical symbol> <surface symbol> .. <columns>)

in which <columns> is a list that picks out the position in the states of
each automaton that contains the transition (if any) for the symbol pair
in question. For example, the entry for the pairA:ais (A a 4 1) because
the transitions for A:a are in the fourth colum in the first automaton
("Harmony") and in the first column of the second automaton
("Devoicing"). '

To enable the rule tester to use the automata for generation the
compiler also constructs a hash table that maps every lexical symbol to
its potential surface counterparts: ‘

g (g k)
e (e)
A (ae)
a (a)
# (0)

A similar map is built for recognition. These tables are not saved
because they can easily be reconstructed from the alignments.
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Appendix |

This small grammar is included as an example of the two-level rule
formalism. To aid the reader to interpret the formalism, we have added

some commentary in square brackets. .
ENGLISH.RULES

(The beginning of the file consists of declarations that define the
alphabet and some auxiliary symbols that are used to state the rules
more concisely.]

Alphabet

abcdefghijklmnopgrstuy
wxyz"'-:0"':0 :

[All the symbols in this list are interpreted as pairs consisting of a
lexical character and its surface realization but only one needs to be
listed when the two are identical. The symbol a, for example, actually
means a:a 'lexical a realized as a surface a.' The colon is used as a
separator. The symbols - and ' belong only to the lexical alphabet, 0
only to the surface alphabet. 0 represents the empty string. The full list
of possible lex:surf pairs also contains all the pairs that appear in the
rules. For example, besides the x:x pair that comes from the definition
of the alphabet, the pair x:c is also valid because it is licensed by a rule.
We use the symbol - to mark morpheme boundaries and ’ as a marker
for non-initial stress, for example in'fer vs enter. The symbol # is added
automatically by the system to the lexical alphabet to mark word
boundaries; ]

Sets

V=aeiou;
Ca=bcdfghklimnpgrstvwxz;
G=bdfglilmnprst:;

SoftC =g c 3

NonSoftC =bdfhjkliImnpgrstvwxz;
NonVelarC = bd f I1mnprstvwz;

NonFC =bcdghklimnpgrstvwxz;
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(The members of a set must all be alphabetic symbols. The
interpretation of a set name in a rule is analogous to the interpretation
of an alphabetic symbol. For example, the symbol Vin a rule stands for
all the valid pairs that contain a lexical vowel and a surface vowel.]

Definitions
Sib = {slc) h | s | xz 1 Z23
NonVelar = V | NonvelarC ;
StressedSyliNucl = [': | #: ] [C* | qul V ;3

(Definitions associate a name with a regular expression. The vertical
bar | indicates disjunction; square brackets are used for grouping. The
definition for Sib, for example, is the set of expressions containing sh, ch,
s. x: and 2. Whatis x:? Itis any valid pair with x on the lexical side; in
this grammar that stands for x:x and x:c. The former pair is introduced
in the lexicon, the latter in the "X-to-C" rule. All symbols of this type,
for example, e:, -:, :i, :v, and y: below have similar implicit
definitions.]

Rules

"I-to-Y"
jiy <=> _e: =i 1t 3
[Lexical i is realized as surface y always and only when it is followed by
a lexical e, morpheme boundary and a lexical 1 realized as surface i.
(We could also say i: or :1 without changing the effect of the rule
because no rule allows i to be realized as anything but i following the
boundary.) This rule accounts for the alternation in die-ing = dying.|

"X-to-C"
x:c <=> NonfCons :i _ - s 3

(Lexical x is realized as surface c ailways and only when it is preceded by

a NonFCons :i sequence and followed by a morpheme boundary and s.
The rule accounts for the contrast matrix-s — matrices, vertex-s —
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vertices vs. suffix-s — suffixes. Note that we refer to the surface i so that
the rule applies both to vertex and matrix.]

"E-to-I["
e:i => _ x: -t 3

(Lexial e is realized as surface i only if it is followed by a lexical x and a
- boundary. Note that this rule does not require that e be realized as |
in this environment allowing words like vertex to have two plurals:
vertexes and vertices.]

