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Abstract

We review the production of gravitational waves by an electroweak first order phase
transition. The resulting signal is a good candidate for detection at next-generation
gravitational wave detectors, such as LISA. Detection of such a source of gravitational
waves could yield information about physics beyond the Standard Model that is com-
plementary to that accessible to current and near-future collider experiments. We sum-
marise efforts to simulate and model the phase transition and the resulting production
of gravitational waves.

1 Introduction

The fields of particle physics and cosmology are increasingly intertwined. The discovery of
the Higgs boson at the LHC has filled one of the largest gaps in the Standard Model, although
we may have to wait for the next generation of colliders to see any evidence of further physics
beyond the Standard Model in the electroweak sector. Meanwhile we have directly detected
gravitational waves for the first time, from binary black hole mergers, and the space-based
gravitational wave detector LISA is scheduled to launch in slightly over a decade from now [1].
In addition to studying astrophysical processes, LISA will look for evidence of cosmological
phase transitions [2].

Although the phase transition in the electroweak sector of the Standard Model would
have been a crossover [3–5], many extensions of the Standard Model would undergo phase
transitions capable of emitting significant amounts of gravitational waves. Furthermore, the
signal from such a phase transition – assuming it happened up to or around the TeV scale –
would be perfectly placed for detection by LISA.
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Figure 1: Cartoon showing features associated with the bubble wall. The scenario shown is
a subsonic deflagration, where the wall speed vw is slower than the speed of sound cs. The
scalar field bubble wall is shown, while the ‘sound shell’ of nonzero fluid velocity in front of
the wall is shaded. Above the diagram the value of 〈φ〉 is shown, while below the radial fluid
velocity Vr is shown.

In this short review we summarise our current understanding of the processes of gravita-
tional wave production at a first-order phase transition in the early universe. For the most
part, we will concentrate on the general case of a phase transition where bubbles of the broken
phase nucleate and expand in the presence of a plasma of Standard Model particles. These
particles exert a frictional force on the wall, and a ‘sound shell’ of plasma is excited in the
vicinity of the bubble wall (see Fig. 1). We assume that the frictional force is enough to stop
the bubble wall from becoming ultrarelativistic and “running away” [6], which is essentially
always the case [7]. However, there are some phenomenological studies of gravitational wave
production in near-vacuum scenarios at higher energy scales [8, 9], where there is no such
frictional force.

In the next section we will start by outlining in general terms the electroweak phase
transition and how it appears in several common extensions of the Standard Model. This is
followed in Section 3 with a discussion of the motion of the bubble wall and the resulting
“energy budget” of the phase transition. We summarise attempts to simulate and model
bubble collisions in Section 4, before attempting a synthesis of the underlying gravitational
wave production mechanisms in Section 5. We briefly show how to go from a specific model
to a predicted power spectrum in Section 6 before looking towards future developments in
Section 7.

2 The electroweak phase transition

As discussed in the Introduction, without additional fields, the electroweak phase transition is
a crossover in the Standard Model, occurring at a critical temperature of 159.5±1.5 GeV [10].

However, adding just a single extra scalar field – real or complex; whether a singlet [11–
16], a second Higgs doublet [17–20] or indeed a triplet (adjoint) Higgs field [21, 22], reopens
the possibility of a first-order phase transition at the electroweak scale. Furthermore, these
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models all (to varying degrees) have regions of parameter space that will not be excluded in
the near future by collider experiments [23].

There are therefore two motivations to study gravitational wave production from an
electroweak phase transition.

First, and most importantly, it remains a well-motivated and attractive possibility to
produce the observed baryon asymmetry through baryogenesis [24, 25] (see Ref. [26] for
a review). Electroweak baryogenesis fulfils the Sakharov conditions [27] in the following
manner:

1. C and CP violation: this occurs due to particles scattering off the bubble walls,
producing asymmetries in front of the walls.

2. Baryon number B violation: The C and CP violation means that sphaleron tran-
sitions in front of the wall are biased to produce more baryons than antibaryons.

3. Out of equilibrium: The bubble walls (and associated sound shells) disturb the
symmetric-phase equilibrium state.

Even though the Standard Model is a crossover, and hence does not depart far from equilib-
rium, it is possible to achieve these requirements in the extensions mentioned above.

