
Päivi Jokinen 

 

 

 

Department of Veterinary Biosciences, 

Department of Medical Genetics,  

Research program for Molecular Medicine and 

Folkhälsan Research Center 

University of Helsinki 

Helsinki, Finland 

 

 

 

Identifying Genetic Risk Factors in Canine 

Autoimmune Disorders 

  

  

 

 

 

 

Päivi Jokinen 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACADEMIC DISSERTATION 

 

To be publicly discussed, with the permission of the Faculty of Veterinary Medicine of 

the University of Helsinki, for public examination in Auditoria Arenan, 

Folkhälsan building, Topeliuksenkatu 20, Helsinki 

on 28 January 2011, at 12 noon. 

 

Helsinki 2011 



Identifying genetic risk factors in canine autoimmune disorders 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cover photo: Janne Penttinen 

 

 

ISBN 978-952-92-8475-7 (pbk.) 

ISBN 978-952-10-6788-4 (PDF) 

http://ethesis.helsinki.fi/ 

 

Unigrafia Oy 

Helsinki 2011 



Päivi Jokinen 

 

 

 

Supervisor  Professor Hannes Lohi, PhD 

 

  Department of Veterinary Biosciences, 

  Department of Medical Genetics,  

  Research program for Molecular Medicine and 

  Folkhälsan Research Center 

  University of Helsinki 

  Helsinki, Finland 

 

 

 

 

Reviewers  Professor Johanna Schleutker, PhD 

 

  Laboratory of Cancer Genetics 

  Institute of Medical Technology 

  University of Tampere 

 

  and 

 

  Docent Hanna Jarva, MD, PhD 

 

  Department of Bacteriology and Immunology 

  Haartman Institute 

  University of Helsinki 

 

 

 

 

Opponent  Dr. Catherine André, PhD 

 

  Canine Genetics and Genomics 

  Institute of Genetics and Development 

  University of Rennes 

 

 

 

 

 

 

 

 

 

 



Identifying genetic risk factors in canine autoimmune disorders 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my loved ones 
 

 

 

 

 

 

 

 

 



Päivi Jokinen 

 

 

 

5 

 

Abstract 

 

Autoimmune diseases are more common in dogs than in humans and are already 

threatening the future of some highly predisposed dog breeds. Susceptibility to 

autoimmune diseases is controlled by environmental and genetic factors, especially the 

major histocompatibility complex (MHC) gene region. Dogs show a similar physiology, 

disease presentation and clinical response as humans, making them an excellent disease 

model for autoimmune diseases common to both species. The genetic background of 

canine autoimmune disorders is largely unknown, but recent annotation of the dog genome 

and subsequent development of new genomic tools offer a unique opportunity to map 

novel autoimmune genes in various breeds. Many autoimmune disorders show breed-

specific enrichment, supporting a strong genetic background. Furthermore, the presence of 

hundreds of breeds as genetic isolates facilitates gene mapping in complex autoimmune 

disorders. Identification of novel predisposing genes establishes breeds as models and may 

reveal novel candidate genes for the corresponding human disorders. Genetic studies will 

eventually shed light on common biological functions and interactions between genes and 

the environment. 

This study aimed to identify genetic risk factors in various autoimmune disorders, 

including systemic lupus erythematosus (SLE)-related diseases, comprising immune-

mediated rheumatic disease (IMRD) and steroid-responsive meningitis arteritis (SMRA) 

as well as Addison’s disease (AD) in Nova Scotia Duck Tolling Retrievers (NSDTRs) and 

chronic superficial keratitis (CSK) in German Shepherd dogs (GSDs). We used two 

different approaches to identify genetic risk factors. Firstly, a candidate gene approach 

was applied to test the potential association of MHC class II, also known as a dog 

leukocyte antigen (DLA) in canine species. Secondly, a genome-wide association study 

(GWAS) was performed to identify novel risk loci for SLE-related disease and AD in 

NSDTRs. 