"Epenthesis"”
-te<a> Sib | v [ Cy: _s3

(Morpheme boundary is realized as surface e always and only when itis
preceded either by a Sib sequence (see the section Definitions) or a
surface v or a C y: sequence. C stands for any pair whose lexical and
surface characters are in C. This rule accounts for pairs such as:
church-s — churches, fox-s — foxes, wolf-s — woluves, spy-s — spies. Note
that this rule does not specify what the lexical counterpart of the v in
wolves is or what the y in spy-s is realized as. Other rules take care of
this.]

llY_td‘I"
y:i <=> C [-:¢ | -2 e] 3
VC+ -:C3

(This rule has two environments. Lexical y is realized as i always and
only when it either is preceded a C and followed by a surface e, perhaps
separated by a boundary, or when the lexical y is preceded by a sequence
consisting of a vowel and at least one consonant and followed by a
morpheme boundary and C. The first alternative accounts for the
alternations spy-s — spies, spy-ed — spied, lobby-ed — lobbied, dry-er —
drier and the lack of it in shy-ness. The second part is for happy-ly -
happily. happy-ness — happiness. In its present form the rule is not
satisfactory because it produces realizations such as shy-er — shier
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instead of the correct comparative form shyer. We leave it as an exercise
for the reader to correct the error.]

"F-to-V"
fsv <=> [h ie | Va]| Nonvelar V?1 | _ -: s ;
V_e-is 3

[Lexical f is realized as surface v always and only when it is in either of
the two contexts. The first context accounts for realizations like thief-s
— thieves, grief-s — griefs, loaf-s — loaves, wolf-s = wolves, scarf-s —
scarfs, which show the alternation, and pairs such as roof-s — roofs and
gulf-s » gulfs where f remains f. The second context accounts for life-s

— lives.]

"Elision"
e:0 <=> NonSoftC _ -: V 3
SoftC _ -z (il e];
i
e

‘. .
1. -
-

e we

V_ -2
[Lexical e is realized as the empty string always and only when it occurs
in any of the four contexts; examples are given below:

NonSoftC _ -: V move-ed — moved, move-ing - moving,
move-able - movable,

SofC _ -: [i | el change-ed —» changed, space-ing — spacing,
change-able - changeable, '

=i die-ing — dying,
V_-:e tiptoe-ed — tiptoed.]
"Gemination"

-:St <a> [': | #: ] C*V :St _V ; where St inG ;

(For every surface St in the set G, the morpheme boundary is realized as
St always and only when - is preceded by a sequence consisting of a
stress mark (') or a word boundary (# followed by any number of
consonants, a vowel and a surface St and followed by a vowel. This rule
accounts for the pairs like big-er — bigger, in'fer-ed — inferred, and
enter-ed — entered.]
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Appendix 2

Consonant Gradation in Finnish

L d

Consonant gradation refers to a set of alternations that involves
voiceless stops k, p, and t in Finnish. Historically, the alternate forms
occur in closed syllables but in modern Finnish the conditions are in
part morphological. The following set of eight gradation rules was
constructed to test the capabilities of the TWOL compiler. These rules
abstract away from reality in that the alternation is here controlled
solely by the phonological environment. We also ignore the fact that
many words are exempted from gradation. Except for these
simplifications, the rules give a complete account of the phenomenon.
In accordance with standard Finnish orthography, a velar nasal is
denoted by n in front of a k and by ng as a geminate.

The set of possible lexical:surface correspondences involving k, p, and t
are listed below:

tk k:0 k:g k:j ke
:p piv p:m
tt t:id tin

¢ O X

t:1 t:r

The surface g in the pair k:g represents a part of a geminate velar nasal.
The surface apostrophe is an orthographic marker for syllable
boundary. The following table illustrates the various realizations of k,
p, and t in the weak grade. The examples are all singular genitive forms
of nouns.

Lexical form Surface form Gloss
tikkan tikan woodpecker
loppun lopun end
katton katon roof
sikan sian pig
papun pavun bean
sotan sodan war
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vankin vangin prisoner

kumpun kummun hill

rantan rannan shore

tiukun tiu'un chime

leukan leuan jaw

pukun puvun dress

jalkan jalan foot

kurken kurjen crane

sylken syljen spit

iltan illan evening

partan parran beard

aikan ajan time (exception)
poikan pojan boy (exception)