Second, a first-order phase transition at the electroweak scale would source gravitational
waves that are potentially detectable by LISA [2] (see Refs. [28, 29], and also parts of Ref. [30]
for other reviews). This would give a complementary probe of the particle physics at this
energy scale, which will be studied extensively at planned experiments such as the Future
Circular Collider [23, 31].

However, these two motivations are somewhat in tension. The energy density in gravita-
tional waves produced by a phase transition is generally an increasing function of the wall
velocity vw, so faster wall speeds are desirable. However, the process of electroweak baryo-
genesis outlined above depends on the wall velocity relative to the plasma in front of the
wall being slower than the speed of sound [32], usually very much slower to allow particles to
diffuse from the bubble wall (where C and CP violation occur) back into the plasma (where
biased sphaleron transitions occur) [33]. Other variants of electroweak baryogenesis which
allow for a fast detonation have been proposed, for example due to symmetry restoration
behind the bubble wall [34], but further investigations – and perhaps simulations – of such
scenarios would be beneficial.

For the remainder of this review, then, we concentrate on the signal from gravitational
waves for its own sake, rather than as a signature of a process which generated the baryon
asymmetry in the early universe.

3 Motion of the bubble wall and the “energy budget”

As described above, a thermal first-order phase transition proceeds by the nucleation of
bubbles of the scalar field φ which is driving the transition; this is typically the Higgs field,
although in models with additional scalar fields this is not always the case. The bubble
nucleation rate at temperature T is given by

Γ(T ) = A(T )e−S3(T )/T (1)
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where S3 is the three-dimensional bounce solution and A(T ) a dynamical prefactor of order
T 4 [35]. The inverse duration of the phase transition β relative to the Hubble rate H∗ at the
time of the transition is then

β

H∗
=

[
T

d

dT

(
S3(T )

T

)]∣∣∣∣
T=T∗

(2)

where T∗ is the transition temperature, which we will assume for simplicity is close to the
nucleation temperature Tn. We will also assume that the duration of the phase transition is
short enough that expansion can be neglected (i.e. β/H∗ & 1). The typical bubble radius
R∗ is [35]

R∗ = (8π)
1
3
vw

β
, (3)

where vw is the wall velocity. To a first approximation, R∗ sets the inverse wavenumber of the
peak of the gravitational wave power spectrum from a thermal first-order phase transition.

The scalar field has stress-energy tensor

T φµν = ∂µφ∂νφ− gµν
(

1

2
∂ρφ∂

ρφ− V (φ)

)
(4)

where V (φ) is the classical potential.
We treat this φ as a background field which interacts with all the particle content of the

theory: Higgs bosons, quarks, leptons and gauge fields. These form a plasma and, employing
distribution functions fi(k) for each particle species i, one finds that the equation of motion
for φ including the interactions with the plasma can be written as [36–38]

�φ+
∂V (φ)

∂φ
+
∑
i

dm2
i

dφ

∫
d3k

(2π)32Ei
fi(k), (5)

where mi is the effective mass of the ith particle species (including all gauge bosons, pseudo-
Goldstone modes and fermions) and E2

i = k2 + m2
i (see Refs. [39, 40] for discussions of this

approach in extensions of the Standard Model).
As the nucleated bubbles of the scalar field expand, they interact with the plasma. This

excites the plasma and creates a ‘sound shell’ around the wall of plasma moving with nonzero
outward radial velocity. Generally, if the wall velocity is smaller than the speed of sound,
then this shell precedes the scalar field wall and the process is termed a ‘deflagration’ by
analogy with standard terms from combustion physics. Conversely, if the wall velocity is
faster than the speed of sound, then the sound shell is a rarefaction wave trailing the bubble
wall and the resulting process is a ‘detonation’.

One can rewrite the equation of motion for the scalar field

�φ+
∂Veff(φ, T )

∂φ
= K(φ); K(φ) = −

∑
i

dm2
i

dφ

∫
d3k

(2π)32Ei
δfi(k), (6)

where Veff is the thermal effective potential, and δfi(p) is the deviation of the distribution
function of the ith particle species from equilibrium.
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Figure 2: Sketch of forces acting on bubble wall. The latent heat released during the phase
transition drives the bubble outwards, while its interaction with the plasma of light particles
creates friction. When the two forces are balanced, the wall ceases to accelerate.