We identified DLA risk haplotypes for an IMRD subphenotype of SLE-related disease, 

AD and CSK, but not in SMRA, and show that the MHC class II gene region is a major 

genetic risk factor in canine autoimmune diseases. An elevated risk was found for IMRD 

in dogs that carried the DLA-DRB1*00601/DQA1*005011/DQB1*02001 haplotype (OR 

= 2.0, 99% CI = 1.03-3.95, p = 0.01) and for ANA-positive IMRD dogs (OR = 2.3, 99% 

CI = 1.07-5.04, p-value 0.007). We also found that DLA-

DRB1*01502/DQA*00601/DQB1*02301 haplotype was significantly associated with AD 

in NSDTRs (OR = 2.1, CI = 1.0-4.4, P = 0.044) and the DLA-

DRB1*01501/DQA1*00601/DQB1*00301 haplotype with the CSK in GSDs (OR=2.67, 

CI=1.17-6.44, p= 0.02). In addition, we found that homozygosity for the risk haplotype 

increases the risk for each disease phenotype and that an overall homozygosity for the 

DLA region predisposes to CSK and AD. Our results have enabled the development of 

genetic tests to improve breeding practices by avoiding the production of puppies 

homozygous for risk haplotypes. 

We also performed the first successful GWAS for a complex disease in dogs. With less 

than 100 cases and 100 controls, we identified five risk loci for SLE-related disease and 

AD and found strong candidate genes involved in a novel T-cell activation pathway. We 

show that an inbred dog population has fewer risk factors, but each of them has a stronger 
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genetic risk. Ongoing studies aim to identify the causative mutations and bring new 

knowledge to help diagnostics, treatment and understanding of the aetiology of SLE-

related diseases. 

 



Päivi Jokinen 

 

 

 

7 

 

Contents 

List of original publications 10

Abbreviations 11

1 Introduction 13

2 Review of the literature 15

2.1 Autoimmune disorders 15

2.1.1 Overview of innate and adaptive immunology 15

2.1.2 Overview of autoimmunity 17

2.1.3 Genetic background of autoimmune diseases 18

2.1.3.1 Major histocompatibility complex (MHC) 18

2.1.4. Environmental background of autoimmune diseases 21

2.1.5. Shared autoimmune disorders in humans and dogs 22

2.1.5.1 Systemic lupus erythematosus (SLE) 24

2.1.5.2 Hypoadrenocortisism (Addison’s disease, AD) 25

2.1.5.3 Autoimmunity in the eye: an immune-privileged site 25

2.1.6 Autoimmune disorders in Nova Scotia Duck Tolling Retrievers 26

2.1.6.1 SLE-related disease 26

2.1.6.1.1 Immune mediated rheumatic disease (IMRD) 27

2.1.6.1.2 Steroid-responsive meningitis arteritis (SRMA) 27

2.1.6.2 Hypoadrenocortisism (Addison’s disease, AD) 27

2.1.7 Autoimmune disorders in German Shepherd dogs 28

2.1.7.1 Canine chronic superficial keratitis (CSK) 28

2.2. The dog as a model species for human inherited disorders 29

2.2.1 Origin of the domestic dog 29

2.2.2 Breed creation 30

2.1.2.1 Nova Scotia Duck Tolling Retriever 31



Identifying genetic risk factors in canine autoimmune disorders 

 

8 

 

2.2.2.2 German Shepherd Dog 31

2.2.3 Dog genome and genomic tools 32

2.2.3.1 Dog genome structure provides advantages in gene mapping 32

2.2.3.2 Dog genetic resources and genomic tools available 33

3 Aims of the study 35

4 Materials and methods 36

4.1 Research site 36

4.2 Study population 36

4.3 Diagnostic procedures 39

4.4 Blood samples and DNA isolation 39

4.5 Sequencing for MHC class II and allele assignment (I-III) 39

4.6 Genome-wide genotyping (IV) 40

4.7 Fine-mapping of the associated regions (IV) 40

4.8 Statistical analysis (I-IV) 40

4.9 Ethical issues 41

5 Results 42

5.1 MHC class II candidate gene studies (I-III) 42

5.1.1 DLA class II polymorphism in Finnish, Swedish and North-American 

NSDTRs 42

5.1.2 DLA class II polymorphism in Finnish GSDs 42

5.1.3 DLA class II haplotype association with CSK in GSDs 43

5.1.4 DLA class II haplotype association with hypoadrenocortisism in NSDTRs 44

5.1.5 DLA class II haplotype association with IMRD in NSDTRs 44

5.1.6 Association of MHC class II homozygosity with autoimmunity 45

5.2 Genome-wide association and fine-mapping studies in dogs (IV) 47

5.2.1 GWAS 47

5.2.2 Fine-mapping 49



Päivi Jokinen 

 

