
Master’s thesis
Master’s Programme in Computer Science

Implementing, analyzing, and
benchmarking the Relative Lempel-Ziv

compression algorithm

Eve Kivivuori

May 29, 2023

Supervisor: Professor Simon J. Puglisi

Examiner: Dr. Leena Salmela

University of Helsinki
Faculty of Science



ii

P. O. Box 68 (Pietari Kalmin katu 5)
00014 University of Helsinki





Faculty of Science Master’s Programme in Computer Science

Eve Kivivuori

Implementing, analyzing, and benchmarking the Relative Lempel-Ziv compression algorithm

Master’s thesis May 29, 2023 66

lossless compression, relative compression, Lempel-Ziv parsing

In this thesis, we discuss the Relative Lempel-Ziv (RLZ) lossless compression algorithm, our imple-
mentation of it, and the performance of RLZ in comparison to more traditional lossless compression
programs such as gzip.

Like the LZ77 compression algorithm, the RLZ algorithm compresses its input by parsing it into a
series of phrases, which are then encoded as a position+length number pair describing the location
of the phrase within the text. Unlike ordinary LZ77, where these pairs refer to earlier points in the
same text and thus decompression must happen sequentially, in RLZ the pairs point to an external
text called the dictionary. The benefit of this approach is faster random access to the original input
given its compressed form: with RLZ, we can rapidly (in linear time with respect to the compressed
length of the text) begin decompression from anywhere.

With non-repetitive data, such as the text of a single book, website, or one version of a program’s
source code, RLZ tends to perform poorer than traditional compression methods, both in terms of
compression ratio and in terms of runtime. However, with very similar or highly repetitive data,
such as the entire version history of a Wikipedia article or many versions of a genome sequence
assembly, RLZ can compress data better than gzip and approximately as well as xz. Dictionary
selection requires care, though, as compression performance relies entirely on it.
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1. Introduction

Lossless data compression is the method of reversibly transforming a message, file or
string, to occupy less space, for purposes of more efficient storage or transmission or
both. Data compression was given a mathematical treatment in the 1920s, and ex-
panded in 1948 by Shannon’s seminal paper on information theory [14]: the basis of
compression is that the fundamental entropy of a message (the input to be compressed)
is typically lower than its uncompressed, “native” representation, and that by exploit-
ing redundancies in the input the output can be shortened. Information theory also
shows that a message cannot be losslessly (completely reversibly) made smaller than its
entropy—compressing a maximally-compressed message will not make it any smaller†‡.
The closely-related theory of Kolmogorov complexity [9] additionally shows that the
vast majority of messages of a given fixed length are incompressible [11, p. 117]: most
messages appear random, as “noise”, and there are no redundancies to remove.

The primary difficulty with compressed data is that its direct manipulation is
difficult: in most circumstances a decompression operation is required before the data
can be used. Many commonly used schemes have a multi-step compression process,
with layers of filters to expose the redundancies in the data for further compression—
an attempt to use the original data would need to undo these filters, which may be
difficult to do locally without knowledge of a large portion of the compressed file.
Furthermore, compressed data may be self-referential, such that decompression has
to be done sequentially: decompression relies on knowing previously-decompressed
text. Data that needs to both be compressed and be randomly accessed has typically
been compressed in blocks: the file is broken up into chunks, each of those chunks is
individually compressed, and random access then “only” requires decompression of a

† A terminological note: the “space” occupied by or the “size” of a message is mostly called its
“length” from here on: multi-dimensional data, such as images or video, can be (and in practice
necessarily is) unravelled into a one-dimensional string, which we exclusively deal with.

‡ Lossy compression is a different matter entirely: in situations where a sound or video signal
is transmitted for human consumption it is not necessary to reconstruct the original signal with
perfect fidelity. As long as the signal that remains after lossy compression is “good enough”, a human
consumer cannot tell or does not care that compression far below the theoretical lossless limit has
taken place. It functions entirely differently from lossless compression and is not discussed further.
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2 Chapter 1. Introduction

single chunk. This is merely a mitigation of the issue rather than a solution; and while
it may work decently, the tradeoff is a degraded compression ratio, since identical
or almost-identical substrings that fall into different chunks cannot refer to earlier
occurrences of themselves, and have to be compressed separately.

The Relative Lempel-Ziv algorithm [10, 6] treated here, on the other hand, is
specifically designed for easy access to the original data from its compressed form,
without requiring decompressing the entire file nor some fixed-size block. There is
no filtering of the input, and the compressed data is locally contained and can be
accessed in essentially any order∗. References are not made to the input itself, but
rather to an external string called the “dictionary”: the output of the Relative Lempel-
Ziv compressor instructs the decompressor what to copy from the dictionary. This
strategy is particularly advantageous with datasets that consist of slight variations of
some underlying data, such as different assemblies of an organism’s genome, or a wiki’s
version history; in these cases, one version of the data works as the dictionary, and the
compressed output marks only where the input changes.

However, like all algorithms, Relative Lempel-Ziv is no silver bullet and has its
tradeoffs. While decompression speed is on par with more common programs like gzip,
compression is slow. Both compression and decompression are memory-intensive, re-
quiring large data structures to be held in memory: both must load the entire dictionary
in memory, and the compressor also requires a suffix array data structure, which in
practice is four or eight times larger than the dictionary. Compression performance,
both in terms of compression ratio and in program runtime, is greatly affected by the
dictionary: a well-constructed dictionary, tailored for the input, may provide an excel-
lent compression ratio that exceeds those attainable by gzip or xz, while a poor choice
of dictionary will easily cause the output to be larger than the input.

1.1 Lempel-Ziv compression algorithms

The Lempel-Ziv family of compression algorithms is a large and successful one: a good
proportion of internet traffic is compressed with gzip (or its successor, brotli), and thus
it is found deployed as part of every internet browser. Built-in support for ZIP files com-
pressed with the Deflate algorithm have been included on the operating systems on all
computers for about twenty years now, being present in the commercial operating sys-
tems Windows XP (2001) and Mac OS X 10.3 (2003). The now-ubiquitously-supported
Portable Network Graphics lossless image format also uses Deflate as the final step of
its compression scheme [16, s. 10].

∗Hypothetically, the file could even be decompressed in reverse with no extra overhead with a
trivial change to the decompressor, assuming the compressed file is readable in reverse.
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The success of Lempel-Ziv is probably due to its simplicity: replace repeated
parts of the text with a short reference pointing to the first occurrence of the repeated
section. Decompression of Lempel-Ziv-compressed data is also simple and cheap: de-
tails naturally vary from variant to variant, but at its simplest (such as in gzip) only
a small buffer with a size measured in kilobytes is needed to store a short window
of previously-decompressed data. Practical implementations do add some complexity,
since the references need to be stored in a binary format somehow: gzip uses a Huffman
encoding to represent references’ positions and lengths and leftover literal bytes.

1.1.1 Lempel-Ziv 77

The first Lempel-Ziv variant is commonly referred to as “LZ77” [17]. It uses a sliding
window of some kilobytes in size, in which matches (repeated text segments) are found.
Matches are output as a tuple of (distance, length) numbers: these express a “go back
distance bytes and start copying length bytes from there to here” expression. Note that
length can be larger than distance: this represents a repetition, whereby a segment of
text is repeated until it meets the specified size∗. Symbols that do not appear in the
sliding window are represented by a different type of phrase, by which a literal symbol
can be expressed.

The Lempel-Ziv-Storer-Szymanski algorithm [15] modifies the algorithm by out-
putting literal symbols instead of length-distance phrases, if the representation of the
phrases would be larger than the representation of the literals.

“Deflate” is a practical implementation of the LZ77 algorithm, performing string
searching with the use of a hash table and further compressing the output by apply-
ing a Huffman code to the LZ77 distance-length pairs and leftover literal symbols [7].
Deflate is also the name of the binary output format as produced by the PKZIP pro-
gram, which originally implemented the Deflate algorithm [2]; there exist compressors
(cf. Google’s Zopfli library) that output Deflate-compatible data without using the
Deflate algorithm as originally specified. The gzip program also implements Deflate,
with its own slightly-modified binary file format [3], and is widely used on Unix-like
systems and on the World Wide Web—it is quite fast to decompress, and it works well
on structured textual content like webpage markup tends to be.

∗ An example: if the sliding window contains the text “001120”, an instruction to “go back 3
characters and copy 7 characters” will instruct the decompressor to place its pointer on the second
“1”, then start copying symbols both to the output and to the end of the sliding window. Because this
copying is done one character at a time, the text is recycled back into the buffer for repetition. After
copying the first character, the contents of the sliding window will become “011201”, then after the
second character, the contents will be “112012”, then “120120”, “201201”, “012012”, “120120”, and
finally “201201”. The text written to the output will be “1201201”—a string longer than the window.
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The Brotli algorithm [1] is an improvement of gzip, optimized specifically for
compressing internet traffic and webpage content. Among its changes is a predefined
built-in dictionary of about 100 kilobytes in size. Phrases output by the LZ77 compres-
sion stage can refer directly to this predefined dictionary, and so predefined phrases that
appear often in web traffic but only once per document (such as <!DOCTYPE html>)
can be efficiently compressed from the first time they appear.

The Zstandard program also uses LZ77, but takes advantage of increased re-
sources on modern computers by utilizing larger sliding windows (megabytes instead
of kilobytes) and an additional entropy coding stage. It also has support for specifying
a predefined dictionary; the compression ratio of particularly small files (on the order
of a couple of kilobytes) improves greatly with an application-specific dictionary.

The Lempel-Ziv-Markov chain algorithm (LZMA), familiar from being a part of
the 7-Zip archiver, combines LZ77 (with big dictionaries) with a range encoder (a form
of arithmetic encoding).

1.1.2 Lempel-Ziv 78 and Lempel-Ziv-Welch

The next compression algorithm in the family, LZ78 [18], is conceptually similar in
that it parses the text into a set of phrases that appear earlier in the text. Its imple-
mentation is different, as it builds a tree-like dictionary instead of searching in a sliding
window. Phrases in the dictionary consist of a reference to an earlier dictionary entry,
plus a new character. Compression happens by building the dictionary, and the output
takes the form of symbols that define this dictionary; Figure 1.1 illustrates an exam-
ple parsing. Decompression re-builds the dictionary from the symbols, forming the
uncompressed original text by expanding the sequence of references that each phrase
contains. Decompression must happen in sequence, as later phrases rely on earlier ones
being defined.

The LZW algorithm modifies LZ78, by having a dictionary pre-initialized with
an entry for all symbols of the alphabet, along with some other practical optimiza-
tions such as “clear codes” to empty the dictionary once it grows “too big”, with an
implementation-defined criterion.

1.2 Current work: Relative Lempel-Ziv

Relative Lempel-Ziv (RLZ) is based on LZ77’s concept of achieving compression by
replacing repetitions in the text with a short reference to their first occurrence. How-
ever, the intended application of RLZ is in random access: it is desired to be able to
access any given position in the uncompressed data quickly, and so the compressed data
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kokkokokookokokokkokokoon

i (ref, char) Expanded
1 (0, k) k
2 (0, o) o
3 (1, k) kk

i (ref, char) Expanded
4 (2, o) ok
5 (4, o) oko
6 (5, k) okok

i (ref, char) Expanded
7 (6, k) okokk
8 (6, o) okoko
9 (2, n) on

0k 0o 1k 2o 4o 5k 6k 6o 2n

Figure 1.1: An example illustrating the LZ78 dictionary of the Finnish sentence “kokko kokoo koko
kokko kokoon” with spaces removed. Each phrase refers to an earlier phrase (phrase 0 is an empty
string); for clarity, the expanded phrase is shown, although the output only includes the reference-
character pairs.

needs some additional structure. RLZ therefore relies on a dictionary-based approach,
with an uncompressed dictionary supplied separately from the data to be compressed,
similarly to some newer predefined-dictionary-using compressors like Zstandard and
Brotli. RLZ differs from these other compressors in that RLZ compression is done
entirely against the dictionary: the output data stream only contains references to the
dictionary and, where necessary, literal symbols.

The benefit of such complete separation of dictionary from input is decompres-
sion supporting a degree of random access: the output of RLZ does not rely on a
sequentially-decompressed structure. Some scanning of the compressed text is required,
however, as the phrase-encoding tokens of RLZ contain length information, not posi-
tion information. Thus, to decompress the symbol at position N , the decompressor
needs to count the running total of the lengths of tokens it encounters until finding the
token containing symbol N . However, no reading of the dictionary nor writing of de-
compressed output needs to happen until the correct symbol is found, so this scanning
and counting is quite fast. RLZ may also, under circumstances involving large and very
repetitive texts and a carefully selected dictionary, be more effective at compression
than sliding-window-based LZ77 compressors.

In Chapter 2 we will describe the RLZ algorithm in detail. In Chapter 3 we will
discuss dictionary selection—as RLZ is entirely dependent on pre-built dictionaries for
compression, a good dictionary is critical for a decent compression ratio. Chapter 4
discusses our implementation of RLZ in the form of the rlzparse and rlzunparse
programs and supporting utilities. In Chapter 5 we will show benchmarks of our
RLZ implementation’s performance, and discuss dictionary construction parameters in
concrete terms. Finally, our concluding remarks are in Chapter 6.





2. Algorithm description

The Relative Lempel-Ziv algorithm (RLZ for short) parses the input text into a series of
phrases that occur in the separately-given dictionary. These phrases are then encoded
as tokens, which contain the information necessary to find the phrases in the dictionary;
the output will be a string of these tokens. The decompression operation, deparsing,
takes both the dictionary and the string of tokens, and from the tokens reconstitutes
the phrases and thus the original text.

2.1 Conventions and basic definitions

In this chapter, we will be using the following conventions and basic definitions:

• A string is an ordered sequence of symbols from an alphabet (which is the set of
all possible symbols). The term character is taken to be a synonym of symbol.
We assume that the alphabet is finite, unchanging, and has at least two symbols†.
Unless defined otherwise, the uppercase symbols S and D refer to strings.

• The symbols of a string are indexed by a nonnegative integer: the first symbol is
at index 0 in the string, the second is at index 1, and so on. Indexing a string is
denoted with square brackets: the first symbol of S is indexed as S[0], the second
as S[1], and so on.

• The length of a string is denoted with circumfix single vertical bars: |S|.

• Combining the two previous points, for a finite string, the last index is |S| − 1,
and the last character is S[|S| − 1]. (This is the scheme followed in the most
widely-used programming languages today.) Attempting to index a finite string
with an index less than 0 or greater than |S| − 1 is an error.

• String concatenation is the operation where a new string is formed by appending
one to the end of another. We will use the symbol + for concatenation, relying

†Alphabets that grow might be in some circumstances a useful concept, such as expanding a byte
alphabet into a 16-bit alphabet, but for simplicity we will define alphabets to be static. Strings over
one-symbol alphabets behave pathologically and are useless in practice.
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8 Chapter 2. Algorithm description

on context to differentiate concatenation from addition. With strings S and T ,
the new string S + T has a length of |S|+ |T |, and (S + T )[|S|] = T [0].

• We require that the alphabet is strictly totally ordered: a symbol is only equal
to itself, and we can define a transitive relation <: given non-equal symbols x
and y, either x < y or x > y, and if x < y and y < z then x < z.

• A substring is a contiguous segment of a string, starting at some first index i and
ending at some last index j of the string, and denoted as S[i . . . j]. It shall be that
0 ≤ i ≤ j ≤ |S|− 1. The symbol at S[j] is part of the substring: both indices are
inclusive. The length of the substring is therefore j− i+1; a length-one substring
has j = i.

• A suffix is a special case of a substring, where the last index is the end of the
string. As shorthand, we do not write the final index of a suffix: the substring
S[i . . . ] is implicitly assumed to have an end index of |S| − 1, and thus S[i . . . ] =
S[i . . . |S| − 1]. Suffixes may be defined for infinite or indefinitely-long strings, in
which case the suffixes also have infinite or indefinite length∗.