Equation (6) is important, for two reasons - firstly, it underpins important simplifying
approximations including the fluid approximation that we shall use extensively throughout
this work; and secondly, it is readily apparent that the equation is nothing more than a
relationship between the outward force exerted by the bubble wall on the particles fi(p),
driven by latent heat, and the resulting friction exerted on the bubble wall (see Fig. 2).
Nevertheless, the expression is difficult to work with directly and so further simplifying
assumptions are usually made.

In particular, one often approximates the equilibrium distribution functions for all the
particle species fi by a relativistic fluid uµ. The stress-energy tensor of such a fluid is

T fluid
µν =

∑
i

∫
d3k

(2π)3Ei
kµkνfi(k) = wuµuν − gµνp (7)

where w = ε + p is the enthalpy; ε is the energy density of the fluid, and p is the pressure.
Energy conservation requires that the energy removed from the field φ by the friction term
K(φ) is deposited in the fluid:

∂µTµν = ∂µT φµν + ∂µT fluid
µν = 0. (8)

Working in the fluid approximation, one can take a more qualitative form for K(φ)

K(φ) = η(φ, vw)uµ∂µφ. (9)

The form of η(φ, vw) is often chosen by comparison with the Boltzmann equations for fi(k) [38,
41]. Two choices that have been used in numerical simulations are

η(φ, vw) = const. and η(φ, vw) = η̃
φ2

T
, (10)

where η̃ is a dimensionless constant. The exact choice of η(φ, vw) may slightly change the
profile of the scalar field and fluid at the bubble wall. However, as these are at microscopic
length scales when the phase transition occurs there is in practice little difference. Further-
more, φ tends to a constant and hence K(φ) → 0 away from the bubble wall. We therefore
expect that the fluid sound shell reaches a scaling profile parametrised by the dimensionless
ratio ξ = r/t and hence at collision has a size proportional to R∗.

For the purposes of the gravitational wave power spectrum, then, the scaling form of the
radial fluid profile Vr(ξ)[≡ ur/γ] and the wall velocity vw are all that matter. To know Vr(ξ),
one needs to know how much of the latent heat ends up as fluid kinetic energy.
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We first define the phase transition strength α as the ratio of latent heat to radiation
density at the time of transition in the symmetric phase

αT ≡
L(T )

g∗π2T 4/30
, (11)

where L(T ) is the latent heat and g∗ the number of relativistic degrees of freedom at temper-
ature T . Note, however, that another definition of α based on the trace anomaly difference
is sometimes used.

The fluid efficiency κf then gives the fraction of this vacuum energy that is turned into
kinetic energy in the plasma during the transition. It is approximately [42]

κf(α) '


α

0.73 + 0.083
√
α + α

, vw ∼ 1

v
6/5
w 6.9α

1.36− 0.037
√
α + α

, vw . 0.1;

(12)

alternatively, if one knows the fluid velocity as a function of ξ for a given scenario, the
following expression can be used

κf =
3

εv3
w

∫
dξ w(ξ)V 2

r γ
2ξ2. (13)

This expression has been used to produce the results shown in Fig. 3. The steady-state fluid
equations of motion can be solved to give the full profile for Vr(ξ) [42], or it can be found
from simulations (see below).

For a given αT∗ and vw, there is essentially no dependence on the microscopic details of
the phase transition in computing κf , and there are relatively few parameters required to
adequately describe the physics of a thermal phase transition: the inverse phase transition
duration β/H∗, the phase transition strength αT∗ , and the wall velocity vw.

In the following section we show how these parameters can be used to compute the
gravitational wave power spectrum.

4 Simulations, models and approximations

The first discussion of gravitational waves from a first-order electroweak phase transition
already anticipated a substantial acoustic source [43]. Later works focused more on the
collision of the bubbles themselves [44–47], and the ‘envelope approximation’ – infinitestimally
thin walls that disappear instantaneously when bubbles overlap – gained wide adoption.
High-precision studies were then carried out [48].