 

 

9 

 

6 Discussion 51

6.1 Genetic diversity and population structure indicate narrow genetic diversity in 

GSDs and NSDTRs 51

6.2 MHC class II is a major genetic risk factor also in canine autoimmune 

diseases, proving the autoimmune origin 53

6.3 Homozygosity of the MCH class II risk haplotype increases the risk for 

autoimmune diseases – mechanism? 56

6.4 The shared epitope in DLA-DRB1 allele is an indication of rheumatic 

autoimmune disease 58

6.5 The first successful GWAS in complex diseases of dogs identifies several risk 

loci for autoimmune diseases in NSDTRs 58

6.6 New immunological pathway in SLE 60

6.7 The dog is an excellent model for complex genetic studies 61

7 Conclusions and future perspectives 63

Acknowledgements 65

References 67

 



Päivi Jokinen 

 

 

10 

 

List of original publications 

This thesis is based on the following publications: 

 

I MHC class II risk haplotype associated with Canine Chronic Superficial 

Keratitis in German Shepherd Dogs. Jokinen P, Rusanen E, Kennedy LJ and Lohi H. 

Veterinary Immunology and Immunopathology. In press. 

 

II Association of a dog leukocyte antigen class II haplotype with 

hypoadrenocorticism in Nova Scotia Duck Tolling Retrievers. Hughes AM*, Jokinen P*, 

Bannasch DL, Lohi H, Oberbauer AM. Tissue Antigens. 2010 Jun;75(6):684-90. 

 

III MHC class II polymorphism is associated with a canine SLE-related disease 

complex. Wilbe M, Jokinen P, Hermanrud C, Kennedy LJ, Strandberg E, Hansson-

Hamlin H, Lohi H, Andersson G. Immunogenetics. 2009 Aug;61(8):557-64. 

 

IV Genome-wide association mapping identifies multiple loci for a canine SLE-

related disease complex.Wilbe M, Jokinen P*, Truvé K*, Seppala EH, Karlsson EK, 

Biagi T, Hughes A, Bannasch D, Andersson G, Hansson-Hamlin H, Lohi H#, Lindblad-

Toh K#. Nature Genetics. 2010 Mar;42(3):250-4. 

 

*These authors contributed equally to the study.  

 

#co-directed and corresponding authors 

 

Original publications are reproduced with the permission of the copyright holders. 

The publications are referred to in the text by their roman numerals. 

 



Päivi Jokinen 

 

 

 

11 

 

Abbreviations 

ab antibody 

ACTH adenocorticotropic hormone 

AD Addison’s disease 

AF anal furunculosis 

AI autoimmune 

AIRE autoimmune regulator 

ANA antinuclear antibody 

APC antigen -presenting cell 

APECED autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy 

APS autoimmune polyendocrine syndrome 

BCR B-cell receptor 

CDV canine distemper virus 

CFA canine chromosome 

CFS cerebrospinal fluid 

CI confidence interval 

CIDD Canine Inheritance Disorders Database 

CLT canine lymphocytic thyroiditis 

CMH Cochran-Mantel-Haenszel 

CNV copy number variant 

CRA canine rheumatoid arthritis 

CS Cocker Spaniel 

CSK chronic superficial keratitis 

D aspartic acid 

DLA dog leukocyte antigen 

DLE discoid lupus erythematosus 

e.g. exempli gratia 

EPI exocrine pancreatic insuffiency 

GSD German Shepherd Dog 

GWAM genome-wide association mapping 

GWAS genome-wide association study 

H heavy (chain) 

HLA human leukocyte antigen 

HVR hypervariable (region) 

IBS identity by state 

IDID Inherited Diseases in Dogs Database 

IFN-  interferon-  

Ig immunoglobulin 

IL interleukin 

IMHA immune-mediated haemolytic anaemia 

IMRD immune-mediated rheumatic disease 

IMTP immune-mediated thrombocytopenia 

LD linkage disequilibrium 

LE lupus erythematosus 



Identifying genetic risk factors in canine autoimmune disorders 

 