• Likewise, a prefix is a special case of a substring, where the first index is 0, such
as in S[0 . . . i]. We do not define any special notation for prefixes.

• Strings can be compared by comparing the symbols at the same index in each
string. Two strings are equal if and only if they are of equal length and the
symbols at all indices are equal. Otherwise, given two strings S and T , and the
first index i at which S[i] 6= T [i], we say that S < T if S[i] < T [i] and S > T

otherwise†. If one of the strings is shorter than the other, but otherwise has the
same symbols, then the shorter string sorts before the longer one.

• In this work, we exclusively deal with finite alphabets that are a continuous
sequence of natural numbers, from 0 up to one less than the size of the alpha-
bet. Any other alphabet, such as character data, will have a isomorphism to a
numerical alphabet. (This matches computational practice: our machines deal
exclusively in fixed-width numbers at the lowest levels.)

With regard to alphabets, we will often refer to the byte alphabet, or simply a
byte string which has the byte alphabet as its alphabet. The byte alphabet has a size
of 256, the first symbol being 0 and the last being 255. Also relevant will be the similar

∗ The RLZ algorithms do not require that their input is finite. Parsing or deparsing can continue
as long as input is available, as it is done one symbol or token at a time.

† The string relation S < T is read as “S sorts before T”, not “S is less than T”.
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16-bit, 32-bit and 64-bit alphabets, with respective sizes of 216, 232 and 264 symbols.
In various examples for the purpose of illustration we will use the 26 unadorned Latin
script letters plus the space as an alphabet, with the typical alphabetical ordering and
space coming first: { ␣ < a < b < . . . < z }.

In some figures we use the dollar sign $ to unambiguously illustrate the end of
a string. This is a typographical device: $ is not a character in the string, nor is it a
member of the string’s alphabet.

2.2 High-level description

The RLZ algorithm is given a text S and a dictionary D, and it will produce a parsing
of S as a series of phrases: S = d1 + d2 + · · · + dn. Each of these phrases di is either
a substring of D, or a literal symbol that was not found in D. The output consists
of a string of pairs of nonnegative integers, which we call tokens, that describe the
location of each phrase in D or encode the literal symbol. Compression occurs when
these tokens, together with the dictionary, occupy less space than the original text.

In practice, RLZ spends its time in a string-searching loop: at any given point,
we have parsed a prefix of S, and are trying to find the longest prefix of the remaining
text S[k...i] that can be found in D. Once we have discovered the longest prefix that is
found in D, we output a token that describes where in D it is found, and start again,
searching for another segment of S, until we run out of input. Our search is greedy:
we will always find the longest possible phrase. This is optimal, in the sense that it
produces the smallest number of phrases∗.

The tokens that are output have two fields, which are both nonnegative integers:
the token has a position and it has a length. The position field is the index in the
dictionary that the phrase starts at, and the length field is the length of that phrase.
To encode symbols that do not appear in the dictionary at all, we output a literal
token: this token has the symbol (which is itself a number) as the position and zero as
the length.

An alternative approach would have a second “position” field in the tokens: in-
stead of giving the length of the phrase, this would give the position in the output that

∗ Proof sketch: consider a segment of text that was parsed into two phrases, encoded with the
tokens (pa, la) and (pb, lb); the segment has length la + lb. Because of the greedy search algorithm,
we can determine that the substring D[pa . . . pa + la − 1] is the longest prefix of the text segment
that can be found in D. If a non-greedy search was used, then in the best case a different two-phrase
factorization {(px, lx), (py, ly)} (where lx + ly = la + lb) would be found; additionally, lx ≤ la, because
otherwise, D[pa . . . pa + la − 1] would not be the longest prefix in D. A case where a one-phrase
factorization {(pz, la + lb)} is found would likewise require that D[pa . . . pa + la − 1] is not the longest
prefix in D.
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the phrase starts at. The length of the phrase would be computed by subtracting the
position-in-output field of the next token and the position-in-output field of the current
token. This approach is certainly attractive—random access would be aided by not
having to compute a running total of lengths, since that work is already done by the
position-in-output field. The principal issues with this approach are the description
of literal symbols and the description of the end of text; since the final token only
contains the information on where the final phrase starts, we would not know how
long it needs to be. The length information of the entire uncompressed file would then
need to be stored in some type of file header, or we would need some final “sentinel”
token to indicate the position of the end of the uncompressed text. For simplicity of
implementation we have settled on using a simple length field.

Algorithm 1 Relative Lempel-Ziv, high-level structure.
1: function RLZ-parse(S, D)
2: i← 0
3: while i < |S| do
4: (position, length) ← Find the longest match between S[i . . . ] and D
5: if length = 0 then . Symbol S[i] was not in D at all
6: position ← S[i]
7: i← i+ 1
8: else
9: i← i+ length

10: end if
11: Write-token-to-output(position, length)
12: end while
13: end function

A pseudocode description of RLZ parsing is shown in Algorithm 1. The complex-
ity, and most of the hard work, in the algorithm is hidden behind finding the longest
match. This is the string-searching problem, where the task is to find the location of a
string X within another string T ; specifically, we use a variant of string search, where
the entirety of X is (probably) not in T , so we search for increasingly-long prefixes of
X in T . A naïve implementation of string search has an average time complexity of
O(|X|+ |T |) and a worst-case time complexity of O(|X| × |T |), but uses no additional
storage besides X and T themselves. In our case, the substring to find is a prefix of
the suffix∗ of the input string, and the string that is searched is the entirety of the
dictionary, and even though we are perfectly happy with simply the longest matching

∗ “Prefix of a suffix” is a phrase that will occur often in this section, and it may be helpful to
illustrate its meaning. The entire input string S is S[0]+S[1]+S[2]+ · · ·+S[|S|−1]. The first phrase
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substring, our inputs are quite easily on the order of millions of symbols in length,
each—a naïve implementation is wasteful and infeasible.

Our recourse is preprocessing: with some extra work and an auxiliary data struc-
ture, we can turn substring search into a much more feasible operation, having a
worst-case time complexity of O(|X| log |D|), and in practical cases a time complexity
closer to O(|X| + log |D|). Our data structure of choice is the suffix array, computed
for the dictionary D. The suffix array is a permutation of all indices 0 . . . |D| − 1,
sorted by their corresponding suffixes’ lexicographical position. Figure 2.1 illustrates
an example of a suffix array.

i Suffixes
0 hiisi␣sihisi$
1 iisi␣sihisi$
2 isi␣sihisi$
3 si␣sihisi$
4 i␣sihisi$
5 ␣sihisi$
6 sihisi$
7 ihisi$
8 hisi$
9 isi$
10 si$
11 i$

i Sorted suffixes
5 ␣sihisi$
0 hiisi␣sihisi$
8 hisi$
11 i$
4 i␣sihisi$
7 ihisi$
1 iisi␣sihisi$
9 isi$
2 isi␣sihisi$
10 si$
3 si␣sihisi$
6 sihisi$

S[i] h i i s i ␣ s i h i s i
i 0 1 2 3 4 5 6 7 8 9 10 11

SA[i] 5 0 8 11 4 7 1 9 2 10 3 6
Suffix

␣sihisi$
hiisi␣sihisi$
hisi$
i$ i␣sihisi$
ihisi$
iisi␣sihisi$
isi$
isi␣sihisi$
si$

si␣sihisi$
sihisi$

Figure 2.1: The suffixes of the string “hiisi␣sihisi”.

The utility of the suffix array stems from it providing an ordered listing of all the
suffixes of D. We wish to find the location of a string S[i . . . ] in D, and a good start
is to find all those locations in D where suffixes that begin with S[i] start. Because
we have, with the suffix array, an ordered listing of suffixes, we can perform binary
searches to find all those suffixes in D that have S[i] as their first symbol. We can then
perform further binary searches within that range of suffixes, finding those suffixes
that have S[i + 1] as second character, and so on, honing in on the suffix∗ D[k . . . ]
that equals S[i . . . ] for the longest distance. The suffixes will eventually stop being

we parse will be a prefix S[0 . . . i], and so the remaining string is a suffix S[i + 1 . . . ]. Further parsing
will result in phrases S[i + 1 . . . j], S[j + 1 . . . k] and so on: at each iteration of the parsing loop, the
remaining string is a suffix S[k . . . ]. When we perform string search, we do it on a growing prefix of
this remaining suffix: we first search for the 1-long substring S[k . . . k], then if we find that, the 2-long
substring S[k . . . k + 1], then S[k . . . k + 2], and so on; thus, “prefix of a suffix”.

∗Or potentially a range of equally-well-matching suffixes; it does not matter which one is picked.
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equal after some l symbols, but, by using a sequence of fast binary searches, we have
discovered that S[i . . . i+ l] = D[k . . . k + l].

Other substring-indexing data structures exist, but the suffix array is quick to
construct and particularly easy to search in, and a simple search algorithm is guaranteed
to find the longest substring available. However, the suffix array also uses a lot of
memory—the theoretical usage is |D|dlog |D|e bits, but in practice it is either 32|D|
or 64|D| bits. It also mirrors redundancies in the dictionary: dictionary selection is
discussed in Chapters 3 and 5, but in general we do not want long substrings to reoccur
in the dictionary. Reoccurring long substrings slow down string searching by expanding
the search space. The suffix array does not carry the information that a set of suffixes
are identical for the next n positions, and thus the search routine cannot skip past
those n positions to the point where the suffixes change.

2.3 Detailed description

“Although the basic idea of binary search is comparatively straightforward,
the details can be surprisingly tricky...” — Donald Knuth, The Art of
Computer Programming, volume 3, section 6.2.1.

A more detailed pseudocode description of RLZ is presented in Algorithms 2
(main loop), 3 (token search, which returns the next phrase in the parsing), and 4
(binary search in the suffix array). In the longest-match-searching routine, which we
call token search, the routine reads input symbols one at a time, keeping track of how
many symbols have been read during this particular tokens’ search; we call this symbol
count the offset variable. The offset variable will eventually end up being the length
of the token (if a match is found)—it is called “offset” instead of “length” because it
is used to offset an index during the search phase.

Once an input symbol has been read, the routine performs two binary searches;
our implementation calls these search-left and search-right, but they could just
as well be “search-low” and “search-high”. These are used to shrink the matching
range of suffixes; the matching range is that range of suffixes which match the input up
to the first offset symbols. The matching range starts out as being the entire suffix
array, from 0 to |D| − 1, before a single symbol of input has been read. As input is
read, the left and right bounds of the range are pulled closer together by search-left
and search-right. Searching ends either once the matching range’s width becomes 1
(which indicates a unique match, which is then linearly scanned as far as the dictionary
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matches the input∗) or the binary searches† result in a not-found status (which indicates
that the token is as large as it can be—the maximal substring was found in D). If
the binary searches fail immediately at the first read symbol, we determine that that
symbol is not in the dictionary, and a literal symbol is returned.

Algorithm 2 Relative Lempel-Ziv, with more detail. See Algorithm 3 for token search.
1: Sentinel position = −1, sentinel length = −1
2: function RLZ-parse(S is a file stream, D and SAD are in memory)
3: loop
4: (pos, len) ← Token-search(S, D, SAD)
5: if pos = sentinel position and len = sentinel length then
6: Break out from loop . End of S was encountered.
7: else
8: Output-token(pos, len)
9: end if

10: end loop
11: end function

2.4 Suffix array computation

Computation of the suffix array is a crucial part of the functioning of this algorithm.
Fast, linear-time suffix array construction algorithms exist (see [12] for a survey of
them); however, implementing them in a performant manner is not trivial and was out
of the scope of this thesis project. We function as if we have an oracle that computes

∗ This linear scanning is the optional optimization that line 25 in Algorithm 3 refers to. If it
is left out of the pseudocode descriptions because it is essentially a simplified copy of Algorithms 3
and 4 embedded in an if statement. Its purpose is to skip the overhead of calling search-left and
search-right when all that is needed is one equality check, and if the optimization were left out, those
functions will perform the same job. It is a while-loop with the condition c = D[SAD[leftmost]+offset],
fetching a new c and incrementing offset with every iteration; it also includes the end-of-file checks
and housekeeping that lines 13–14 and 28–30 of Algorithm 3 do.

† In our implementation, we perform search-left before search-right; this is an arbitrary
decision. If search-left returns “not found”, we determine that the symbol is indeed not in D,
and skip search-right as redundant. However, if search-left returns a match, but search-right
returns “not found”, we determine we are in an error condition: binary search will not fail to find
a character where one has already been determined to exist, unless the suffix array is garbage. If
search-right fails where search-left did not, our assumptions of the suffix array’s sorted-ness no
longer hold, and the program crashes with an error message. Practice has shown most of these crashes
to be caused by endianness issues with wide-symbol data—Section 2.5 discusses this in detail.
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Algorithm 3 The token-search routine. See Algorithm 4 for Search-left.
1: rc← 0
2: function Token-search(S: file, D: string in memory, SAD: suffix array)
3: c← S.readSymbol(), rc← rc+ 1
4: leftmost← 0, rightmost← |D| − 1
5: bestPos← 0, bestLen = 0, partial← False, offset← 0
6: while rc ≤ |S| do
7: if rc = |S| then
8: return (sentinel position, sentinel length)
9: end if
10: leftmost← Search-left(S, D, SAD, c, offset, leftmost, rightmost)
11: if leftmost < 0 then . Indicates no match in the range.
12: if partial = True then . But a partial match exists: return it.
13: S.unread(c), rc← rc− 1 . c will be read again in the next token.
14: return (SAD[bestPos], bestLen)
15: else . c /∈ D at all: return a literal.
16: return (c, 0)
17: end if
18: end if
19: rightmost← Search-right(S, D, SAD, c, offset, leftmost, rightmost)
20: if rightmost < 0 then . Indicates that SAD is invalid.
21: Report error, then crash.
22: else
23: bestLen = offset + 1, bestPos = leftmost, partial = True
24: end if
25: An optional optimization in case of leftmost = rightmost goes here.
26: offset← offset + 1
27: c← S.readSymbol(), rc← rc+ 1
28: if rc = S then . S ends with this token; the next iteration
29: return (SAD[leftmost], offset) . will return the sentinel.
30: end if
31: end while
32: end function

. The rc variable, “read counter”, counts how many symbols have been read from S.
It is used for end-of-file detection, assuming |S| is known. It would be possible to
implement this algorithm without a global rc, with end-of-file detected by other
means, but the pseudocode here avoids an easily-overlooked off-by-one error that
causes the terminating sentinel token to be returned one token too early.
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Algorithm 4 Search-left. Search-right is similar: changes are made to line 15 (where
“oldLeft” becomes “oldRight”), lines 18 and 21 (“M − 1” changes to “M + 1” in both),
and line 23 (which becomes “L←M + 1”). Line 6 is not changed.
1: function Search-left(S, D, SAD, c, offset, oldLeft, oldRight)
2: L← oldLeft, R← oldRight
3: while L ≤ R do
4: M ← b(L+R)÷ 2c
5: if SAD[M ] + offset ≥ |D| then . Suffix SAD[M ] is offset symbols long,
6: L←M + 1 . So skip over it: $ sorts below all else.
7: continue with next loop iteration
8: end if
9: cM = D[SAD[M ] + offset]
10: if cM < c then
11: L←M + 1
12: else if cM > c then
13: R←M − 1
14: else
15: if M = oldLeft then
16: return M

17: end if
18: if SAD[M − 1] + offset ≥ |D| then
19: return M

20: end if
21: c′

M = D[SAD[M − 1] + offset]
22: if c′

M = cM then
23: R←M − 1
24: else
25: return M

26: end if
27: end if
28: end while
29: return −1 . c /∈ D[oldLeft . . . oldRight]
30: end function
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suffix arrays for us; indeed, our implementation of RLZ does not compute the suffix
array of a dictionary, asking for it to be supplied via a file as a parameter to the parser.