Later it was observed that the fluid profiles are not infinitesimally thin – thus violating
one requirement of the envelope approximation – and they do not disappear immediately
after the bubbles have collided, leading instead to an acoustic regime. Some numerical work
has also studied scalar field bubble collisions [44, 49], also as a comparison to the envelope
approximation [50]. However, it remains that the envelope approximation and full realtime
simulations with the field-fluid model have been of the greatest interest. We discuss their
application to a general thermal phase transition below.
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Figure 3: Efficiency κf measured (at points marked by circles) from spherically symmetric
simulations of the field-fluid system for a single bubble by means of Eq. (13) (Cutting 2017,
private communication). There is agreement with the analytically computed efficiency curves
and in Ref. [42], even though the authors of that work used a bag model rather than the
Standard Model-like effective potential employed here.

4.1 Envelope approximation

The envelope approximation has been widely used in the past to model gravitational wave
power spectra from bubble collisions. It is really two approximations: that the stress-energy
tensor of the expanding bubble is only nonzero in an infinitesimally thin shell on the bubble’s
surface; and that this stress-energy disappears immediately when two bubbles intersect, hence
only the ‘envelopes’ of the bubbles interact (see Fig. 4).

These two simplifying assumptions lead to a very simple power spectrum – a rising f 3

power law for frequencies much smaller than the reciprocal bubble radius 1/R∗, and a falling
f−1 for f � 1/R∗. This form has been confirmed by lattice simulations of colliding scalar
field walls [50], as well as analytical modelling of coherent sums of infinitesimal fragments of
bubble wall [51].

In Ref. [48], extensive studies of the form of the gravitational wave power spectrum in
the envelope approximation were carried out. Based on their results, the authors postulated
an ansatz of the broken power-law form

ΩGW(f) = Ω̃GW
(a+ b)f̃ bfa

bf̃ (a+b) + af (a+b)
(14)

where the power-law indices were (for fast walls) a ≈ 2.8, b ≈ 1.0, f̃ is the peak frequency
[a more complicated function of function of β and vw than the inverse of Eq. (3)], and the
amplitude Ω̃GW scales roughly as the cube of vw.

In the past, the envelope approximation has been applied to all forms of bubble collision,
with the efficiency factor κ taken to refer to the efficiency of conversion of latent heat into fluid
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Figure 4: Sketch of a slice through a ‘simulation’ in the envelope approximation, with a spher-
ical simulation volume. Only the uncollided portions of the thin bubble walls are recorded;
there are no dynamics around the bubbles, or in the aftermath of bubble collisions.

kinetic energy, namely κf . However, since the fluid shells associated with the growing bubbles
scale with the bubble radius, it is not necessarily appropriate to make the approximation that
the bubble walls are infinitesimally thin. Furthermore, the envelope approximation does not
attempt to handle the aftermath of bubble collisions.

For these reasons, the envelope approximation is best used for modelling the scalar field
contribution to first-order phase transitions (which is only significant in certain circum-
stances), and more sophisticated simulation and modelling techniques are required.

4.2 The field-fluid model

Motivated by the fluid approximation discussed in the previous section, it is natural to
consider both analytical and numerical studies of the coupled field-fluid model. The equations
of motion are

(∂µ∂
µφ)∂νφ− ∂Veff(φ, T )

∂φ
∂νφ = +η(φ, vw)uµ∂µφ∂

νφ (15)

∂µ(wuµuν)− ∂νp+
∂Veff(φ, T )

∂φ
∂νφ = −η(φ, vw)uµ∂µφ∂

νφ. (16)

In a realtime numerical simulation of the system, the scalar field is typically evolved
using a standard leapfrog algorithm, while standard operator-splitting grid-based techniques
for the relativistic fluid are required (see e.g. Ref. [52]).

The microscopic physics of the sound shell, and the resulting gravitational wave power
spectrum, does not depend on the detailed physics of the bubble wall. In simulations it is
therefore usually sufficient to consider a simplified effective potential Veff(φ, T ) which yields
the correct latent heat L.

It is relatively straightforward to solve the system of hydrodynamic equations to find the
scalar field and fluid velocity profile around the bubble wall [41, 42, 47], or else one can evolve
the above system of equations until a steady state is reached.