12 

 

MDS multidimensional scaling 

MG myasthenia gravis 

MHC major histocompatibily complex 

MIT Massachusetts Institute of Technology 

mtDNA mitochondrial DNA 

NCBI National Center for Biotechnology Information (database) 

NF-AT nuclear factor of activated T-cells 

NF-ATc2 calcineurin-dependent transcription factor 

NIH National Institute of Health 

NK natural killer cell 

NME  necrotizing meningoencephalitis  

NOD non-obese diabetic (mouse) 

NSDTR Nova Scotian Duck Tolling Retriever 

OMIA Online Mendelian Inheritance in Animal (database) 

OR odds ratio 

PAMPS pathogen-associated molecular patterns 

PPR pathogen recognition receptor 

PTPN22 protein-tyrosine phosphatase, non-receptor-type 22 

Q glutamine 

R arginine 

RA  rheumatoid arthritis  

SCLE subacute cutaneous lupus erythematosus 

SLE systemic lupus erythematosus 

SLU Swedish University of Agricultural Sciences 

SNP single-nucleotide polymorphism 

snRNP small nuclear ribonucleoprotein complex 

SNRPE small nuclear ribonucleoprotein polypeptide E 

SRMA steroid-responsive meningitis arteritis 

T1D type 1 diabetes 

TC cytotoxic T-cell 

TCR T-cell receptor 

TH T-helper cell 

TNF-  tumour necrosis factor  

Treg regulatory T-cell 

UCSC University of California, Santa Cruz (database) 

V variable (region) 

VHK-like Vogt-Koyanagi-Harada-like syndrome 

VRK1 vaccinia-related kinase 1 



Päivi Jokinen 

 

 

 

13 

 

1 Introduction 

Autoimmune diseases occur when an adaptive immune response develops against self-

antigens, causing inflammation that may lead to tissue damage. Expression of 

autoimmunity can be organ-specific, as in type 1 diabetes mellitus affecting pancreatic 

islets, or systemic, as in systemic lupus erythematosus (SLE), which affects multiple 

tissues 
1
. Susceptibility to autoimmune diseases is controlled by environmental and 

genetic factors, especially major histocompatibility complex (MHC) class II alleles 
2
. 

More than 60% of canine inherited diseases are shared with humans
 
and the coding 

sequences of dogs and humans show ~90% similarity. Dogs are large animals, share a 

living environment with humans and show similar physiology, disease presentation and 

clinical response, making them an excellent disease model for disorders common to both 

species 
3-6

.  

Tight bottle necks in the population history of a domestic dog, such as breed creation, 

World War II, infection outbreaks and modern breeding practices relying on popular sires 

and tight inbreeding, have accumulated different genetic risk factors and diseases in dog 

breeds. Dog breeds consist of genetically similar individuals and resemble isolated human 

populations, such as Finns and Icelanders, that are widely used in genetic studies 
7,8

. 

Observed as a group, dogs show the same extensive genetic diversity as humans, or 

ancient wolves. At the genome level, this can be seen as long haplotype blocks within a 

breed and short across breed. Extensive linkage disequilibrium within a breed enables the 

use of genetic markers, such as single-nucleotide polymorphisms (SNPs) in genome-wide 

association studies (GWAS) with a small number of samples and markers. Ancient 

mutations may have segregated into related breeds showing the same disease phenotype, 

and as the haplotype blocks are short between the breeds, related breeds can be used to 

narrow down (fine-mapping) and verify the associated loci between a marker and a 

phenotype 
9,10

. This two-stage strategy has been successfully used to identify several 

Mendelian traits such as white coat colour 
11

, the hair ridge that causes predisposition to 

dermoid sinus 
12

, recessive cone-rod dystrophy 
13

 and ectodermal dysplasia 
14

. 