2.5 Computation of suffix arrays for wide input
symbols

Commonly-available fast suffix construction programs∗ only accept input using the
byte alphabet. This is an issue, because one of the goals of our project was writing
a RLZ parser that works with 16, 32, and 64-bit alphabets. However, with a couple
of extra processing steps, it is possible to derive a suffix array for wide data with a
narrow suffix array computing program.

The principal observation that makes it possible to produce a suffix array for a
(for instance) 32-bit-alphabet string by using an 8-bit suffix array calculator, is that
when the wider symbols are interpreted as a sequence of narrower numbers, in big-
endian order, then an ordering of suffixes of the narrow-symbol sequence will contain
within it a correct ordering of the wide-symbol sequence. The suffix array calculated
with the narrower sequence will naturally be larger than the wider sequence, but with
a straightforward procedure the wide-sequence suffix array can be extracted. The
procedure is to remove all indices that are indivisible by sizeof(wide symbols), and
divide the remaining symbols by that size. For instance, in the case of 32-bit (4-byte)
symbols, we remove indices indivisible by 4 and divide those that remain by 4.

An issue we face is that our machines, at least those with the x86 architecture,
are little-endian by default: a number such as 31415926hex is stored as the byte se-
quence 26 59 41 31. Little-endian byte ordering breaks this scheme entirely. Let
us have three strings over a 32-bit alphabet that start with the symbols 14142135hex,
17320508hex, and 31415926hex. The string that starts with 17320508 will be sorted first,
followed by 31415926, and finally 14142135 is sorted last: these symbols’ first-stored
bytes (08, 26, and 35) sort in that order. We have not found a method for extracting
a suffix array for wide data when calculated with a narrow calculator. The issue is
not simply a matter of the suffix array being backwards, or that we need to extract
indices of the form 4n + 3 instead of those that are 4n. One might also assume at
first that this flipping of byte order does not matter—after all, rlzparse runs on a
little-endian machine, so would this flipping of bytes not cancel out? No: rlzparse
reads the byte sequence 26 59 41 31 as the 32-bit symbol 31415926hex, but the suffix

∗We have used Yuta Mori’s libdivsufsort (https://github.com/y-256/libdivsufsort) for
files below 232 bytes in size, and suggest pSAscan (https://www.cs.helsinki.fi/group/pads/
pSAscan.html) for inputs larger than that.

https://github.com/y-256/libdivsufsort
https://www.cs.helsinki.fi/group/pads/pSAscan.html
https://www.cs.helsinki.fi/group/pads/pSAscan.html
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array calculator sorted it as if it were 26594131hex. The binary searches that rlzparse
uses will fail, as they require correctly sorted data.

The way around this issue is to flip the endianness of wide symbols before they
are passed to the suffix array calculator. A copy of the dictionary is created with a
simple program that reverses the order of bytes within an n-byte sequence, and the
suffix array is calculated with that copy. The byte-order-flipped copy of the dictionary
is then discarded; its only use is in suffix array calculation. The correct suffix array is
then extracted from the calculated suffix array, using the discard-and-divide procedure
mentioned previously. We have written a pair of programs, endflip and divsuffix,
to perform endianness-flipping and suffix index dividing, with the width of integers
specified as a command-line parameter.

2.6 Output formats

The phrases that the parser parses the input into are stored as a token consisting of
two numbers: position and length. The simplest output format is to write both out as
fixed-width integers, in that order, with no extra headers or footers.

The choice of what width these integers are is informed by both dictionary length
and alphabet size. If the dictionary is under 232 bytes in length, then all possible
positions and lengths can be stored as 32-bit unsigned integers. If the alphabet is
the 32-bit alphabet or smaller, then all possible literals can also be expressed. For
the wider 64-bit alphabet, it could be possible to adopt a convention where a literal is
expressed as two consecutive 32-bit literal tokens; some error handling is then necessary
in the decompressor to detect input where only one of these tokens is present, or
then a convention of the missing token being zero is adopted. For simplicity, our
implementation disallows 64-bit alphabets with 32-bit output tokens. If the dictionary’s
length exceeds 232 bytes, then wider integers are also needed—our implementation
doubles the integer width to 64 bits, for reasons of ease of production, reading and
alignment. This wastes space: 40-bit integers can express positions and lengths up
to one less than a tebibyte (240 − 1 bytes), and 48-bit integers can express one less
than 256 TiB, which for practical purposes should still be enough in the 2020s (these
sizes also approach the limits of the physically addressable address space of 64-bit CPU
architectures), and so anywhere from a quarter to just under a half of the bits of each
number are zero.

This raw output format has its drawbacks: the user must know what width a
compressed RLZ file uses∗ and supply that information to the rlzunparse program.

∗If forgotten, inspecting the file with a hex editor should provide clues as to whether 32- or 64-bit
integers are used.
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The user must also know what dictionary an RLZ file is based on: providing the
incorrect dictionary to the deparser will produce garbage output. Some of these issues
can be mitigated by following a filename naming scheme, for example by using the
extension .rlz32 for 32-bit and .rlz64 for 64-bit files, and having the dictionary have
the same name but a .dict extension.

In practice the output of RLZ is sparse, in the sense that for many practical inputs
(especially non-repetitive ones), parsed with practical dictionaries, the average length
of the output phrases will be quite small: values that will easily fit in a single-byte
integer. This means that, for the majority of tokens in the output, three out of four
length-denoting bytes will be zero. Then there is the position field: for dictionaries
shorter than 16.7 MB, one byte out of four position-denoting bytes will be zero; for
dictionaries smaller than 65 kB, two bytes will be zero. The magnitude of the position
also fluctuates: even with large dictionaries, references to the start of it would fit into
a narrower integer. Thus, around half of each token will be spent on padding: bytes
that carry no numerical information, being there simply to keep our tokens aligned.

Variable-width codes would compress output size, especially with small dictio-
naries. There are speed and code complexity trade-offs involved, especially with bit-
oriented codes that may be split over byte boundaries; our processors, memories, caches
and disks work well with fixed-width integers, and having to pause for bitwise oper-
ations will slow down execution. With variable-width codes one also loses the ability
to calculate the position in the file of any particular token, and so indexes built for
RLZ-compressed data (“datum f starts at token n in the compressed file”) are made
complicated.

At time of writing, our RLZ implementation supports two fixed-width encodings
(one uses 32-bit integers, the other uses 64-bit) and two variable-width codes. The
fixed-width codes, which we call 32x2 and 64x2, store the token’s components in the
machine’s native byte order, which is probably little-endian on modern systems, using
either 8 or 16 bytes per token. The first variable-width code is plain text: it has
been useful during development but with dubious real-world utility. In it, each token’s
numbers are written out as ASCII text, in decimal, separated by a space and terminated
by a newline. (With kilobyte-sized dictionaries this textual format has been more space-
efficient than the 32-bit format.) The second variable-width code is called vbyte by
us; it is similar to the one defined in [13] (with modifications to support encoding
zero), and identical to the “Unsigned Little-Endian Base-128” format as defined by
the DWARF Debugging Standard∗. In it, all integers between 0 and 127 (i.e. all those
that fit into 7 bits) are represented by a single byte. For larger integers, they are split
into 7-bit chunks (starting from the low-order end), and written out with one byte

∗https://dwarfstd.org/

https://dwarfstd.org/
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per chunk, with all but the last (most-significant) chunk having the byte’s high bit set
to 1. Under this scheme, all 32-bit integers are encoded with 5 bytes or fewer, and
all 63-bit integers with 9 bytes or fewer; an integer with the 64th bit set (unlikely to
appear in RLZ output, except for literals in 64-bit data) will spill over into to a tenth
byte. Our benchmarks, which are presented in Section 5.5, show that a switch from
32x2 to vbyte format almost halves output size and marginally speeds up compression
(probably due to the reduced amount of data written), at the expense of a slightly
slower decompression speed.

2.7 Time complexity

In this section we investigate the computational complexity of RLZ. Let S be the input
text to be compressed and D be the dictionary it will be compressed with; |S| and |D|
are their lengths. We shall exclude from our analysis the time it takes to compute the
suffix array of |D|, but prior work (see [12] for a survey) has shown that this suffix
array computation is an O(|D|)-time operation.

The worst case for RLZ is when the dictionary is wholly unrepresentative of the
input: they might share no symbols at all, and if they do, only phrases with a length
of 1 can be parsed. The first iteration of token search (Algorithm 3) performs binary
search (Algorithm 4) over the entirety of |D|, instead of in a smaller sub-range, so it
has a time complexity of O(log |D|). This full-range search is done for every symbol in
S, giving us a worst-case time complexity of O(|S| log |D|).

The best case, on the other hand, is where S and D are identical: the parsing will
consist of only one token, (0, |S|). The first iteration of the token search routine does
do binary search (twice) over the entirety of D, so it takes O(log |D|) time. In the best
case, only one suffix (D[0 . . . ]) out of the entire |D|-width search range matches the
input, so no binary searches will be performed at all in the following iterations. Thus,
in the absolute—unrealistic—best case, RLZ has a time complexity of O(|S|+log |D|).

With practical inputs, RLZ’s runtime falls between these extremes. For the first
iteration of every phrase parsed, an O(log |D|) time search takes place. The search
range narrows after every iteration, but the rate at this happens is entirely dependent
on the nature of the inputs. For simplicity of analysis, let us assume a reasonably rapid
rate of narrowing (which is realistic, for most inputs), so that the time taken for all
the searches could still be described as O(log |D|) with a rather small hidden factor.
Once the search range narrows to a width of 1, the search loop becomes a linear-time
scan that compares S[x + i] to D[y + i], until the i where they are no longer equal is
found. This process happens for every phrase in the parsing, so the time taken to run
the entire program is O(|S|+ n log |D|), n being the number of phrases in the parsing.
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Thus, with two inputs of the same size, we would expect the one that compresses better
to also compress faster—this is what we see in practice in Chapter 5.

2.8 Opportunities for parallelization

Phrase search is a binary search, with no clear opportunities to parallelize. However,
parsing can be parallelized, with a negligible decrease of compression ratio, by splitting
the text into chunks and having each thread do phrase searches on its own chunk. The
only information that parallel threads would need to share is the dictionary and the
suffix array, and both of those structures are read-only after being loaded from disk
into memory.

On a two-processor machine, one processor could parse the text from the start to
the halfway point, and the other processor from the halfway point to the end. The two
output strings of tokens would then be concatenated to produce a final string of tokens
describing the entire file. This parallelly-produced output differs from the optimal,
single-thread output only at the tokens that describe the halfway point: more likely
than not, a single-thread search would have produced a token (x, l) that describes a
length of text that starts before the halfway point at some point x and continues after
it for some length l. The parallel output might expand this into the tokens t1 = (x, l′),
t2 = (x+ l′, l− l′), which could be combined into the single token (x, l), but one cannot
assume this will always happen. It is possible that the phrases s1 = S[x . . . x + l′ − 1]
and s2 = S[x+ l′ . . . x+ l − 1] have multiple matches in the dictionary and the tokens
picked for them are different than t1 and t2; it is also possible that s2 is a prefix of an
even longer phrase s2′ that would not be found when searching for s1 + s2, such that
|s1|+ |s2′ | > l. Thus, there is no general procedure for “stitching together” the halves
of a parsing produced by two threads without the size of the output being one token
larger than that of a single-thread parsing.

Similarly, on an N -processor machine, the input would be split into N equal-size
portions, which are parsed simultaneously. The concatenated output of these threads
would be at most N−1 tokens larger than the single-thread parsing. We do not foresee
any real-world cases where such a minor increase in output size would be an issue.

2.9 Decompression

In contrast to compression, RLZ decompression (or deparsing) is straightforward. The
dictionary is read into memory, and then the compressed data—the list of (position,
length) tokens—is read, one token at a time. For each token, the deparser goes to
the specified position in the dictionary, and then copies the specified length’s worth of
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characters to the output. If the specified length is zero, the position is instead formed
into an appropriately-sized symbol (for example, shrunk from 32 to 8 bits) and output
as a literal. Assuming that the machine has enough random-access memory to store
the entire dictionary, the deparsing operation takes O(|S|) time, S being the original,
uncompressed text. Like usual, D is the dictionary.

For decompressing data from a random index somewhere within the text, the
deparser keeps track of the current position in the output text. If the deparser has
been tasked with decompressing S[x . . . x+n− 1], it loads the dictionary into memory
as normal, then starts reading the list of tokens—but instead of writing output, it
simply adds the tokens’ lengths to a variable Σ, adding 1 if the length is 0. Once it
comes across the token (k, l) such that Σ < x but Σ + l ≥ x, it starts writing output∗.
For this first token that describes data to be output, it has to do some arithmetic to
avoid copying the unwanted start of the phrase (if it exists): instead of writing out
D[k . . . k + l − 1], it instead writes out D[k + x − Σ . . . k + l − 1]. Subsequent tokens
cause output to be written as normal, until arriving at the final token (k′, l′) where
Σ < x + n− 1 but Σ + l′ ≥ x + n− 1. A similar arithmetic operation is then used to
avoid writing too much output.

Deparsing a substring of l symbols starting at a random location x is not im-
mediate, because the deparser does not know a priori which phrase the location x is
within. The deparser must read and scan through some number of tokens and add up
the lengths to learn this information, and how many tokens this is depends entirely on
how compressed the data is: the higher the mean phrase length, the faster the seeking
of x is. We will write the mean phrase length as λ, and we approximate the number
of tokens that must be read and summed before x is found as x/λ; to this is added
the time to write l symbols from D to output. The time complexity of decompression
from a random location is therefore O(l + x/λ).

∗Or, in the case that l = 0 and Σ = x − 1, it simply writes out k: the first symbol of output was
in a literal phrase.





3. Dictionary selection

A good dictionary is critical for an adequate compression ratio. In some situations a
good dictionary is found naturally: for instance in a versioning application, where all
files are approximately same size and differences from version to version are minor, a
small selection of files will work well as a dictionary. On the other hand, in a situation
where a single file is compressed, the choice of dictionary becomes difficult: some
portion of the input must be selected, but selecting wrong will cause poor performance.

The most important parameter there is when it comes to choice of dictionary is
size: it is clear that having the entire file as the dictionary will produce only a single
token of output (start at zero, copy everything), whereas a single-symbol dictionary is
no better than expressing every symbol literally. Even with dictionaries of the same
size there are differences: a poor dictionary will consist mainly of material that appears
only once, while a good dictionary will work well across the entire input.

We can thus define the notion of an optimal dictionary: for a given dictionary
size, the optimal dictionary will result in the fewest phrases in the parsing. (The
optimal dictionary is not necessarily unique.) We believe that finding and proving the
optimal dictionary is an intractable problem, with no exact algorithms with acceptable
runtimes for any but the smallest inputs; we suggest that the problem of finding the
optimal dictionary is a variant of the maximum coverage problem.

3.1 Random sampling

Even though finding the optimal dictionary is infeasible, finding a good enough dictio-
nary need not be. It has been shown in [5] that a sufficiently large random sampling
of the input can be expected to perform well as a dictionary. The random sampling
algorithm presented here is implemented in our builddict program, and it used during
performance testing in Chapter 5. It outputs fixed-length, non-overlapping substrings
of the input, and uses n (the number of samples), l (the length of each sample), and
the input text S as its only parameters. It is assumed that n× l ≤ |S|.

In practice, this algorithm has shown to be fast and adequate—however, it has
a serious flaw, in that if the size of the output n × l is above some proportion of the

23
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Algorithm 5 Pick n random samples of length l from the input string S
1: A← Generate a sorted list of n random positions between 0 and |S| − l.
2: while ∃ A[i] s.t. A[i+ 1]− A[i] < l do . Samples would overlap
3: A[i]← A new random position between 0 and |S| − l
4: A← Sort(A)
5: (Optimization: regenerate all overlaps in one pass, before sorting.)
6: end while
7: for all p ∈ A do
8: Write S[p, p+ l − 1] to output . Recall that both indices are inclusive.
9: end for

size of the input, then the overlap-resolving loop on line 2 will not terminate—or more
exactly, because of the randomized nature of the algorithm, the probability of the loop
terminating at any given iteration will fall to almost 0.