When carrying out a full three-dimensional numerical simulation of the system both the
scalar field and the fluid source gravitational waves, through the relevant transverse-traceless
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Figure 5: Portions of slices through a three-dimensional field-fluid simulation, with hotter
colours indicating relatively higher fluid kinetic energies. Here αT∗ ≈ 0.01 and vw ≈ 0.68.
The slice at left shows mostly uncollided bubbles, while the slice at right is from long after
the bubbles have collided.

spatial parts of their stress energy tensors,

τφij = ∂iφ∂jφ; τ f
ij = wuiuj. (17)

The largest three-dimensional lattice simulations of the system performed to date use lattices
with side lengths of 4200 sites. The smallest physically resolvable scales are of the order of
the spacing between sites, while the largest are comparable to the size of the lattice itself.
This means that there can only be at most two or three orders of magnitude between the
bubble wall thickness and the bubble radius. Hence the gravitational wave power sourced
by τφij will be orders of magnitude larger than it should be, relative to that sourced by τ f

ij.

When extrapolating from the results of numerical simulations, then, τφij is not included as a
source of gravitational waves.

For further details about simulating the system of equations (15-16), see Refs. [53–55]
(spherically symmetric simulations) and Refs. [56–59] (in three separate spatial dimensions).
Portions of a slice through some of the latest three-dimensional simulations are shown in
Fig. 5.

5 Gravitational wave production processes

Based on the simulation results described in the previous section and additional analytical
calculations and modelling, we can now present some ansätze for the resulting gravitational
wave power spectrum. We follow the discussion in Ref. [2], updated to incorporate recent
results [59].

The production of gravitational waves at a first-order phase transition can be separated
into three stages.

• The first is the initial collision of the scalar field shells, which is of limited duration
and generally subdominant unless the fluid efficiency is low or the system undergoes a
vacuum transition in the absence of a thermal plasma. The gravitational wave power
spectrum sourced by this stage is often denoted Ωenv.
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• After the bubbles have merged, the wave of fluid kinetic energy in the plasma continues
to propagate outwards into the broken phase. Without the driving force of the scalar
field bubble wall, these waves travel at the speed of sound in the plasma. As the shells
of kinetic energy from different bubbles overlap, gravitational waves are produced1.
The power spectrum produced by this source is denoted Ωsw.

• Finally the acoustic phase may give way to shocks [60] and a turbulent regime [47, 61–
64]. The power spectrum is expected from analytical calculations to be rather different
in this regime, but no simulations have yet captured time- and length-scales adequate
to probe the onset of turbulence. We denote the resulting power spectrum Ωturb.

Peaking at different length scales, and on different time scales, the three sources are
expected to approximately sum together

ΩGW = Ωenv + Ωsw + Ωturb. (18)

Each source will contribute to a different extent, depending on the exact details of the phase
transition in question. For simplicity we assume that the bubble wall does not run away,
nor that it is carefully tuned to produce a hybrid profile (with a wall velocity close to the
Chapman-Jouguet velocity).

For the remainder of this section we summarise the form of these three power spectra,
motivated by simulations and analytic work. We will consider ansätze for the amplitude of
each of these sources at the present day. For further information see Ref. [2].

5.1 Colliding scalar field shells

For the collision of scalar field shells the best available results are those obtained from
Refs. [48, 51]. Based on the latter, we write the gravitational wave power spectrum as

h2Ωenv(f) = 1.67× 10−5 ∆

(
H∗
β

)2(
κφαT∗

1 + αT∗

)2(
100

g∗

) 1
3

Senv(f) (19)

with the spectral form (for vw close to 1)

Senv(f) =

[
cl

(
f

fenv

)−3

+ (1− cl − ch)
(

f

fenv

)−1

+ ch

(
f

fenv

)]−1

(20)

where fitting yields cl = 0.064 and ch = 0.48 and the power law indices are fixed. The peak
frequency is

fenv = 16.5µHz

(
f∗
β

)(
β

H∗

)(
T∗

100 GeV

)( g∗
100

) 1
6
. (21)

The dependence of the amplitude and peak frequency on vw is

∆ =
0.48v3

w

1 + 5.3v2
w + 5v4

w

;
f∗
β

=
0.35

1 + 0.069vw + 0.69v4
w

. (22)