Several breeds are highly susceptible to autoimmune diseases. Nova Scotia Duck 

Tolling Retrievers (NSDTRs) have been recognized to have a strong genetic 

predisposition to several autoimmune diseases, including immune-mediated rheumatic 

disease (IMRD) 
15

, steroid-responsive meningitis arteritis (SRMA) 
16,17

, 

hypoadrenocorticism (Addison’s disease, AD) 
18

 and canine lymphocytic thyroiditis 

(CLT) 
19

. IMRD and SRMA may be a part of the same disorder, canine systemic lupus 

erythematosus (SLE)-related disease complex. German Shepherd dogs (GSDs) are over-

represented with chronic superficial keratitis (CSK) 
20

 and reported to show also 

congenital focal alopecia areata 
21

, SLE 
22

, exocrine pancreatic insufficiency (EPI) 
23

, anal 

furunculosis (AF) 
24,25

 and myasthenia gravis (MG) 
26

. 

Regardless of the high prevalence of autoimmune disorders in dogs, the genetic 

background remains largely unknown. Previous studies have associated MHC II genes in 

canine diabetes 
27

, hypothyroiditis 
28,29

, AF 
25

, canine primary immune-mediated 

haemolytic anaemia (IMHA) 
30

 and canine rheumatoid arthritis (CRA) 
31

. In this study, we 

focused on the characterization of the genetic risk factors in particular autoimmune 

diseases in two breeds of dog including SLE-related diseases, comprising IMRD and 
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SRMA, AD and CSK. No previous genetic studies have been reported in any of these 

diseases, although an autoimmune origin has been suspected in each disorder. Utilizing 

novel genomic tools and candidate and genome-wide approaches, we mapped several new 

genetic risk loci. This study establishes novel canine models for human autoimmune 

disorders, reveals novel candidate genes and pathways and provides new genetic tests for 

breeders.  
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2 Review of the literature 

2.1 Autoimmune disorders 

2.1.1 Overview of innate and adaptive immunology 

The role of the immune system is to protect the host from invading pathogens. The innate 

immune system is present at birth and lacks of memory and strict recognition of antigen. 

In its simplest form, the innate immune system comprises anatomical and physiological 

barriers, such as skin, mucous membranes, and temperature, pH and oxygen levels. 

Soluble components of the innate immune system include digestive enzymes, such as 

lysozyme in tears, peptides that bind essential nutrients, such as iron-binding lactoferrin in 

a mammary gland, and the complement system, an enzymatic protein cascade that 

produces various chemoattractants, inflammatory mediators, opsonins and a hole-

punching complex capable of disrupting membrane structures. Cytokines and chemokines 

secreted by many cells, including the epithelial cells, mediate intercellular communication 

and initiate a variety of signalling pathways 
1,32

. 

The cellular components of the innate immune system include cytotoxic cells, 

neutrophils, eosinophils, basophils and mast cells. Neutrophils and eosinophils are also 

phagocytic cells. Macrophages are phagocytic cells in the tissues and dendritic cells in 

tissues and lymphatic organs. Macrophages and dendritic cells serve as antigen-presenting 

cells (APCs). Antigenic peptides are presented in association with major 

histocompatibility complex (MHC) class I or II molecules to cytotoxic or helper T-

lymphocytes, respectively. Natural killer (NK) cells are lymphocytes without specific 

antigen recognition capability and induce apoptosis in altered cells. NK cells have recently 

been shown to have a memory, which suggests that they may be an evolutionary bridge 

between the innate and adaptive immune systems 
33

. Although phagocytic cells lack 

specific recognition of antigen, they do identify certain pathogen-associated molecular 

patterns (PAMPS) not found in higher organisms through pathogen recognition receptors 

(PRRs) 
1,32

. 

The adaptive immune system develops after birth and possesses a memory, enabling a 

heightened immune response to previously encountered antigens. Lymphocytes 

specifically recognize the foreign antigen and are divided into different types based on the 

mechanism of antigen recognition and effector functions. Specificity is achieved during 

lymphocyte development through a gene rearrangement, a somatic DNA recombination of 

gene segments encoding the variable (V) region of the antigen receptor. B-cells develop in 

bone marrow and produce a great variety of antigen receptors called immunoglobulins 

(Igs). All Igs are identical in a single cell and recognize a specific antigen. Igs expressed 

on a B-cell surface are called B-cell receptors (BCRs) and Igs with the same antigen 

specificity that are secreted by plasma cells as soluble form are called antibodies (abs).  