The reason for this is interesting in and of itself, as the behavior of this non-
terminating property is curious and feels like a phase transition—small tweaks to either
n or l will cause quick termination (with the sampling decided in under a second, with
only a few iterations of the while-loop) to turn into non-termination (where the loop
will run for hours without a solution). The transition between these two regions is quite
sharp: we have not found many (|S|, n, l) parameter sets for which the while loop would
run for, say, a minute, with most instances being either clearly very quickly terminating
or clearly looping indefinitely. (We suggest that analysis of this algorithm’s phase-
transition–like performance would make a good homework problem for an algorithms
analysis course.)

No strict boundary such as “the program will not terminate if nl/|S| > 2/3” can
be given, because the phase-like performance is dependent on both parameters: if we
ask for n = 1 sample of length l = 0.9|S|, then we immediately get a valid solution;
the same goes for other small-n cases such as n = 4, l = 0.20|S|. However, we have
come across cases where l differs only by one and termination switches from immediate-
return to no-solution: with |S| = 12262, n = 13 and l = 864 a solution was found in
under a second, while with l = 865 no solution was found for hours.

Alternative algorithms of course exist: instead of generating n random samples,
each between 0 and |S| − l, we could divide the range [0, |S|) up into n sub-ranges
[0, |S|/n), [|S|/n, 2|S|/n), . . . , and then pick a sampling position within each sub-
range (randomly or deterministically). This would force the samples to be more uni-
formly spread out over the entire input text, which may be desirable—the sample will
not be as random as with Algorithm 5 (especially where n × l is very small, such as
0.1% of |S|), but might be more representative of the entire text. This method does
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not remove the possibility of crystallizing into infeasibility with large outputs, either:
consider the case of l = (|S|/n) − 1, where the sample in each sub-range must be
either at index 0 or index 1 in that range. For guaranteed termination, the ranges
[0, |S|/n− l), [|S|/n, 2|S|/n− l), . . . are needed.

3.2 Dictionary shape

For dictionaries of a given fixed size, we may speak of them having a different shape:
if we print out the contents of our dictionary with one sample per line, what kind of
shape would we get on our screen or page? The random sampling algorithm presented
in this chapter produces dictionaries with a rectangular shape.

We can characterize rectangular dictionaries by their aspect ratio, which we define
as the ratio of n to l. A tall dictionary will have shorter substrings, but more of them
(n > l). A wide dictionary will have longer substrings, but fewer of them (l > n).
Between these two falls the square dictionary, where the length of the substrings and
number of substrings is (approximately) equal (n ≈ l). Tallness and wideness comes
in degrees: a dictionary where l = 1.05n is wide according to this definition, but it will
behave more like a square dictionary than an very wide dictionary of l = 1000n would.
Because of this, it may be desirable to describe dictionaries as square despite not being
exactly so: we do this in Chapter 5, where we cannot construct an exactly square
dictionary of a fixed size (because that would require both parameters be the square
root of the size, and thus in most cases irrational), so we resort to some approximation
where n = l ± 1. (Likewise, integer arithmetic constrains some of the very wide
dictionaries we can make: in that chapter we approximate a very wide dictionary with
n =

√
2 by including one sample of length l and another of length dl × (

√
2 − 1)e.)

In Chapter 5, we write aspect ratio in the form n:l, normalized so that the smaller
parameter is 1; thus, a tall dictionary of n = 1600, l = 100 would have an aspect ratio
of 16:1, a square dictionary of n = l = 400 would have an aspect ratio of 1:1, and a
wide dictionary of n = 50, l = 3200 would have an aspect ratio of 1:64.

Other dictionary shapes and sampling strategies are also conceivable, such as tri-
angular dictionaries that contain a series of samples of steadily decreasing length. How-
ever, to avoid scope creep, we have not investigated the properties of non-rectangular,
non-randomly-sampled dictionaries in this work.





4. Implementation

We wrote a suite of RLZ tools, including a compressor (rlzparse) and decompressor
(rlzunparse), a random dictionary sampler (builddict) some tools for manipulat-
ing wide-symbol suffix arrays (5to4, 5to8, endflip, divsuffix), and a debug tool
(suffixdump). We have named this suite, rather simply, “rlztools”.

The programs were written in C++, adhering to the C++11 standard, and they
have no dependencies apart from the C/C++ standard library. The wide-symbol-
manipulation tools 5to4/5to8 and endflip were simple enough to warrant writing in
pure C; they follow the C99 standard, and likewise require no dependencies apart from
the standard library. As a result, the programs should compile on any system with the
C/C++ standard library and a POSIX-like file access interface, but so far, compilation
has only been done on Linux systems with the GNU Compiler Collection.

Implementation was rather straightforward. Major sources of bugs were off-by-
one errors in the binary search procedures and issues caused by the x86 architecture’s
little-endian byte order interfering with wide-symbol suffix arrays. The RLZ programs
share some code, primarily file-access code involving reading a file of bytes as a file of
wider symbols. The smaller programs written in C are contained in single files. The
programs 5to4 and 5to8, which convert 40-bit unsigned integers to 32-bit and 64-bit
integers respectively, are so similar that they are written in the same file, with one or
the other program being compiled by toggling a C preprocessor macro. In total, the
aforementioned programs are written in about 2800 lines of code, with rlzparse.cpp
being by far the longest at just under 1000 lines.

4.1 Usage

Most of the programs, when run without arguments, print out a short help message.
Figure 4.1 shows the message printed out by rlzparse. Argument syntax is GNU-like,
with both short and long option names. The endflip and divsuffix programs read
and write using standard input and output instead of working with files directly, and
shell redirection is used to specify input and output files.
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rlzparse: compress with the Relative Lempel-Ziv algorithm.
Usage: rlzparse [options] -i INFILE -d DICTIONARY -s SUFFIX_ARRAY [-o OUTFILE]
Input is compressed against a dictionary and a suffix array of that dictionary;
the suffix array is a list of 32-bit binary ints in machine-native byte order.
Options:
-w, --width 8/16/32/64 Process input and dictionary as 8/16/32/64-bit

units; the default is 8-bit=one-byte symbols.
-W, --sa-width 32/64 Use 32- or 64-bit integers in the suffix array.
-f, --output-fmt 32x2/64x2/ascii/vbyte

Different output formats, default=32x2.
32x2 and 64x2 are pairs of binary integers.
ascii is two space-separated numbers per line.
vbyte is an efficient little-endian byte encoding.

With no OUTFILE specified, output is written to ’INFILE.rlz’.
Also accepted are --dictionary, --suffix-array, --output instead of -d, -s, -o.
Other options: -q/--quiet (no output under normal circumstances),

--progress (periodically print out a progress counter)
(rlzparse version 0.8, April 2023)

Figure 4.1: The help message printed by rlzparse when run without arguments.

Given an input file called “input”, the procedure to RLZ-compress and then
decompress the file would happen for example like this:

1. A dictionary called input.dict is formed, using for example the builddict tool
with some appropriate parameters:
builddict -i input -n 6000 -l 256 -o input.dict

2. The suffix array of the dictionary is computed with a third-party tool:
gensa input.dict input.sa

3. The file is compressed against the dictionary and the suffix array:
rlzparse -i input -d input.dict -s input.sa -o input.rlz

4. The suffix array and uncompressed input file can now be deleted.

5. Decompression requires the RLZ-compressed file and the original dictionary:
rlzunparse -i input.rlz -d input.dict -o input-reconstituted

The RLZ tools can work with wider-width multi-byte symbols easily by specify-
ing the --width (-w) parameter, but some extra work is needed for the suffix array
calculation of the wide-symbol string. (Chapter 2.5 describes the problem we face and
explains the solution to it.) With “input” now being a file of 32-bit integers, we would
sample, compress and decompress it thus:
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1. We sample the dictionary, taking care to specify symbol width:
builddict -i input -n 6000 -l 256 -w 32 -o input.dict

2. The byte order of the dictionary is inverted for suffix array calculation. Our
symbols are 4 bytes long, so we specify 4 as the parameter:
endflip 4 < input.dict > input.dict.flipped

3. The flipped dictionary’s 8-bit-wide suffix array is calculated:
gensa input.dict.flipped input.sa.8

4. The suffix array of 8-bit data is divided to produce the suffix array of 32-bit data:
divsuffix 4 < input.sa.8 > input.sa

5. Extra files can now be removed: rm input.dict.flipped input.sa.8

6. All is now in place for parsing:
rlzparse -i input -d input.dict -s input.sa -w 32 -o input.rlz

7. Like before, only the dictionary and RLZ-compressed data is needed for decom-
pression, so input and input.sa can be deleted.

8. One must remember to specify symbol width during decompression also:
rlzunparse -i input.rlz -d input.dict -w 32 -o input-reconstituted

Since 32-bit indices can index files only up to 4 GiB (232 bytes) in size, dictionaries
larger than that require a larger integer width for indexing. The pSAscan program∗

can compute suffix arrays of files up to 1 TiB (240 bytes) in size, and it writes 40-bit
(5-byte) integers as output. Our rlzparse tool cannot (yet) directly read in these
40-bit integers, but it does support 64-bit integers. We thus wrote the 5to8 tool to
convert 40-bit integers into 64-bit integers for interoperability with pSAscan. Unlike
the other programs of the suite, it uses no command-line parameters; it reads data
from standard input and writes it to standard output, so the shell’s file redirection
utilities are used to connect standard input and output with files. We then use the
--sa-width 64 (-W 64) parameter with rlzparse to load in the 64-bit integers. As an
additional consequence of using a large dictionary, one needs to use an output format
different from the default 32x2, as the pointer fields of 32x2 are likewise not large
enough to refer to locations in the entire dictionary. The variable-byte-encoded vbyte
format allows references to locations above 232, without the extra redundancy of the
simpler 64x2 format—even with terabyte-size dictionaries, 3 bytes out of 8 in every
position field and at least as many in the length field will be zero. Thus, compression
with a very big dictionary would be done thus:

∗https://www.cs.helsinki.fi/group/pads/pSAscan.html

https://www.cs.helsinki.fi/group/pads/pSAscan.html
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1. builddict -i large-input -n 42000 -l 40000 -o large-input.dict

2. Calculate the suffix array; the pSAscan program decides the output file name
automatically: psascan large-input.dict

3. Convert the suffix array to 64-bit integers:
5to8 large-input.dict.sa5 large-input.sa64

4. rlzparse -i large-input -d large-input.dict -s large-input.sa64
--sa-width 64 -f vbyte -o large-input.rlzv

5. (rm large-input.dict.sa5 large-input.sa64 large-input)

6. rlzunparse -f vbyte -i large-input.rlzv -d large-input.dict
-o large-input-reconstituted

4.2 Disk and memory usage

Dictionaries of byte-width data with a size N smaller than 232 bytes require 5N bytes
in both disk space and random-access memory during parsing. Dictionaries larger than
this require much more: although pSAscan can run with relatively limited memory, it
will still require 6N bytes in disk space. The conversion process from 40-bit to 64-bit
integers does not require much memory at all, as it reads and writes one symbol at a
time, but the conversion will cause 14N bytes of disk space to be used momentarily∗.
The 40-bit-integer file can then be removed, and disk usage will fall to 9N bytes; this
is how much memory will also be used during parsing.

Wider symbols will require memory and disk space proportional to their length
in bytes during suffix array computation, but proportional to their length in symbols
during parsing. With a dictionary of fewer than 229 64-bit symbols, the file will take
8N bytes (N being the length in symbols), and the suffix array fits into 32-bit symbols.
The suffix array of 8-bit data will require 32N bytes of space, but after index division
the suffix array file will only be 4N bytes in length—peak disk usage is 44N bytes,
but only 12N bytes after computation are left on disk and will be used during parsing.
With a larger dictionary, N ≥ 229, the file itself is larger than 4 GiB, so the jump to 64-
bit integers will cause more memory to be used. The suffix array computation requires
40N bytes of disk space, and conversion to 64-bit integers will require another 64N
(with disk usage reaching its peak, 112N bytes), but after division the suffix array will

∗ It would be in principle possible to start removing the 40-bit-integer file while the 64-bit integer
file is created, to lessen disk space usage. We have not tried this, and expect it to be difficult or
“hacky” to do in practice.
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be down to 8N bytes—as big as the dictionary itself—and if N < 232, the suffix array
could be reduced to 4N bytes by converting from 64-bit to 32-bit integers, for a total
dictionary-plus-suffix-array disk usage (and parse-time memory usage) of 12N bytes.

This heavy disk usage, 112 times the number of symbols in the worst case, could
be lessened by rlzparse itself computing the suffix array entirely in memory. There
are no plans at the moment for implementing this, as fast suffix array computation is
not trivial, and rlzparse’s codebase would be greatly complicated.





5. Performance

In this chapter we investigate how effective RLZ is at data compression, both in terms
of how large the output is in relation to the input (compression ratio or compression
factor) and how long the parsing operation takes (compression time). We compare
RLZ’s performance against two LZ77-based compressors, gzip and xz.

Throughout this chapter, compression ratio will be defined as the ratio between
output size and input size, expressed as a percentage. This approach contrasts with
the “percentage saved” approach, which is 100% minus that ratio. An example: if a
1 megabyte file was compressed to 50 kilobytes, the compression ratio would be written
as 5%, although 95% of the space was compressed and the file shrunk by a factor of
20. Thus, lower numbers are more desirable, and numbers above 100% are extremely
undesirable, indicating negative compression: the output was larger than the input.

We will take the size of the dictionary into account when indicating compression
ratios, since the RLZ-parsed output is useless without the dictionary. Thus, for exam-
ple, if the uncompressed file was 1 MB†, the dictionary was 100 kB, and the RLZ-parsed
output was 5 kB, the compression ratio is (100 kB+5 kB)÷1000 kB = 0.105 = 10.5%.
This is for fairness of comparison with other data compressors, as with a sufficiently
large dictionary (such as the entire input itself) the RLZ-parsed output can be made
to be as little as one token.

5.1 Testing datasets

Testing and benchmarking has been done with the following datasets:

• dragon: A generated dataset over the byte alphabet, but using only two symbols.
An instance of OEIS sequence A014577 (describing a fractal called the “dragon
curve” or “paper-folding curve”), mapped to the letters L and R‡. This sequence

†Throughout this chapter, we will strictly notate that 1 kB=1000 bytes, 1 MB=1000 kB,
and 1 GB=1000 MB, and use alternative symbols for powers of 1024: 1 KiB=1024 bytes,
1 MiB=1024 KiB=220 B, 1 GiB=1024 MiB=230 B.

‡ A014577 is generated with the recurrence relation a(4n) = R, a(4n + 2) = L, a(2n + 1) = a(n).
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is repetitive and highly compressible∗. The intention behind this input is a “best
case”, “friendly” input, from which good performance can be expected, while not
being entirely as trivial as simple repetitions of a fixed sequence.

• Items from the Pizza&Chili Corpus text collection [4]:

– pc-sources: 211 megabytes of C and Java source code files, concatenated
together, from Linux kernel and GCC versions from around 2005.

– pc-english: 2.2 gigabytes of Project Gutenberg e-texts, concatenated.

– pc-dna: 404 megabytes of DNA sequences, from the Human Genome
Project, via Project Gutenberg’s publication of those genomes. The or-
dinary Project Gutenberg boilerplate text has been removed, as has line
wrapping: there are no newlines every 60 characters like in FASTA files.
Of the 404 million characters, 8728 (around 0.002%) are not one of A, C,
G, T: there are around 1800 newlines that separate sequences, around 5300
occurrences of the character N, and around a couple hundred each of the
characters B, D, H, K, M, R, S, V, W, Y†.