A complete TWOL grammar for this set of data is given below.
Comments are enclosed in square brackets. These rules give rise to
several conflicts that the new version of the compiler can automatically
resolve.  For example, "Consonant gradation” and "Geminate
gradation” conflict in the => direction with respect to the context for the
pair k:0. The Elsewhere Principle needs to be invoked in five cases to
resolve conflicts in the <= direction that occur between the general rule
"Consonant gradation" and three four more specific gradation rules:
"Gradation of k to " and "Gradation of k to v,” "Gradation of k to j," and
"Gradation of t to a liquid." The last of the eight rules (in conjunction
with the first rule) takes care of the exceptional gradation of aika 'time’
and poika boy.’
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GRADATION.RULES

(The apostrophe plays the role of a silent consonant. A lexical ' is
realized as the empty string, the surface ' is one of the realizations of k

in the weak grade.] .
Alphabet

abcdefghijklmnopgrstuvxy
{ }wz':0

ot o
. ’

Sets
Cons =bcdfghjkimnngprstvxz';
Vowel =aeiouy (1}
VclessStop =k p t 3
Liquid = 1 r 3
HighLabial = u y ;

(In all the gradation rules the affected stop is in the beginning of a
closed lexical syllable. Note that the definition of ClosedOffset does not
specify how these consonants are realized.]

Definitions
ClosedOffset = Cons: [Cons: | #: | . :
ClosedCoda = Vowel ClosedOffset 3
Rules

[A single voiceless stop is realized by its corresponding weak grade in
the beginning of a closed syllable when preceded by an h or a liquid or a
lexical vowel. We stipulate a lexical vowel here in order to allow the
rule to apply even if the vowel in question is realized as consonant—see
the last rule. Because "closeness” is defined with respect to lexical
environment, "Consonant gradation” applies to the lexical p in aputtom
- avuton ‘helpless’ although its surface counterpart is not in the
beginning of a closed surface syllable. Other examples: sikan — sian
'pig,’ papun - pavun 'bean,’ sotan — sodan 'war,’ leukan - leuan 'jaw,’
jalkan - jalan 'foot,’]
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“Consonant gradation"
Cx:Cy <=> h | Liquid | Vowel: _ ClosedCoda ;
where Cx in VclessStop
Cy in (0 v d)
matched ;

(A voiceless geminate is shortened in the beginning of a closed syllable:
tikkan — tikan, 'woodpecker', loppun — lopun 'end', katton — katon
'roof.’]

"Geminate gradation"
Cx:0 <=> Cx _ ClosedCoda ; where Cx in VclessStop ;

[After a nasal, the weak grades of k, p, t assimilate to the preceding
nasal: vankin — vangin 'prisoner,’ kumpun — kummun 'hill,’ rantan -
rannan 'shore.'}

"Gradation after nasals"
Cx:Cy <=> Cz _ ClosedCoda ; where Cx in (k p t)
Cy in (g mn)
Cz in (nmn)
matched ;

(The weak grade of k is ' between two identical vowels when another
vowel precedes: tiukun — tiu ‘un 'chime,’ raakan - raaan 'raw.']

"Gradation of k to '"
k:' <=> Vowel Vx _ Vx ClosedOffset ; where Vx in Vowel ;

(The weak grade of of k is v between two high labial vowels (u or y):
pukun — puvun 'dress.’]

"Gradation of k to v"
k:v <=> Cons :HighLabial _ :HighLabial ClosedOffset ;

(The weak grade of k is j after a liquid or h when followed by a lexical e

or a surface i: kurken — kurjen 'crane,’ sylken — syljen 'spit.’ Note that
this excludes cases such as *aljetaan 'let's begin' in which the surface e
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A
ln”‘ N4

is realization of a lexical a; instead we get aletaan by the main gradation

rule.]

"Gradation of k to j"
k:j <=> Liquid | h _ (:i | e:] CldsedOffset ;

(The weak grade of t assimilates to the preceding liquid: kultan —
kullan 'gold’, partan — parran 'beard.’]

"Gradation of t to a 1iquid"
t:Cx <=> Cx _ ClosedCoda ; where Cx in Liquid ;

(This rule takes care of two exceptional words: poikan — pojan 'boy’ and
aikan — ajan 'time.! Without this rule, these lexical forms would be
realized as *poian, *aian. Note that the left environment of the
"Consonant gradation" rule must only require a lexical vowel so that k
can be realized as an empty string here. ]

"Weak grade of poika, aika"
jaj<=> #: [po | a] _k:a ClosedOffset ;

51