1Note that, for deflagrations, this sourcing of gravitational waves from overlapping sound shells may start
before the scalar field walls collide, but as the source persists long after the initial collisions, we neglect this
transient effect.
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Into Eqs. (19) and (21), one inserts the transition temperature T∗, phase transition
strength αT∗ , wall velocity vw and nucleation rate relative to the Hubble rate, H∗/β. Fur-
thermore, the ‘efficiency’ factor κφ of converting vacuum energy into scalar field gradient
energy is required. This naturally depends on both the surface tension and the surface area
of bubbles at collision. However, it is not straightforward to calculate the surface area, which
depends in a nontrivial way on the nucleation rate [50]. A very crude approximation would
be

κφ ∼
γσ

R∗ρvac

, (23)

where γ is the relativistic gamma associated with the wall velocity, σ is the surface tension,
and ρvac the vacuum energy density. A more refined approach could be to use the expression
for the symmetric phase volume in Ref. [35] to infer the total surface area. For general thermal
phase transitions, which are the focus of this work, we would expect κφ to be vanishingly
small: as the walls reach their terminal velocity, γ approaches a constant, and so the overall
expression scales with 1/R∗.

On the other hand, for runaway and vacuum transitions essentially all of the vacuum
energy goes into accelerating the bubble walls to relativistic speeds. The efficiency factor κφ
must then be close to unity, and the gravitational waves are then principally sourced by the
scalar field gradient energy.

5.2 Acoustic waves

For a general thermal phase transition, the initial collisional phase is short-lived; furthermore,
the scalar field gradient energy scales only as the surface area of the bubbles rather than the
volume. A more significant, and long-lasting source of gravitational waves is produced by
expanding sound shells in the fluid kinetic energy after the bubbles have collided.

In fact, for non-ultrarelativistic fluid flows, it is straightforward to obtain the gravita-
tional wave power spectrum from acoustic waves through a convolution of the fluid velocity
power [65], and, in turn, this can be derived from a fluid profile obtained through the meth-
ods discussed earlier [66]. However, there is incomplete agreement with the fluid velocity
power spectrum observed in simulations, perhaps due to the analytical work of Ref. [66] not
modelling the initial collisions of the fluid profiles. We therefore concentrate for the time
being on results derived from recent very-large scale simulations [59].

The following ansatz for the gravitational wave power spectrum from acoustic waves was
first put forward in Ref. [2] and in Ref. [59] was found to generally agree with simulation
results. The version presented here is based on the latter work:

h2Ωsw(f) = 8.5× 10−6

(
100

g∗

) 1
3

Γ2U
4

f

(
H∗
β

)
vw Ssw(f) (24)

where the adiabatic index Γ = w/ε ≈ 4/3; w and ε are the volume-averaged enthalpy and
energy density respectively. The quantity U f is a measure of the rms fluid velocity

U
2

f =
1

w

1

V

∫
V

d3x τ f
ii ≈

3

4
κfαT∗ (25)
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where the integral and average is over a volume V . The spectral shape is

Ssw(f) =

(
f

fsw

)3(
7

4 + 3(f/fsw)2

)7/2

(26)

with approximate peak frequency

fsw = 8.9µHz
1

vw

(
β

H∗

)( zp

10

)( T∗
100 GeV

)( g∗
100

) 1
6

(27)

with zp a simulation-derived factor that is usually around 10, but may be higher when
vw ≈ cs [59].

We finish this section by making a comment on the timescale on which shocks and then
turbulence would appear [60, 67]. It is given by the ratio

τsh ∼ Lf/U f , (28)

where Lf is a measure of the characteristic length scale associated with fluid flows – to first
approximation this is the physical bubble radius R∗. Thus when the ratio H∗R∗/U f � 1,
shocks can develop within a Hubble time and the onset of turbulence must be taken into
consideration.