Isotype or class of the ab is determined by the heavy (H) chain and in part directs the 

function following the activation 
1,32

. 



Identifying genetic risk factors in canine autoimmune disorders 

 

16 

 

T-lymphocytes also develop in bone marrow, but mature in the thymus. The antigen 

receptors on T-cells are always membrane-bound and called T-cell receptors (TCRs). The 

structure and generation of antigen specificity are identical to that of B-cells and their 

function is to signal activation. The major difference is the recognition of antigen. TCRs 

can only bind antigens associated with the self MHC molecules. T-lymphocytes are 

divided into two subtypes based on function and cell surface markers. Cytotoxic T-cells 

(TC) express CD8 glycoprotein and induce apoptosis in altered cells. T-helper 

lymphocytes (TH) express CD4 cell marker and modulate immune response primarily 

through cytokine secretion. TH cells can further be divided into TH1, TH2, TH17 and 

regulatory T-cells (Treg). TH1 cells secrete interferon-  (IFN- ) and tumour necrosis factor 

 (TNF- ). They promote elimination of intracellular pathogens, and cell-mediated and 

delayed-type hypersensitivity responses. TH2 cells secrete interleukins (IL) IL-4 and IL-5, 

which contribute to allergic responses and the clearance of extracellular pathogens, such 

as worms, and promote humoral response. TH17 cells secrete IL-17 and IL-22, which are 

important cytokines in fighting extracellular bacteria and fungi. Treg cells express CD25 as 

well as CD4 cell marker and are suppressive mediators of immune responses as well as 

important in maintaining peripheral tolerance 
34

. 

The lymphocyte-antigen encounter takes place in secondary lymphoid tissue and leads 

to activation through changes in gene expression, proliferation and differentiation into 

effector cells. After encountering an antigen, B-cells differentiate into plasma and memory 

cells. Plasma cells secrete antibodies, which neutralize extracellular pathogens by coating, 

agglutinating and opsonizing them. Perhaps most importantly, they activate the 

complement cascade. TC cells induce apoptosis in target cells by releasing the content of 

cytoplasmic granules and/or by expressing a transmembrane protein Fas-ligand. TH cells 

direct the immune response towards humoral or cell-mediated response by secreting 

cytokines. Treg cells secrete cytokines that modulate the function of dendritic cells and 

lymphocytes and even induce apoptosis in the latter 
34,35

. 

Many vital organs regarding survival and reproduction, which possess limited capacity 

for regeneration, are considered to be immune privilege body sites. These organs include 

the brain, cornea, testes and the pregnant uterus. However, recent evidence suggests that 

immune privilege is not a global suppression of all immune responses but in fact an active 

and closely regulated adaptation of the immune system with the objective of protecting 

organs from immune-mediated damage. Most harmful immune responses are down-

regulated, while others, less harmful, are preserved. Anterior chamber-associated immune 

deviation (ACAID) is an example of this kind of regional immunity 
36

. After encountering 

an antigen, the APCs travel directly to the spleen, where they interact with other cells of 

the immune system, resulting in activation of TH1-suppressing Treg cells 
37

. Brain-

associated immune deviation (BRAID) resembles ACAID, but has not been as thoroughly 

characterized 
36

. 
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2.1.2 Overview of autoimmunity 

The ability to differentiate self from foreign is an essential basis in avoiding immune-

mediated damage to self-tissue. A central tolerance is introduced during foetal 

development in bone marrow and thymus by negative selection, resulting in apoptosis of 

strongly self-reactive lymphocytes. Autoimmune diseases occur when the self-tolerance is 

lost and an adaptive immune response develops against self-antigens 
1,38

. Autoimmune 

regulator (AIRE) is a transcription factor that promotes expression of tissue-specific 

antigens in thymic medullary cells, enabling the formation of self-peptide-MHC 

complexes. The CD4+CD8+ (double-positive, DP) thymocytes, derived from bone 

marrow haematopoietic precursors, interact with these cortical epithelial cells, enabling 

the negative selection of too strongly binding T-cells. Thymocytes that interact with 

appropriate affinity with peptide-MHC class I complexes become CD8+ T-cells, while 

those that interact with peptide- MHC class II complexes become CD4+ T-cells 
39

. As 

important are mechanisms maintaining peripheral tolerance, which eliminate or inactivate 

the potentially autoreactive T-cells that have escaped negative selection. These include the 

loss of suppression of Tregs 
40

. 