• Items from the Pizza&Chili Repetitive Corpus [4, under “additional material”],
containing three purely artificial files, eight “pseudo-real” files, nine real files, and
nine log files. More detailed descriptions are given in Section 5.4.

5.2 Effect of input size on compression time

We decided to test the effect that input size has on compression time by compressing the
dragon dataset. We chose this set because it is fast to generate in limitless quantities,
it has a simple definition, it is very self-similar, and it should compress well.

We formed 20 sizes of input file, following the 1–2–5 series of preferred numbers:
the first was 1 kB, then 2 kB, 5 kB, 10 kB, 20 kB, and so on, up to 1 and 2 gigabytes.
For each of these files, we used 5 dictionaries. Two of the dictionaries are static: a 1 kB
prefix and a 1 MiB prefix of the sequence. The other three dictionaries are 1%, 2% and
5% randomly sampled square dictionaries of the files. Since for most cases the square
root of the target dictionary size,

√
|D|, is not an integer, we used the approximations

∗“Highly compressible” is an informal characterization, but it is easily shrunk into a tiny fraction of
its space. A 230-byte portion of the sequence can be manually shrunk by 99.9% with nine search and
replace expressions. Gzip version 1.10 at compression level 9 will shrink it by 99.5%. xz (XZ Utils)
version 5.2.5, also at compression level 9, will shrink it by 99.6%.

†These are allowed symbols in FASTA format files, indicating uncertainty in the sequencing: for
example, N indicates that the DNA sequence has one of the ACGT nucleotides at this position, but it
cannot be determined which one.
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n = b
√
|D|c−1 and l = b

√
|D|c+1 as parameters to builddict. The product of these

approximations is always below |D| with an absolute error of at most
√
|D|; the largest

absolute error was 7025 bytes (0.018% too small) for the 2% dictionary of the 2 GB
file, and the largest proportional error was the 2% dictionary of the 1 kB file, which
was calculated as 15 bytes when it should have been 20.

Figure 5.1 shows the time it took for the program to run in each of the 100
instances, on a log-log plot. The computer used for these instances had a 3.8 GHz
AMD FX 4300 (from 2012) CPU and 1866 MHz DDR3 memory, running Fedora Linux
35 with kernel version 6.0.5, with no other major processes running. The variance of
runtimes under around 0.1 seconds is high, and although care was taken to measure
actual CPU time instead of wall-clock time, the various overheads involved in program
and file loading times are a not-insignificant portion of the time indicated, and variables
such as operating system-level caching and disk controller-level caching come into play.

Figure 5.1: Run time, in seconds, plotted against dragon input data size, in bytes, with five different
series of dictionary sizes: two of fixed length (1 kB and 1 MB) and three of fixed proportion of the
input (1%, 2% and 5%). Both scales are logarithmic: the longest runtimes are on the order of 1000
seconds, or about 20 minutes.

Once the runtimes grow out of the millisecond range, and the input size grows
above a megabyte, distinct populations start to form. The instances using the fixed-
size one-megabyte dictionary are always the fastest, closely followed by the one-kilobyte
static dictionary—looking at the underlying numbers, the 1k instances are constantly
about 1.31 times slower than the 1M instances∗. The fixed-size-dictionary population is
then trailed by the much slower fixed-proportion, variable-size-dictionary population.

∗ The instances with input sizes of 2 and 10 megabytes are anomalous, with almost-identical
runtimes. The 20 MB/1k instance is also only 1.25 times slower than the 20 MB/1M instance.
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This population is all in all quite close in its runtimes, with the 5% dictionary being
in general slightly slower than the 1% dictionary (by 1.2 to 1.5 times), and with the
2% dictionary somewhere in between. The 1% dictionary instances are slower than the
1k dictionary instances by around 3 times, but this ratio has a growing trend: by the
2 gigabyte input, the 1% dictionary is 6.7 times slower than the 1k dictionary. It is
difficult to predict with confidence with a dataset of this size whether this trend holds
for larger and larger inputs, but with the data we have, diverging trend lines appear
to be the case: the fixed-proportion dictionaries will become slower and slower with
respect to the fixed-size dictionaries. This agrees with our time complexity calculations
derived in Section 2.7: larger dictionaries are generally slower, but dictionaries that
are too small (and thus frequently cause token search to be started anew) will be slow
again, because of the overhead involved with the first stages of token search.

Other instances of trend lines with different slopes are shown in the next two
plots. Figure 5.2 plots the number of phrases output by each instance—for example,
all instances with input sizes under a megabyte that used the one-megabyte static
dictionary output a single phrase, since the input is a subset of the dictionary, while
parsing the 1 kilobyte input instance with the 1% dictionary output 218 phrases –
approximately 1000 ÷ 4, since the dictionary consisted of two 4-byte samples. Figure
5.3 plots the compression ratio: the size of the output compared with the input. Here,
the dictionary size is taken into account: the output size is the size of the dictionary
plus the size of the tokens, with each phrase taking up eight token.

From Figure 5.2, we see that the static dictionary instances behave quite differ-
ently from the variable-size instances. For smaller inputs, the parser parses them into
fewer phrases, but the 1k dictionary instance eventually parses into larger outputs than
the variable-dictionary instances (the threshold is 2 MB of input for the 5% dictionary
and 10 MB of input for the 1% dictionary at which they will parse smaller; the dictio-
naries of these instances are the same size), and it appears that the 1M instance will
eventually parse larger than the variable-size instances∗.

The compression ratio plot (Figure 5.3) is approximately the inverse of the
number-of-phrases plot: lines trend downward. Additionally, a clear leveling-off is
observed: the 1k dictionary initially starts as the best dictionary, being the only dictio-
nary for a while for which the output is smaller than the input. It eventually flattens
out, and never improves upon the compression ratio of 18.75%. The 5% dictionary is
next seen to level off, and right at the end of the chart the 2% and 1% dictionaries

∗ The number of phrases when parsed against the 1M dictionary grows as fast as the input size
does (in a 2, 2, 2.5× pattern), whereas all of the variable dictionaries grow geometrically with a factor
of about 1.48. The output of parsing against the 1M dictionary will exceed that of the 5% dictionary
at inputs of around two terabytes, and those of the 1% dictionary at around 10 terabytes.
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Figure 5.2: Number of phrases output, plotted against dragon input data size, with five different
series of dictionary sizes. Both scales are logarithmic. The dictionaries are the same as in Figure 5.1:
1k and 1M are fixed-size dictionaries of 1 kB and 1 MB, while 1%, 2% and 5% are variable-sized
dictionaries, being their respective proportion of the input size.

Figure 5.3: Compression ratio of output vs input, plotted against dragon input data size. There are
five different series of dictionary sizes, and compression ratio takes the dictionary size into account.
Each phrase is eight bytes. Both scales are logarithmic. Dictionaries are the same as in Figures 5.1
and 5.2: 1k and 1M are fixed-size, while 1%, 2% and 5% are proportional to input size.
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approach their optima. The 1M dictionary, on the other hand, started off-the-chart
(with the output being 1000 times longer than the input) and ended off-chart also: for
the 2 GB input, it produced a mere 5721 phrases, for a total output size of 1 045 768
bytes: 0.068%.

This flattening-out of the compression ratio plot is due to the geometric growth
of the number of phrases output: for the fixed-size dictionaries, the number of phrases
doubles, and for the fixed-proportion ones, it grows by a factor of around 1.5. On a
long-enough scale the growth in the number of phrases will catch up with, and then
overtake, the growth of the dictionary, becoming the dominant term in the size of the
output files.

Having analyzed these plots, and the plots in further sections, we must emphasize
the artificial nature of the dragon input: its repetitive, fractal structure is among the
best inputs that a compressor can be given. Next, we will analyze performance on
real files, as well as pseudo-realistic sequences and naturally repetitive datasets, and
analyze how choice of dictionary affects both runtime and compression ratio.

5.3 Results for real data

Initial testing on real data was done with the 211-megabyte pc-sources dataset, which
consists of (commented) C and C-like source code of the Linux kernel and GCC com-
piler. This file is quite compressible by traditional, LZ77-family compressors: gzip -9
compresses it to 47 megabytes and xz -9 compresses it to 31 megabytes.

It was arbitrarily decided to try compression with dictionaries of 1% and 5% of
the input. Two dictionaries for each size were constructed: one was a square dictionary,
randomly sampled with the builddict program∗, and the other was simply a prefix of
the input.

Table 5.1 shows how long it took rlzparse to parse the pc-sources file, and how
large the output was. There are three time columns: “user” time indicates the time
the process spent in operating system user space, primarily performing token search;
“system” time indicates the time spent in kernel space, serving system calls such as
file access†. Compression performance is not good: only one of the four, the 5% square

∗Because neither 1% nor 5% of the input was a square number, the parameters n = l = 1452 and
n = l = 3247 were used.

† A previous version of rlzparse had a bug caused by an oversight, where the output file was
flushed (i.e. buffers were emptied and data was forcefully written to the disk) with every write. All
writes were 8 bytes long, and one was done for every token. With the extra flushes, runtime was
around 160% of what it is now, and a third of that time, around a minute at each run, was spent in
the kernel. Removing those extraneous flushes allowed the operating system to start using its output
cache, and thus system time fell from a minute to a second or two.
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Dict. shape Tokens output Ratio MPL User time System time Total time
Prefix, 1% 35,050,445 134% 6.02 118.0 sec 1.46 sec 119.5 sec
Prefix, 5% 27,234,004 108% 7.74 180.9 sec 1.56 sec 182.5 sec
Square, 1% 26,438,458 101% 7.98 102.6 sec 1.33 sec 103.9 sec
Square, 5% 19,558,060 79% 10.78 149.1 sec 1.28 sec 150.4 sec

Table 5.1: Runtimes and compression ratios for compressing the 211-megabyte pc-sources dataset.
MPL stands for mean phrase length; 8÷MPL is the compression ratio without the dictionary, while
the “Ratio” column takes into account the size of the dictionary. Ratios over 100% indicate that the
output is larger than the input.

Dict. shape Tokens output Ratio MPL User time System time Total time
Prefix, 1% 235,544,845 86.3% 9.38 3159 sec 17.5 sec 3177 sec
Prefix, 5% 184,740,373 71.8% 11.96 4058 sec 17.7 sec 4076 sec
Square, 1% 208,682,811 76.5% 10.59 3057 sec 16.0 sec 3073 sec
Square, 5% 168,541,603 66.0% 13.11 3973 sec 17.4 sec 3990 sec

Table 5.2: Runtimes and compression ratios for compressing the 2.2-gigabyte pc-english dataset.

Dict. shape Tokens output Ratio MPL User time System time Total time
Prefix, 1% 33,021,742 66.4% 12.23 363.6 sec 2.16 sec 365.8 sec
Prefix, 5% 28,083,729 60.6% 14.38 545.3 sec 2.21 sec 547.5 sec
Square, 1% 32,772,320 65.9% 12.33 369.8 sec 2.06 sec 371.9 sec
Square, 5% 28,021,791 60.5% 14.41 548.2 sec 2.17 sec 550.4 sec

Table 5.3: Runtimes and compression ratios for compressing the 404-megabyte pc-dna dataset.
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dictionary, managed to produce a net saving of data, and even then only a fifth was
saved.

Further testing was done on the pc-english and pc-dna datasets. The former
is a 2210-megabyte collection of English-language literature from Project Gutenberg,
concatenated into one file. The latter is a 404-megabyte concatenation of DNA se-
quences from the Human Genome Project, with a byte alphabet and no line wrapping.
We formed dictionaries of 1% and 5% prefixes and squares for both datasets∗. In the
resultant runtimes, which are in table 5.2 for pc-english and 5.3 for pc-dna, we see
the non-linearity of the algorithm: pc-english had an input and dictionaries about
ten times bigger than pc-sources, but ran around 30 times slower than it, and pc-dna
was twice as big and ran 3 (for the prefix runs) to 3.6 (for the square runs) times slower.

5.4 Results for repetitive data

Testing was done on all files of the Pizza&Chili Repetitive Corpus. We compressed each
file with rlzparse four times: once with a 1 MiB prefix dictionary, and once each with
0.1%, 1%, and 5% square dictionaries. (The approximation of n = l = b

√
0.001|S|c, or

likewise with 0.01 and 0.05, was used to define the dictionary.)
For comparison, we also compressed each file with the LZ77-utilizing compressors

gzip and xz, both at their default settings and at their maximum compression level,
obtained with gzip -9/xz -9. In the majority of cases† the difference in output size
was negligible, on the order of an extra 0.1–1 percentage point improvement to com-
pression ratio, so we have opted to only include here the results of those runs with the
-9 flag.

Results are presented broken down by each of the four categories of files: arti-
ficial mathematical sequences, “pseudo-real” files obtained by concatenating mutated
versions of a text, real files that are inherently repetitive (such as DNA or the entire
history of a Wikipedia article), and log files. Within each of the tables 5.4—5.7, the
percentage refers to the compression factor (output divided by input), and for RLZ files,

∗ For the pc-english dataset the parameters n = l = 4701 and n = l = 10512 were used for the
1% and 5% square dictionaries, respectively. The pc-dna dataset used the parameters n = l = 2009
for 1% and n = l = 4494 for 5%.

† Exceptions: the files BGL, Thunderbird and Windows were around 0.05 percentage points larger
when compressed with xz -9 than their default-setting counterparts. On the other hand, the files
cere, coreutils, Escherichia_Coli, and para were shrunk considerably more with xz -9: cere
and para had a 22 pp improvement in compression ratio, from around 23% to 1% input-to-output;
coreutils shrunk by almost 10 pp and Escherichia_Coli shrunk by 4 pp, from 9% to just under
5%. The gzip program was more consistent: most runs of gzip -9 improved upon the default by
between 0.2 to 1 pp, and only the influenza file was compressed more, shrinking by 4.3 pp.
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includes the size of the dictionary; the size without the dictionary is easily derived∗.
The file size refers to the size of the compressed output itself, excluding the dictionary.
The RLZ output format used was pairs of fixed-width 32-bit integers (32x2), so the
number of phrases in the factorization can be calculated as file size divided by 8, and
thus the (approximate) mean phrase length can be found.

5.4.1 Artificial data

The Pizza&Chili repetitive corpus had three artificial files, taking the form of binary
sequences with a mathematical definition, written with one character per symbol.

fib41 This is an instance, or rather a prefix, of the infinite Fibonacci word, OEIS
sequence A003849, expressed with the characters “a” and “b”. The definition is
recursive: the base cases are F (1) = a and F (2) = ab, and the nth Fibonacci
word is defined as F (n) = F (n− 1) +F (n− 2). All shorter words are prefixes of
longer ones. The file contains F (41), 267 million symbols long, with the first 34
being abaababaabaababaababaabaababaabaab.

rs.13 We could not trace any further information on this sequence’s definition, so we
quote Ferragina and Navarro directly†:

Run-Rich String Sequence R(n): A measure of string complexity [...] is
the number of runs. [...] It has been shown that the maximum number
of runs in a string is greater than 0.944n and lower than 1.029n. Franek
et al. show a constructive and simple way to obtain strings with many
runs; the n-th of those strings is denoted R(n). The ratio of the runs
of their strings to the length approaches 3

1+
√

5 = 0.92705 . . . .

We did not find exactly which “Franek et al.” paper is referred to, but whatever
it is, it was published before 2010. The first 40 symbols of the sequence, space-
separated for clarity, are 01001 01101 00101 00101 10100 10110 10110 10010.

tm29 This is a prefix of the Thue–Morse sequence, OEIS sequence A010060. Perhaps
the simplest definition of it is based on on bitwise negation: one starts with the
string t0 = 0, and repeatedly adds to this the binary inverse of the previous
string, thus t1 = 01, t2 = 0110, t3 = 01101001, . . . . The file tm29 is 228 bytes
long, so it contains the string t28, expressed with the characters “a” and “b”. The
first 32 characters are abbabaabbaababbabaababbaabbabaab.