5.3 Turbulence

Until simulations are available of the onset of turbulence, we must make do with analytical
results. From modelling of Kolmogorov-type turbulence [63], one obtains [2]

h2Ωturb(f) = 3.35× 10−4

(
H∗
β

)(
κturbαT∗
1 + αT∗

) 3
2
(

100

g∗

) 1
3

vwSturb(f). (29)

Here the quantity κturb is the efficiency of conversion of latent heat into turbulent flows. Based
on simulation results so far, at most a few percent of the fluid kinetic energy is converted
into rotational flow, so we might expect κturb to be negligible. However, we have not yet
been able to study the timescale of shock appearance [Eq. (28)] in simulations, so it remains
likely that turbulent flows do form in many scenarios.

Although the amplitude is uncertain, the spectral shape of the turbulent contribution is
known exactly [63]

Sturb(f) =
(f/fturb)3

[1 + (f/fturb)]
11
3 (1 + 8πf/h∗)

(30)

where h∗ is the Hubble rate at T∗,

h∗ = 16.5µHz

(
T∗

100 GeV

)( g∗
100

) 1
6
. (31)

The peak frequency fturb is slightly higher than for the sound wave contribution,

fturb = 27µHz
1

vw

(
β

H∗

)(
T∗

100 GeV

)( g∗
100

) 1
6
. (32)
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Figure 6: Example of the gravitational wave power spectrum for a thermal phase transition,
using the ansätze given in the text and with vw = 0.44, αT∗ = 0.084, H∗/β = 0.1 and
T∗ = 180 GeV (see Section 6). The power spectrum is compared to a sensitivity curve
obtained for a LISA-like configuration.

6 From models to power spectra

We have now discussed the means by which the three contributions to the gravitational wave
power spectrum can be studied analytically, simulated and modelled.

In Fig. 6, we plot the gravitational wave power spectrum based on the ansätze of the
previous section, for a deflagration with vw = 0.44, αT∗ = 0.084, taking the Standard Model
value g∗ = 106.75. Using the corresponding simulation result from Ref. [59], we find that
zp = 6.9, U f = 0.055 and Γ ≈ 4/3. To turn these phase transition results into a possible
scenario, we use a transition temperature T∗ = 180 GeV and take H∗/β = 0.1 (for which
shocks are unlikely to develop before Hubble expansion attenuates the signal).

We compare this example power spectrum with the sensitivity curve for power laws (see
Ref. [68]) for the eLISA configuration closest to that proposed for LISA: 6 laser links, arm
length of 2 Gm and mission duration of 5 years. In the example given, the signal-to-noise
ratio (SNR) should mean that detection of such a scenario is possible. Nevertheless a careful
evaluation of the SNR is required [2, 68].

To study the gravitational waves power spectrum resulting from a specific extension of
the Standard Model, one needs to supply at least αT∗ , β, T∗, and vw. This has been done,
for example, for the real singlet model in Refs. [14, 15].

7 Outlook

Gravitational waves produced by an electroweak phase transition are a realistic candidate
for detection by future space-based gravitational wave detectors, such as LISA. The latest

13



simulation and modelling results indicate that it is principally the acoustic source that is
responsible for production of gravitational waves, although the role of turbulence still requires
clarification. The interplay between the acoustic phase and the formation of shocks and
turbulent behaviour is still poorly understood. Further simulations are likely to be required.

We are entering a period when the electroweak phase transition will come under increas-
ing scrutiny, in preparation for future colliders, as well as for the detectability of gravitational
waves. Precision results for thermodynamic quantities in a wide variety of models are re-
quired, possibly from simulations of dimensionally reduced models (see e.g. [69] for the real
singlet case). These yield the phase diagram and hence T∗, but in addition, the latent heat [70]
(and hence αT∗) as well as the nucleation rate [71] (and hence β) can be determined. Com-
bining these simulation results could yield a computation of the gravitational wave power
spectrum based almost entirely on nonperturbative results. However, other techniques will
still be required to determine vw.

Throughout this paper we have specialised to the case of a bubble wall where a terminal
wall velocity vw < 1 is reached, rather than a vacuum or runaway transition. Vacuum
transitions have not been studied extensively on the lattice. It is to be expected that the
envelope approximation performs well in these cases, however this remains to be confirmed
in future work.

Runaway transitions change the analysis slightly as they do not stir up as much fluid
kinetic energy, so the role of the colliding scalar field bubble walls is likely to be more
significant. However, since higher-order corrections prevent true runaway transitions from
occurring [7], the analysis in this review should be sufficient.
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