Organ-specific autoimmune pathogenesis has primarily been associated with TH1, but 

not TH2 cells. In some systemic autoimmune diseases, like SLE, TH2 cells have been 

shown to have an influence, but they are not considered the driving force. Recently 

identified TH17 cells have been demonstrated to have a major role in autoimmunity and 

Treg cells in preventing immune-mediated damage. The balance and interplay of all of 

these T-cell subtypes with each other are critical for developing autoimmune diseases 
40

. 

A constant concentration of autoantigens and the lack of their eradication them makes 

autoimmune diseases chronic. Chronic inflammation gives positive feedback by attracting 

macrophages and neutrophils by secreted cytokines and chemokines and by revealing new 

autoantigens from damaged tissues, a phenomenon called epitope spreading. Epitope 

spreading may explain the relapses common to many autoimmune diseases 
1,38

. 

The autoimmune diseases may be organ-specific, affecting limited tissues, or systemic, 

with autoimmunity being expressed in several tissues. In systemic autoimmune diseases, 

such as in SLE, non-organ specific autoantibodies attack ubiquitous self-molecules. In 

SLE, the main target is chromatin. In organ-specific autoimmune diseases, the target 

antigens are found in one or a few organs and the tissue destruction is limited to these 

organs, although there may be symptoms affecting the whole body, such as fever 
1
. Canine 

organ-specific autoimmune disorders include several diseases affecting the haematologic 

system, such as IMHA, immune-mediated thrombocytopenia (IMTP) and immune-

mediated neutropenia 
38

. Also several autoimmune diseases of the endocrine system have 

been characterized, such as autoimmune thyroiditis, autoimmune diabetes mellitus and 

AD. Autoimmune diseases affecting the skin include discoid lupus and bullous skin 

diseases and those affecting the the musculoskeletal system, MG and CRA. Ocular 

autoimmune diseases are e.g. canine uveodermatologic syndrome or Vogt-Koyanagi-

Harada –like syndrome (VKH-like) and CSK 
38,41

. 
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2.1.3 Genetic background of autoimmune diseases 

A few autoimmune syndromes exist where a single gene is a causative risk factor, such as 

autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) 
42,43

. In 

APECED, the transcription factor gene, AIRE, is defective, causing the destruction of 

multiple endocrine tissues. Still, most of the autoimmune disorders are thought to be 

polygenic, and several genes and pathways have already been identified in humans. These 

susceptibility genes are often involved in autoantigen availability and clearance, apoptosis, 

signalling, cytokine gene expression and expression of co-stimulatory molecules. Genetics 

studies in canine autoimmune diseases have to date revealed several associations with the 

MHC class II locus. As yet, few other genetic risk factors outside the MHC class II region 

have been identified in canine autoimmune diseases 
44

. This is not the case in human 

autoimmune diseases, where several genes have been identified. Some of these are 

presented in Table 1.  New array and sequencing technology is likely to reveal new genes 

and pathways also behind canine autoimmune diseases in the near future. 

Copy number variations (CNVs) are structural variations in a genome from one 

kilobase to several megabases in length. CNVs are rarer than SNPs, but are often located 

in gene areas, causing more likely changes in gene expression levels, disruption of gene 

dosage, unmasking of recessive alleles or regulatory polymorphism and loss of regulatory 

elements 
45-48

. Several CNVs are known to be associated to common diseases in humans, 

including cancer, neuropsychiatric diseases, infectious diseases and autoimmune diseases, 

SLE being one of them 
46,49

. DNA structural variation has been mapped in dogs, and it is 

likely that CNV variation contributes to the genetic basis of complex diseases in dogs as 

well 
45

. 

Epigenetic modifications describe inherited changes in the expression of DNA that 

result from reasons other than what is coded in a DNA sequence. These include DNA 

methylation, chromatin remodelling, such as post-translational modifications of the 

histone proteins and RNA interference 
50

. Several acetylated proteins, have been 

associated with rheumatoid arthritis alone and methylation is particularly associated with 

autoimmune diseases 
51

. 