∗ For the 5% dictionaries, simply subtract 5 percentage points. For the 1 MiB prefix dictionaries,
first calculate how many percent 1 MiB≈1.049 MB is of the original file, then subtract that from the
percentage given.

†http://pizzachili.dcc.uchile.cl/artificial-stats.html

http://pizzachili.dcc.uchile.cl/artificial-stats.html
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Compression results are listed in Table 5.4. Unsurprisingly, all compressors per-
formed very well on these very repetitive sequences. RLZ with the 5% dictionary
performed worst overall, but if one discards the size of the dictionary (by subtracting
5 percentage points) it is on par with, and sometimes exceeds, the performance of xz.
RLZ also performed exceptionally well with the 1 MiB prefix dictionary: the parsing
itself only occupies single kilobytes of space, and the mean phrase lengths were over
710,000 for all three files. Even with the 1 MiB prefix dictionary (which is around 0.3%
of the input) the total output was on par with gzip’s and xz’s output.

File 1 MiB prefix 5% square gzip -9 xz -9
fib41 0.39% 5.14% 0.44% 0.18%
267.9 MB 3,016 B 370.9 kB 1,176 kB 473.3 kB
rs.13 0.48% 5.19% 0.51% 0.16%
216.7 MB 2,440 B 414.7 kB 1,097 kB 354.2 kB
tm29 0.39% 5.19% 0.53% 0.36%
268.4 MB 2,728 B 524.3 kB 1,420 kB 964.5 kB

Table 5.4: The Pizza&Chili artificial repetitive file corpus, compressed with RLZ with 1 MiB prefix
and 5% square dictionaries, and also compressed with gzip and xz. Compressed RLZ file sizes do not
include the size of the dictionary, but the compression factor (output÷input) does.

When it comes to compression speed, gzip was the fastest: all three files were
compressed in about 3 seconds. xz took 15 seconds for fib41, 12 s for rs.13, and 25 s
for tm29. rlzparse with the 1 MiB prefix dictionary took 19 seconds for fib41, 10 s
for rs.13, and 13 s for tm29; with the 5% dictionary, it took 97 s, 90 s, and 113 s
respectively, being by far the slowest.

5.4.2 Pseudo-real data

The Pizza&Chili corpus’ “pseudo-real” data files are built by taking a 1 MiB prefix of
one of the files of the non-repetitive data set (some of which we also tested compression
on, in section 5.3), then repeatedly mutating it. 99 mutated segments were constructed,
then they were all concatenated into a single file, with the un-mutated segment at the
start.

The mutation takes the form of random character substitutions, with substitute
characters taken from the same alphabet. There were three frequencies of mutation
used: those files containing “00001” in their names had 0.001% of characters substi-
tuted, “0001” had 0.01%, and “001” had 0.1%, one in a thousand, characters substi-
tuted. There were also two approaches to mutation: those files with names ending in
“.1” have each segment mutating the original segment (and so changes do not accu-
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mulate), while those with names ending in “.2” mutated the preceding segment, and
so changes accumulated throughout the file.

File 1 MiB prefix 5% square gzip -9 xz -9
dblp.xml.00001.1 1.02% 5.62% 17.51% 0.15%
100 MiB 16.6 kB 658.6 kB 18,359 kB 157.2 kB
dblp.xml.00001.2 1.76% 5.75% 17.66% 0.15%
100 MiB 792.7 kB 788.6 kB 18,514 kB 156.3 kB
dblp.xml.0001.1 1.16% 5.75% 17.54% 0.18%
100 MiB 165,5 kB 789.9 kB 18,390 kB 192.8 kB
dblp.xml.0001.2 8.71% 6.97% 18.94% 0.18%
100 MiB 8,081 kB 2,071 kB 19,858 kB 184.5 kB
dna.001.1 2.56% 7.30% 27.17% 0.51%
100 MiB 1,637 kB 2.416 kB 28,486 kB 537.0 kB
english.001.2 62.30% 18.69% 42.54% 0.55%
100 MiB 64,273 kB 14,360 kB 44,605 kB 572.6 kB
proteins.001.1 2.58% 7.26% 38.50% 0.59%
100 MiB 1,651 kB 2,377 kB 40,369 kB 623.2 kB
sources.001.2 66.25% 18.22% 34.35% 0.44%
100 MiB 68,418 kB 13,870 kB 36,023 kB 464.7 kB

Table 5.5: Compressed file sizes and compression factors of the Pizza&Chili “pseudo-real” dataset,
using both RLZ with 1 MiB prefix and 5% square dictionaries as well as gzip and xz at their maximum
compression ratio. Compressed RLZ output sizes do not include the size of the dictionary, but the
compression factor does.

The corpus that was available for download in January 2023 did not contain all
available frequencies with both mutation strategies, which limits what conclusions we
can draw with respect to how different mutation strategies affect RLZ’s performance.
Nevertheless, we can conclude the following: xz was by far the most efficient, gzip
was least efficient, and RLZ did worse when mutations accumulated, but beat gzip
in almost all cases. RLZ did particularly badly when compressing English text or
source code (both human-readable and human-written data types) against the first,
un-mutated document—in both english.001.2 and sources.001.2, by the time the
100th segment starts, approximately 1 in 10 characters (0.1%× 98) would differ from
the original. (We wonder how well it would have done if all mutations were based on the
original segment.) If the size of the dictionary were discounted, RLZ was competitive
against xz in a couple of cases.

As for runtime: gzip was generally fastest, taking under 5 seconds for most files,
but 142 s for dna.001.1, 13 s for english.001.2, and 20 s for sources.001.2. xz took
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between 20 and 25 seconds for most files, but dna.001.1 took 60 s and english.001.2
took 40 s. rlzparse with the 1 MiB prefix dictionary was fastest when its compres-
sion was the best: taking under 3 seconds with the first three dblp files and 8.5 with
the fourth, 3.4 s with dna.001.1, 4.3 s with proteins.001.1, and about 29 s with
english.001.2 and sources.001.2. With the 5% dictionary, rlzparse took between
8 and 10 seconds with the dblp, dna.001.1, and proteins.001.1 files, 16.5 s with
sources.001.2, and 19 s with english.001.2—faster than the prefix dictionary, cor-
relating with the superior compression factor.

5.4.3 Real data

The Pizza&Chili Repetitive Corpus had nine “real” files: four of them are DNA, three
of them are natural-language text, and two of them are program source code.

• cere: 37 concatenated DNA sequences of different strains of Saccharomyces cere-
visiae, from the Saccharomyces Genome Resequencing Project.

• coreutils: Source code of the GNU Core Utilities (“coreutils”): “We collected
all versions 5.x of the coreutils package and removed all binary files, making a
total of 9 versions”. Manual inspection of the file has shown it to be a mix of Make
files, Perl, Bourne Shell scripts (many of them automated tests), text files used
as test inputs to the utilities, manual pages, and C source code. It is interesting
to note that the first megabyte has no C source code in it, being just Make files
and test scripts.

• einstein.de.txt: All versions of the German-language Wikipedia article on
Albert Einstein, from creation up to the version of January 12, 2010∗. The format
is “wikitext”, the markup of the page. The character encoding is Windows-1252,
so the non-ASCII German letters äöü are represented with single bytes†. One
newline character separates versions. We have calculated that the file contains
2130±1 revisions‡.

∗ The last version included is at https://de.wikipedia.org/w/index.php?title=Albert_
Einstein&oldid=69172767.

† Comparing the wikitext in the file with the one found on Wikipedia, minor differences can be
found caused by the character encoding conversion (Wikipedia uses Unicode), for example all en-dashes
have been converted into plain ASCII hyphens. There is also a change in whitespace: paragraphs are
separated with two newlines on Wikipedia, and only one in the file.

‡Counting versions on Wikipedia’s version history we get 2129. Searching (with grep) and counting
the opening words of the article we get 2131.

https://de.wikipedia.org/w/index.php?title=Albert_Einstein&oldid=69172767
https://de.wikipedia.org/w/index.php?title=Albert_Einstein&oldid=69172767
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• einstein.en.txt: All versions of the English-language Wikipedia article on
Albert Einstein, from creation up to the version of November 10, 2006∗. Like the
German version, a character set conversion to Windows-1252 has taken place,
and some whitespace changes have occurred, relative to the original wikitext on
Wikipedia. We have calculated that there are exactly 7500 revisions in the file.

• Escherichia_Coli: 23 DNA sequences of Escherichia coli, from the National
Center for Biotechnology Information (NCBI).

• influenza: “78,041 [DNA] sequences of Haemophilus influenzae, also from the
NCBI.” †

• kernel: “We also collected all 1.0.x and 1.1.x versions of the Linux kernel, making
a total of 36 versions.” Mainly C source code.

• para: 36 DNA sequences of different strains of Saccharomyces paradoxus, from
the Saccharomyces Genome Resequencing Project.

• world_leaders: A collection of Chiefs of State and Cabinet Members of For-
eign Governments documents, which were formerly distributed as PDF files on
the Central Intelligence Agency’s website. These were converted to text with
pdftotext‡. A quick and approximate count (by searching case-insensitively for
“key to abbreviations”) told us that the file contains at least 84 documents.

Table 5.6 shows the results of our compression tests. Like with the preceding
datasets, xz was clearly the most effective compressor. RLZ performed very poorly
with the 1 MiB prefix dictionary—more often than not, the output was bigger than

∗ The last version included is at https://en.wikipedia.org/w/index.php?title=Albert_
Einstein&oldid=87011531.

†We have some doubts as to the accuracy of this description: the bacterium H. influenzae has a
genome of some 1.8 million base pairs. Dividing the size of the file by that number gives about 86
sequences, while dividing by 78,041 sequences gives about 1983.7 base pairs per sequence, off by a
factor of 900. Perhaps a decimal point has been mistaken for a thousands-separating comma?

‡ The conversion process was not entirely error-free, especially with graphic elements, as evidenced
by the opening “words” of the first document in the file: CENTRAL LIGEN C TEL IN IT ED STA M
TES OF A ER Chiefs of State and Cabinet Members of Foreign Governments. In the body of
the documents, the text itself appears to be correct, but for the human reader formatting leaves
much to be desired: the original PDFs evidently used dots to line up a government position to the
corresponding name in a listing (cf. how some tables of contents connect a section name to a page
number), and those dots have been reproduced verbatim as ASCII periods, while line terminators
have not. Tables have been unhelpfully written out in column-major order. This is all to say that,
although the source of the data is real, this collection might not be one that would be realistically
constructed.

https://en.wikipedia.org/w/index.php?title=Albert_Einstein&oldid=87011531
https://en.wikipedia.org/w/index.php?title=Albert_Einstein&oldid=87011531
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File Prefix Square Tailored gzip -9 xz -9
cere 69.21% 17.83% 8.90% 26.20% 1.14%
461.3 MB 318 MB 59.2 MB 12.5+28.6 MB 120 MB 5.24 MB
coreutils 214.04% 33.46% 32.98% 24.32% 1.90%
205.3 MB 438 MB 58.4 MB 22.8+44.9 MB 49.9 MB 3.90 MB
einstein.de.txt 137.01% 5.87% 18.91% 31.04% 0.11%
92.8 MB 126 MB 805 kB 0.13+17.4 MB 28.8 MB 99.0 kB
einstein.en.txt 178.14% 5.43% 29.18% 35.00% 0.07%
467.6 MB 832 MB 2.03 MB 0.15+136 MB 163 MB 323 kB
Escherichia_Coli 68.69% 45.99% 36.39% 27.98% 4.67%
112.7 MB 76.4 MB 46.2 MB 4.9+36.1 MB 31.5 MB 5.26 MB
influenza 45.09% 13.00% 123.40% 6.87% 1.34%
154.8 MB 68.8 MB 12.4 MB 4 kB+191 MB 10.6 MB 2.07 MB
kernel 104.71% 18.42% 42.96% 26.90% 0.81%
258.0 MB 269 MB 34.6 MB 7.2+104 MB 69.3 MB 2.09 MB
para 71.94% 23.12% 31.91% 27.04% 1.46%
429.3 MB 307 MB 77.8 MB 11.9+125 MB 116 MB 6.26 MB
world_leaders 40.11% 17.53% 26.18% 17.65% 1.29%
47.0 MB 17.8 MB 5.89 MB 3.7+8.6 MB 8.29 MB 607 kB

Table 5.6: Compressed file sizes and compression factors of the Pizza&Chili real dataset, using both
RLZ with 1 MiB prefix, 5% square, and input-specific tailored dictionaries as well as gzip and xz at
their maximum compression ratio. The compression ratios include the size of the dictionary in the
calculation. The output sizes for the “prefix” and “square” columns do not include the size of the
dictionary (as it’s either constant or easily derived from input size). In the “tailored” column, the size
of the dictionary is expressed before the plus sign and the size of the RLZ output file is after it.

the input, and for the coreutils file, the output was over double the size of the input.
(After inspecting the file itself, this is not surprising: the first mebibyte is mainly just
Make files and shell scripts, completely lacking C source code, and so attempts to
compress C end up with very short phrases—Make files do not include strings such as
“#ifndef”.)

RLZ fared better with a more varied 5% dictionary, beating gz in most cases. The
largest improvements were seen in the einstein Wikipedia version history datasets:
if the size of the dictionary itself were discounted, RLZ achieved a compression ratio
under 1%.

We considered the possibility that neither the 1 MiB prefix nor the 5% square
dictionary are particularly useful, or particularly realistic, dictionaries to compress
with. Recall the formulation of the files: they are concatenations of 9 to 78,041 similar
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documents. It is therefore reasonable to presume that one, or a small set, of these
documents would work well as a dictionary for the others: identical sections would be
parsed into long phrases, and much of the factorized output would involve coding the
differences to the dictionary. We thus created tailored dictionaries for each of these
documents, which simulate using one or a couple of the documents as a dictionary.
We calculated the “average document length”, by dividing the size of the file by the
number of documents. For the DNA and code files (i.e. all except the einsteins and
world_leaders) we took a prefix of that average document length (arbitrarily rounded
up to a multiple of 1024) and used that as a dictionary. For the influenza file, we also
took a suffix of the average document length, as the dictionary was so small otherwise.
For the natural-language files, we produced dictionaries: with world_leaders, we took
the first and the last document, and with the einsteins, we took the first version, the
last version, and the first version that started after the midpoint. The “tailored” column
in Table 5.6 displays the results of compressing with these tailored dictionaries; the
size of the dictionary is given along with the size of the compressed file. We note that
the tailored dictionary is larger than the 5% dictionary for all files except coreutils
and world_leaders.

For the DNA inputs of cere and Escherichia_Coli and the coreutils data
set, the tailored dictionary worked better than the others, and the output size was
on par with gzip’s. The para DNA input, the world_leaders text input, and the
kernel code input compressed better than with the prefix but worse than with the
5% square dictionary. The square dictionary was also best for the einstein files: we
presume that with more frequent sampling (say, including every 500th or even 100th
version, rather than 3 versions out of 2130 or 7500) the output size will decrease closer
to the levels of the 5% dictionary case. (Note, however, how even with such a small
dictionary—150 kilobytes—a compression ratio better than gzip’s was achieved.) The
tailored dictionary, 4 KiB in size, performed very poorly with the influenza input—
with a prefix dictionary that was 1/78th the size of the file we got a compression ratio
of 34.41%, sitting between the 1 MiB prefix and the 5% square dictionaries.

As for compression times, the general trend was that RLZ was faster when com-
pressing DNA (cere, Escherichia_Coli, influenza, para), and the more-traditional
compressors were faster when compressing text (whether English, German, or source
code). With text, gzip was always the fastest, with a median compression speed of
12 MB/s. xz took about twice to thrice as long, with a median speed of 4 MB/s. RLZ
with the 5% dictionary was roughly 30% faster than xz, and RLZ with the 1 MiB
dictionary lagged behind, being between 4 and 8 times slower than gzip. With DNA,
RLZ with a 5% dictionary was fastest: 177 seconds for cere, 200 s for para, 36 s
for influenza; Escherichia_Coli took 56 s with the 1 MiB and 75 s with the 5%
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dictionary. xz took 1.2 to 2.7 times as long as RLZ-5% did, and gzip took roughly
1.2 times as long as xz. RLZ with the tailored dictionary was typically faster than
RLZ-5% by a couple of seconds, correlating with the slightly smaller dictionary size;
the major exceptions were kernel and para, which were slower by 50 and 60 seconds,
respectively.

5.4.4 Log files

The Pizza&Chili log file collection included nine log files, divided into two groups: ex-
ecution traces (three files, all larger than 100 MiB) and program logs (six files). The
program logs are from the Loghub dataset∗, and have been limited to a prefix 100 MiB
in length. The files Horspool, NQueens, and Quicksort are the execution traces: they
list the order that functions were entered and exited during the execution of a pat-
tern matching algorithm, a solver of the n queens problem, and a sorting algorithm
sorting random numbers, respectively. BGL is from the Blue Gene/L supercomputer,
Thunderbird is from the Thunderbird supercomputer, Windows and Android are sys-
tem logs from some installation of their respective operating systems, and HDFS_1 is a
log from the Hadoop distributed file system. EDGAR is a 100 MiB prefix of the EDGAR
log file dataset, published by the US Securities and Exchange Commission, pertaining
to search traffic in a database.

The execution traces are far more compressible than the system logs: each line
of them contains one of a small number (12 to 16) of fixed messages, and half of them
are identical to the other half by all except their first character. The system logs’
lines tend to have unique features such as timestamps, session numbers and randomly-
chosen identifiers, so they are less amenable to compression in general and RLZ parsing
in particular.

Like with the other datasets, we compressed the files with both a 1 MiB prefix
dictionary and a 5% square dictionary†, and compare the results with gzip’s and xz’s
performance. We used the fixed-size 32x2 format, which results in 8 bytes per token.
The results of our tests are shown in Table 5.7.

The three execution traces clearly compressed much better than the system logs,
especially with the 1 MiB prefix dictionaries: the dictionaries were very likely to contain
most of the 12 to 16 fixed phrases. It is interesting to once again note that, if the size
of the dictionary were ignored, rlzparse’s output was smaller than even xz’s output
was, for these three files.

∗https://github.com/logpai/loghub
†For the 100 MiB dictionaries, the 5% square dictionaries had n = l = 2289 ≈

√
5× 220. The

largest file, 572 MB in size, had n = l = 5347.

https://github.com/logpai/loghub
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File 1 MiB prefix 5% square gzip -9 xz -9
Android 110.82% 29.88% 13.15% 4.82%
104.9 MB 115.1 MB 26.1 MB 13.8 MB 5.06 MB
BGL 147.70% 36.12% 7.34% 4.33%
104.9 MB 153.8 MB 32.6 MB 7.70 MB 4.54 MB
EDGAR 63.17% 37.27% 12.54% 7.53%
104.9 MB 65.2 MB 33.8 MB 13.2 MB 7.89 MB
HDFS_1 68.17% 36.55% 9.61% 6.42%
104.9 MB 70.4 MB 33.1 MB 10.1 MB 6.73 MB
Horspool 0.41% 5.20% 0.50% 0.24%
571.9 MB 1.30 MB 1.13 MB 2.85 MB 1.39 MB
NQueens 0.84% 5.27% 0.52% 0.36%
302.6 MB 1.50 MB 831 kB 1.56 MB 1.09 MB
Quicksort 2.75% 5.27% 0.56% 0.42%
381.5 MB 9.45 MB 1.01 MB 2.13 MB 1.59 MB
Thunderbird 75.51% 32.42% 9.04% 4.27%
104.9 MB 78.2 MB 28.8 MB 9.48 MB 4.47 MB
Windows 176.90% 8.84% 5.53% 0.51%
104.9 MB 184.4 MB 4.03 MB 5.79 MB 534 kB

Table 5.7: Compressed file sizes and compression factors of the Pizza&Chili log dataset, using
both RLZ with 1 MiB prefix and 5% square dictionaries as well as gzip and xz at their maximum
compression ratio. Compressed RLZ output sizes do not include the size of the dictionary, but the
compression ratio does.

The prefix dictionaries performed very poorly with the system logs. This can be
explained by the fact that similar messages in system logs tend to be clustered: if a
short-duration event happens, then a cluster of messages relating to that event will be
logged for the duration, after which the messages will not be seen again. Therefore,
as a prefix only contains a subset of possible messages, it performs poorly, and a more
frequently sampled dictionary performs better.

As for runtime: the 100 MiB dictionaries were parsed by rlzparse in a mean time
of 41 seconds with the 1 MiB prefix dictionary (with a minimum time of 31.9 s and max-
imum time of 52.8 s) and 34.5 seconds with the 5% square dictionary (with a minimum
of 13.2 s and maximum of 45.3 s); the average rate of compression was 2.5 MB of input
per second with the prefix and 3.0 MB/s with the square dictionary. For comparison,
gzip compressed at 17.6 MB/s and xz at 2.6 MB/s. The stack traces were compressed
faster: gzip at a mean rate of 130 MB/s and xz at 24 MB/s, while rlzparse processed
them at 4.9 MB/s with a prefix dictionary and 2.4 MB/s with a square dictionary.
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5.5 Influence of output format

So far, all of our testing has used rlzparse’s “32x2” output format, where each token is
represented by a pair of two fixed-size 32-bit unsigned integers. This has the advantage
that the number of phrases is easily calculated from the size of the file, by dividing the
size by eight. The disadvantage is inefficiency: literal phrases, very short phrases, and
references to early locations in the dictionary lead to much of the output bits being
zero. Since mean phrase lengths have, for most inputs, been rather small (under 100
for 67% of the runs of rlzparse on the entirety of the Pizza&Chili repetitive corpus
with four different dictionary sizes (1 MiB prefix, 0.1%, 1%, 5% squares), and under
20 for 42% of them), this waste of space adds up—with a variable-byte coding where
numbers below 128 would be expressed with a single byte, about 3/8ths of the used
space could be saved on for most files, and thus compression ratio would be greatly
improved.

To test the effect of choosing vbyte over 32x2 on performance, we took a selection
of 7 previously-compressed files and re-compressed them with the --format vbyte
flag. Once again, we use two dictionaries: a 1 MiB prefix dictionary and a 5% square
dictionary. We measured both the size of the output and the runtime of the program,
as well as rlzunparse’s decompression time.

Table 5.8 shows the size of the compressed files, the mean phrase lengths of the
parsings, the compression ratio (including dictionary size) of the compressed files, and
the size of the vbyte-format file as a percentage of the 32x2-format file. With this set
of files, a 40% to 50% saving in space was recorded: the lower the mean phrase length
(and thus the worse the compression ratio), the smaller the vbyte file was relative to
the 32x2 one.

Table 5.9 shows the compression and decompression times of the same files. In
10 compression runs out of 14, compressing with vbyte encoding was marginally faster
than with the 32x2 format; time savings were on the order of 1 to 2%, a fraction of a
second in most cases. In the remaining 4 cases, compression was slower by between 0.2
and 1.25%, or 0.02 to 1.19 seconds slower. (These 4 cases all involved the three bioinfor-
matic files: proteins.001.1, Escherichia_Coli and para. Compression ratio, mean
phrase length, or file size does not appear to be a common factor.)

Conversely, in all 14 cases, decompressing the vbyte-encoded file was slower,
albeit again the effect is small, under 0.1 seconds in 9 cases and 1.26 seconds in the
slowest case. (Proportionally the slowdown of compression time is quite large: between
1.3% and 12.6% slower.)
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Input file |S| MB |D| MPL Size32 Sizevb
vb
32% CR32 CRvb

english.001.2 104.9 220 13.1 64.27 32.03 49.8 62.3 31.6
proteins.001.1 104.9 220 507.8 1.65 0.91 55.3 2.6 1.9
sources.001.2 104.9 220 12.3 68.42 34.02 49.7 66.2 33.4
coreutils 205.3 220 3.8 438.33 211.80 48.3 214.0 103.7
Escherichia_Coli 112.7 220 11.8 76.35 38.05 49.8 68.7 34.7
einstein.en.txt 467.6 220 4.5 831.96 412.42 49.6 178.1 88.4
para 429.3 220 11.2 307.79 153.40 49.8 71.9 36.0
english.001.2 104.9 22892 58.4 14.36 8.51 59.3 18.7 13.1
proteins.001.1 104.9 22892 352.9 2.38 1.50 63.0 7.3 6.4
sources.001.2 104.9 22892 60.5 13.87 8.26 59.6 18.2 12.9
coreutils 205.3 32032 28.1 58.44 35.15 60.1 33.5 22.1
Escherichia_Coli 112.7 23732 19.5 46.20 26.79 58.0 46.0 28.8
einstein.en.txt 467.6 48352 1838.7 2.03 1.36 66.9 5.4 5.3
para 429.3 46322 44.1 77.80 47.88 61.5 23.1 16.2

Table 5.8: Output sizes of a selection of Pizza&Chili Repetitive Corpus files when compressed
into the 32x2 and vbyte formats. Column legend: |S| is the input file’s size (in megabytes), |D|
is the dictionary’s size (in bytes), “MPL” is the mean phrase length, “Size” is the output’s size
(in megabytes), “vb

32%” is the size of the vbyte output divided by the 32x2 output (expressed as a
percentage), and “CR” is the compression ratio (output+dictionary/input). The subscripts “32” and
“vb” refer to 32x2 and vbyte. The first section of files, those with a dictionary size of 220 bytes
(1 MiB), use a prefix dictionary. The second section of files use a 5% square dictionary.

1 MiB prefix dictionary 5% square dictionary
Input file ct32 ctvb dt32 dtvb ct32 ctvb dt32 dtvb

english.001.2 29.90 29.54 1.65 1.70 19.20 19.12 1.34 1.41
proteins.001.1 4.20 4.14 1.23 1.27 9.78 9.80 1.20 1.25
sources.001.2 29.28 28.65 1.63 1.72 16.73 16.49 1.35 1.39
coreutils 116.57 114.80 4.95 5.44 65.56 65.43 2.83 3.06
Escherichia_Coli 58.28 57.59 1.82 1.92 74.98 75.92 2.11 2.19
einstein.en.txt 316.26 310.50 10.05 11.31 58.37 55.64 5.35 5.42
para 227.72 228.91 7.16 7.45 201.21 202.27 6.25 6.68

Table 5.9: Compression and decompression runtimes of a selection of Pizza&Chili Repetitive Corpus
files when compressed into the 32x2 and vbyte formats. Legend: “ct” stands for compression time,
“dt” for decompression time, subscript “32” for the 32x2 format, and subscript “vb” for the vbyte
format. All units are in seconds.
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Our explanation for why compression with vbyte is faster, but decompression is
slower, is that the time savings obtained by having less data to write makes up for the
overhead of the variable-byte encoding: writing is just so slow. On the other hand,
reading from storage is comparatively quick, and all rlzunparse has to do is decode
the encoded number pairs and write a sequential block of data. The blocks of data
are the same in both cases, so the slowdown is in the decoding. 32x2 decoding is
done 8 bytes at a time, with a reinterpret_cast from a length-8 array of bytes to a
length-2 array of 32-bit integers, so in fact no arithmetic is done: the typecast is for
the benefit of the compiler. Conversely, vbyte decoding requires a minimum of one
Boolean operation (a bitwise-AND with 128), one equality test, and one addition per
byte; most bytes cause a second addition, a second bitwise-AND (with 127), another
comparison, and one bitwise shift.

To summarize, compared with 32x2, compressing with the vbyte format brings
large savings (40 to 60%) in disk usage, a marginal improvement (≈ 1%) to compression
speed, and a minor worsening (≈ 5%) of decompression speed. Considering the space
savings, we suggest that using vbyte is generally worth the time tradeoff—however,
fixed-width encoding is not without its advantages, and the choice of output format
will vary by application. 32x2 remains rlzparse’s default.

5.6 Dictionary construction parameters

So far, our testing has used either prefix dictionaries or square dictionaries, and we also
settled on one-mebibyte prefixes and 5%-of-input squares. A natural question to ask
is: could we do better with different dictionary shapes? What about different sizes—is
5% overkill, or not large enough? Of course, it is unlikely that one set of parameters
works for all inputs, but maybe we could derive some rules of thumb?

As a reminder from Section 3.2, a randomly-sampled rectangular dictionary is
built from two parameters. For brevity we these call n and l: the number of samples
in the dictionary, and the length of each sample. However, a different but equivalent
formulation would have the parameters |D| and n/l: the size of the dictionary and
its aspect ratio. With random sampling there is also the element of luck: different
invocations of builddict with the same parameters produce a different dictionary, and
it’s entirely possible for one dictionary to do far better (or far worse) at representing
the input than another. In the interest of time we have decided to ignore the luck
element, and we simply assume that the first dictionary produced by builddict is
representative of an “average” dictionary—as it turns out, a couple of outliers in this
section’s plots are probably due to particularly (un)lucky dictionaries, rather than
stumbling upon magic parameters.
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Therefore, our search space is two-dimensional: for a given input file, find out
what size and aspect ratio the best-performing dictionary uses. (By “performance”
we of course mean compression performance: how small the input is relative to the
output.) Also in the interest of time∗, we have not searched the entirety of the space,
but merely two lines through it. In the first, we fixed the dictionary size parameter
to 4% of the input (or exactly 8 MiB, as all the input files were 200 MiB), and varied
the aspect ratio. In the second, we did the opposite: we picked a fixed aspect ratio
(n:l = 200:1) and varied the dictionary size.

We used six files as input, all from the Pizza&Chili corpus [4]. Three of them are
from the regular corpus: pc-dna, pc-english, and pc-sources. The other three are
from the repetitive corpus’ “real” collection: cere, einstein(.en.txt), and kernel.
(Additionally, for the dictionary size test, we used the Windows file from the repetitive
corpus’ log file collection—we did not use it for the aspect ratio compression tests
because it was too small.) We thus have three types of file from both corpora: DNA,
natural-language (English, encoded with an 8-byte character set), and source code
(mostly C). We have color-coded these in Figures 5.4–5.9: DNA is blue, English is red,
and source code is green.

5.6.1 Dictionary size

We have discretized the size parameter into twelve points, in a 1–2–5–10 pattern ranging
from 0.005% to 20% of the input size. We used whole input files, with sizes ranging
from 104.9 MB (windows) to 2.21 GB (einstein). We used a fixed aspect ratio of
200:1, meaning the dictionary had 200 times more samples than the sample length
was.

Because the n and l parameters, and the dictionary size, must be integers, the
target sizes from 0.005% to 20% are merely approximations. The exact calculations
were l = b

√
|S|/200c, n = d|S|/le. With these calculations, the actual dictionary

size would never be smaller than the target size, nor would the aspect ratio be under
200:1—n would always be just a bit too large. However, we consider this error to be
negligible: the largest relative error occurred in the 0.005% case, where a dictionary
was 0.0538% too big (being 6 bytes larger than the target of 10,543 bytes); the largest
aspect ratio error was also in the 0.005% case (at 234:1 instead of 200:1, since that
dictionary had n = 2339 and l = 10 rather than n = 2162.47 and l = 10.81); and
the largest absolute error was in the 20% case, where a 442-megabyte dictionary of
n =297,497, l = 1486 was 1431 bytes too long.

∗Our Lenovo ThinkPad T460 with an i5-6200U processor took about 11 hours to compute the
results plotted in Figure 5.4 and 12.5 hours to compute those in Figure 5.7.
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Figure 5.4: Compression ratio as it varies with dictionary size. Input file size varies from 100 MiB
to 2.2 GB. Dictionaries are random and rectangular, with an n:l ratio of 200:1. Output format was
32x2. Compression ratio includes the size of the dictionary. The minimum is at 2% on the einstein
line, with a value of 6.33%.

Figure 5.5: Plotting compression ratio as it varies with dictionary size, with the same inputs and
dictionaries as in Figure 5.4, but with the vbyte output format. The minimum is on the einstein
line, at 2%, with a value of 5.06%.
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The results in terms of compression ratio are plotted in Figures 5.4 and 5.5; the
former uses the default 32x2 output format, the latter uses vbyte. Both plots were
derived from the same set of data: rlzparse was instructed to produce vbyte output,
and then a small utility was used to count the number of phrases in the output, from
which was calculated the size in the 32x2 format.

As a group, the three files from the regular, non-repetitive corpus compressed
worse than the repetitive corpus files, and they ended up all converging to a com-
pression ratio of about 63% (with the 32x2 format) or 47% (with the vbyte format).
The Wikipedia version history collection, einstein, was most easily compressed: it
achieved a 6.33% compression ratio, including a 2% dictionary. After that point, dic-
tionary size increases were unproductive, as the increase in dictionary size undoes the
decrease in the number of RLZ phrases.

The plots we see agree with the theoretical analysis of reference construction in [5],
with the compression ratio falling sharply as dictionary size increases, then rising slowly
after the minimum. (Keep in mind that the plots have a logarithmic scale. With a
linear scale, the lines of Figures 5.4 and 5.5 have the shape of a rounded L.) We can
conclude that it is better for a dictionary to be slightly too large than too small.

Like discussed in Section 5.5, the vbyte output format is much more efficient
at encoding the RLZ phrases than the 32x2 default. Observe how all of the inputs
are incompressible with the first few dictionary cases with the 32x2 format, and it
is not until the 1% dictionary that all are compressed, while with the vbyte format,
all dictionaries compress the output at least a little. Also note the bumps in the
pc-dna and pc-english files at 0.1% and 0.5% in Figure 5.5: the compression ratio
achieves a local minimum, before rising again. These are the points where the output
starts to have a considerable amount of phrases with a length greater than 127, thus
necessitating a two-byte length field when encoded.

Figure 5.6 plots the speed that the inputs were compressed at—higher points are
better. We plot speed instead of actual runtime because of the variation in input size:
the slowest pc-english instances took over an hour to compress all 2.2 GB, while the
fastest windows instances took only 25 seconds to compress 104.9 MB. Slower speed
correlates with a worse compression ratio; the compressor loop spends more time in
the early stages of token search, searching the entire width of the dictionary for the
initial matching symbols.

Slower speed also correlates with a larger dictionary, but cere and kernel are
impressive counterexamples, with their fastest speeds obtained at the largest dictionar-
ies. We suspect this is because at those sizes, the dictionary cannot help but contain
most of a complete version of the documents that the files are built up from (i.e. a
complete genome, or a complete version of the Linux kernel—albeit a kind of “hybrid”,
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Figure 5.6: Same input as in Figures 5.4 and 5.5, but measuring compression speed, in megabytes
of input per second. The maximum is on the kernel line, at 20%, with a value of 7.25 MB/s. The
vbyte output format was used during these timing benchmarks.

consisting of parts of many different versions). Additionally, unlike the einstein file
(which slows down after the 0.2% dictionary point), they do not yet contain excessive
repetition at those sizes, and thus the width of the search range narrows quickly—
conversely, the versions of Einstein’s Wikipedia article that are included are between
40 and 70 kilobytes each, and they change slowly, so the dictionary may contain dozens
of identical versions of the same strings.

5.6.2 Aspect ratio

For aspect ratio calculations we used a set of six files, leaving out the windows log file.
To produce accurate time measurements, and to keep compression times reasonable,
we truncated all six inputs to a 200 MiB (209.7 MB) prefix and compressed that. (The
asterisks in the legend of Figures 5.7 to 5.9 refer to these truncated prefixes.)

We settled on a 4% dictionary, which comes out to a size of 8 MiB. We chose 4%
instead of a rounder number like 5% because 4% gave us a dictionary with a power of
two length—223 specifically—and thus easier to divide up with different aspect ratios
with the scheme we used. Previous experiments on a smaller, 1%=2 MiB dictionary,
produced barely-compressed input with the three non-repetitive inputs, so we wanted
something a bit larger, and the results of Figure 5.4 indicate that around 5% is a reason-
ably good dictionary size for all of our inputs, without being too large (and thus slow).

We tested with 44 different aspect ratios. Starting from an extreme of one sample
of length 223, we would double the aspect ratio, by multiplying the number of samples
by
√

2 and dividing the length by the same amount. Thus, every other (odd-numbered)
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parameter set would be a neat pair of powers of two ((1, 223), then (2, 222), then
(4, 221), and so on), while the intermediate (even-numbered) parameters would be
irrational ((

√
2, 222.5), (2

√
2, 221.5), etc.). Were we to only include the exact powers

of two (doubling n while halving l for each step), we would have skipped over some
interesting aspect ratios (most notably the square 1:1 dictionary, which has n = l =
211.5 ≈ 2896.3). In retrospect this was unnecessary, as dictionaries with aspect ratios
ranging from a moderately wide 1:64 to a moderately tall 64:1 behaved much the same
way, and only at the extremes was performance notably different. We stopped the
aspect ratio parameter sequence at 221:1, instead of going all the way to 223:1, for at
this point the length of each sample was only 2, and compression was negative for all
except DNA inputs. Additionally, the bulk of testing runtime was spent on dictionary
generation at this point, as builddict’s random algorithm (Algorithm 5 in Section 3.1)
passed the threshold from almost-immediate termination to indefinitely looping. We
had to resort to a quickly-written deterministic routine for the narrowest dictionaries,
that simply divided the entirety of the input into a couple of million segments and
picked the first two (or three, or four) bytes from each of them.

We dealt with irrational parameters by rounding them up (e.g. for the square
case, n = l = d211.5e = 2897), generating an overlong dictionary, then taking a prefix of
length 223 of that dictionary. It was important to have dictionaries be the same size, as
previous experiments with variably-sized dictionaries (where we rounded down instead
of up) performed markedly differently, with noticeably faster runtimes and noticeably
lower compression ratios—these showed up as zig-zags in the plots. This was especially
evident at the extremes, where n = b

√
2c = 1 produced a dictionary that was 30%

smaller than the target size.
Figure 5.7 shows the compression ratio of all six files, with the 32x2 output

format, with all 44 dictionary parameter sets. Figure 5.8 has the same files but uses
the vbyte output format, and lacks the last (2M, 1) parameter set.

Again, the three non-repetitive files compressed worse than the repetitive files.
We were surprised by the flatness of the curves: for most of the inputs, it did not
matter whether the dictionary was tall or wide, and 1:64 did as well as 64:1 did.
Only at the extremes did differences manifest: with only one or a couple of long
samples in the dictionary, natural-language text compressed poorer than with more-
square dictionaries, but then the DNA collection cere and code collection kernelmuch
preferred a single long sample, achieving some of their best compression ratios at the
left edge. We suspect this is because the target size of 8 MiB is close to the size of
one version of their corresponding documents—kernel is 258 MB and has 36 versions
in it (≈7.1 MB each), and cere is 461 MB and has 37 versions (≈12.5 MB each).
More frequent and shorter sampling may (and in all likelihood does) include segments
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Figure 5.7: Compression ratio as it varies with dictionary aspect ratio. Dictionary size is constant,
at 4%. Input size is also constant, at 200 MiB. Output format is 32x2, and compression ratio includes
dictionary size. Aspect ratios are expressed as n:l, number first, length second. The abbreviations
“K” and “M” are binary, 210 and 220: “1M” means 1,048,576.

Figure 5.8: Same files as Figure 5.7, but with the vbyte output format. Dictionaries have been
generated anew.
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Figure 5.9: Time it took rlzparse to compress the files in Figure 5.7, in seconds. The fastest time
of 12.4 seconds corresponds to a speed of 16.9 MB of input per second, and the slowest time of 317.6
seconds corresponds to a speed of 660 kB/s.

of identical text from different versions, thus in effect throwing away some dictionary
capacity in redundancies.

We expected to see more of the input files to show a U-like shape in their plots,
with very wide and very tall dictionaries both being inefficient, then gradually sloping
down to a minimum before turning back up again as sample length falls. We were
surprised at how one-sided these plots were; only the pc-sources and einstein files
had a shape akin to what we expected, with the rest being quite flat after some initial
instability at the start, until their predicted sharp rise to incompressibility with very
short samples. The DNA file pc-dna, which is a single genome rather than a collection
of versions, seemed indifferent to what dictionary it was compressed with: it had a
compression ratio of just under 64% up to a ratio of 256:1, after which it worsened
very slightly to 72%. The cere collection is also remarkably flat, lacking the steep rise
to incompressibility. We suspect this flatness is an intrinsic property of DNA data,
where the alphabet is small and the distribution of words is flat (i.e. no particular
n-gram is any more unlikely than another: the concatenation of short DNA samples is
likely also a useful DNA sample).

Because of an oversight in our benchmarking script, we had to run this suite
of tests twice, once for each output format. Thus, Figures 5.7 and 5.8 are based on
different dictionaries, and thus while the approximate curve shape is the same, they are
not exactly comparable (unlike Figures 5.4 and 5.5, which do use the same dictionaries).
The latter plot also lacks the 2M:1 aspect ratio case. This is why we are confident in
our assessment that the spike at 1:256K in the einstein line of Figure 5.7 is due
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to an unlucky, poorly-representative dictionary: a corresponding spike is missing in
Figure 5.8, and the change in coding method is insufficient to hide the spike∗.

5.6.3 Closing remarks on dictionary parameters

We have tested both varying dictionary sizes and varying aspect ratios on two sets of
three types of input files. We have not searched the entire 12-by-44 two-dimensional
parameter space that we defined, but rather two perpendicular lines through it—and
while we consider our results informative, the picture we have is limited. Nevertheless,
we are confident enough with our results that we can draw up conclusions and rules of
thumb for randomly-sampled rectangular dictionary construction.

Our concise suggestions for dictionary parameters are this: pick a dictionary
size somewhere around 5 percent of the input file size, preferably too large than too
small. Divide it up so that the dictionary is reasonably tall—square dictionaries are
an adequate starting point, as would having an aspect ratio between 50:1 to 500:1.
Strictly structured but varying input data (e.g. source code) seems to benefit from
more frequent sampling, but do not let sample length become too short—a length of
1000 is good, 100 may still work, but 10 will produce poor results.

There is much room for nuance, though, and picking good parameters requires
understanding of the data to be compressed. We consider three main factors: whether
the input is a collection of versions, if it is then how big are those versions, and how
structured the text of the input is.

If the input is not a collection of similar versions, and it is not known to be
highly repetitive (like the artificial mathematical binary sequences), then options are
more limited. Bigger dictionaries of around 10% are probably useful here. Files that are
collections of versions of constituent documents can get away with smaller dictionaries.
At a minimum, the dictionary should be a couple of times larger than an average
constituent document, and the more documents there are in the input file, the smaller
the dictionary can be relative to the size of the whole collection.

What we mean by “structure of the text” is how amenable the input is to random
sampling: is it likely or unlikely that the substring surrounding the concatenation point
of two random samples occurs in the input text? That is: for samples a1 . . . aiajak and
b1b2b3 . . . that appear one after another in the dictionary, is it likely or unlikely that,
say, ajakb1b2 is a word anywhere in the input? The artificial mathematical binary
sequences of Sections 5.2 and 5.4.1, and the DNA file results plotted in this section,

∗ The spike has a value of 70.8%. When the 4% dictionary is subtracted, we get an output size
of 140 MB, or about 17.5 million encoded phrases. The absolute minimum that 17.5 million phrases
could be encoded into in vbyte format has two bytes per phrase, or 35 MB; with the dictionary added
on, this is a compression ratio of 20.7%, while we see 7% at the same point in Figure 5.8.
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are an example of a case where this is likely. This is partly due to the alphabet being
so small (with size 2 or 4), and thus it is likelier that all n-grams (for reasonably small
n, under 10 or so) are valid words in the language and appear in the input. Examples
where this is not the case are natural language and source code: in English, save for
“had” and “that”, it is very unlikely that any word will be followed by itself, and
it is unlikely that the concatenation of two randomly-split word fragments is a valid
word; similarly, the formal grammars of programming languages, along with the norms
of programming form and style, constrain the appearance of source code. Thus, for
inputs with more structure, one would want to avoid having a sample length that is too
short—dictionary aspect ratio is a useful measure for categorizing different dictionary
types, but sample length is the relevant parameter.





6. Conclusion

We have described the RLZ compression and decompression algorithms, as well an
auxiliary randomized dictionary sampling algorithm, and discussed our implementation
of both. We have also tested our implementation’s compression performance against
the LZ77-based compressors gzip and xz, and we have investigated some dictionary
construction strategies.

The RLZ algorithm is a simple, and often effective, compression algorithm, that,
when carefully used, is competitive with gzip. Compared to gzip, it suffers from
typically slower compression speed, high memory usage, reliance on third-party suffix
array construction tools, high intermediate disk usage, and high user involvement—the
two LZ77-based compressors are automatic, since they compress the text “relative to
itself”, while RLZ requires dictionary construction. For the casual desktop user, RLZ
is not a replacement for gzip or xz, or 7-Zip, or ordinary PKZIP-based zip files, or any
other common compression algorithm. However, it has its niche that it was designed
for—compressing and decompressing individual items in a very large set of very similar
documents—and in its niche, it works well.

Our suite of RLZ-implementing programs, which we call rlztools, was built
with straightforwardness in mind, and simplicity as its goal. We hope to have achieved
these goals; the rlztools may not be the fastest RLZ-implementing code ever written,
but we hope it will serve well in its job, as well as possibly being a starting-off point for
future variants. We will be publishing the source code of rlztools online, under the
rlztools name and with an open-source license, on some code distribution website
shortly after we submit this thesis for evaluation.

In the course of our work, we have come across further possible directions of study.
Firstly, on performance: with some modifications to the rlzparse code, compression
speed might be quickly increased, especially for byte-alphabet inputs. One lookup
table might list those symbols not in the dictionary, thus avoiding an O(log |D|)-time
search for every not-in-dictionary symbol—such tables might be feasible for larger
alphabets also. Another table might list the first and last suffixes that start with a
given symbol, or pair of symbols, thus skipping past the slowest binary searches. Such
an optimization was proposed for LZ77 parsing by Kempa and Puglisi [8].

63
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Dictionary construction seems like an area with plenty to study. We were only
able to search a small space for good random dictionary construction parameters;
investigating the entirety of the space (dictionary size as one parameter and aspect ratio
as another) is a clear place to continue. Non-randomly built dictionaries would also
be interesting: could one come up with a good heuristic for building a well-performing
dictionary of a given size? For randomly sampled dictionaries, automated parameter
picking would likewise be interesting: perhaps a machine-learning model could be
trained to produce reasonable dictionary parameters after analyzing the input, or a
sample of the input, for a moment?

For transparency, there are a couple of shortcomings in our present work that we
wish to address. Although we wrote our suite of tools to work with wide input symbols
(16, 32 and 64-bit words), and we have tested them to make sure they work as intended,
we have not benchmarked rlzparse’s performance when given such inputs. This was
due to a combination of time pressures and a lack of material—we did have some 32-bit
data, but no description on what it was, nor did we have a larger selection of different
types of 32-bit data to perform comparisons with. We have also written support in
rlzunparse for starting and stopping decompression at any arbitrary output indices
(the “I want these 50 bytes that are at position 16,581,310” feature); although quick
(not instant, but quick) decompression from any given point is one of the selling features
of RLZ, we have not extensively benchmarked this either, so while we have very good
reason to believe that rlzunparse is faster than its competition at decompressing from
a random location, we do not know this.

As a final remark, we hope that the rlztools are useful and helpful to somebody,
and we are thankful of the opportunity of being able to write them.
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