2.1.3.1 Major histocompatibility complex (MHC) 

MHC is a multigene family found in all vertebrates studied to date. The human MHC 

region, also known as human leucocyte antigen (HLA) region, is located on chromosome 

6p21 and extends over 3.6 Mb. MHC region is divided into three subregions, MHC classes 

I, II and III. Canine MHC or DLA is a 3.9 Mb gene cluster mainly located on chromosome 

12. The MHC in carnivore species was split perhaps over 55 million years ago into two 

pieces within the TRIM (member of the tripartite motif) gene family found in HLA. DLA 

class II, III, and I regions were situated in a pericentromeric region of chromosome 12, 

whereas the remaining region was located in a subtelomeric region of chromosome 35. In 

addition, two class I genes are found on chromosomes 7 and 18 
52

 (Figure 1). Comparing 

mammalian species, it can be seen that chromosome breaks, inversion and/or centromere 

invasion have occurred in the MHC region during the evolution of each species 
52,53
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Figure 1 Genomic structure of human, mouse and dog major histocompatibility 

complexes. Picture modified from 
52

  

 

The MHC region encodes several genes involved in both the innate and adaptive 

immune system. The primary function of the MHC is to recognize, bind and transport 

antigens to the surfaces of APCs, where they are presented to T-cells 
1,54

. MHC class III 

encodes the complement pathway genes, cytokines TNF-  and –  and heat shock proteins. 

MHC class I and II encode genes that recognize, bind and present antigen peptides to 

cytotoxic CD8+ and helper CD4+ T-cells, respectively. This interaction between the APC 

and T-cell initiates the cellular and humoral immune response. MHC class I is expressed 

on all nucleated cells and binds endogenously produced peptides. Class II is expressed on 

APCs, such as macrophages, B-lymphocytes and dendritic cells, and presents exogenous 

material that was endo- or phagocytosed. Under inflammation, also fibroblasts and 

vascular endothelial cells may express MCH class II molecules. MHC class I and II are 

polygenic and polymorphic, and alleles are co-dominantly expressed, yielding a high 

molecular diversity 
32,52,55

. 

The DLA class II region includes four loci, DLA-DRB1, -DRA, -DQA1 and -DQB1, 

with one functional gene at each locus. All DLA class II genes, except DRA, are highly 

polymorphic. The polymorphism in the DLA region is genetically maintained by point 

mutations, genetic recombination and gene conversion. Research for new variants is 

ongoing, and to date 148 DLA-DRB1, 70 DLA-DQA1 and 26 DLA-DQB1 alleles have 

been identified (Dr. LJ Kennedy, personal communication). Many of the alleles are breed-

specific and most breeds have a very limited diversity of alleles. In comparison, the human 

HLA-DRB1 gene has over 600 alleles. MHC class II molecules are composed of two 

heterodimeric transmembrane glycoprotein chains  and , each consisting of two 

domains. The  domains are encoded by DLA-DQA1 and DLA-DRA1 genes, and the  

domains by DLA-DQB1 and DLA-DRB1 genes. The 1 and 1 subunits form the peptide 

binding groove (Figure 2).  
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Figure 2 MHC class II protein. The  1 and 1 subunits form the peptide binding 

groove. 

SNP differences in second exons of the genes DLA-DRB1, DLA-DQA1 and DLA-

DQB1 create changes mostly in the hypervariable (HVR) regions of the peptide binding 

cleft, therefore altering the specificity of peptide recognition, binding and T-cell 

presentation. The DRB1 alleles are usually seen only with one combination with DQA1- 

and DQB1- alleles as the DQ alleles may be seen in combination with several different 

DRB1 alleles 
56

. These allele combinations or haplotypes may act epistaticly and provide 

some biological advantage as has been shown in human studies 
57

. 

There are several suggested mechanisms to maintain the polymorphisms in MHC 

region. These can be divided into two main models, the disease-based and reproductive 

mechanism. The disease-based model operates through balancing selection between host 

and pathogen and is based on their co-evolution. The heterozygote advantage hypothesis 

suggests that heterozygosity is favoured, as heterozygotes are able to present antigens 

more broadly. This hypothesis is also known as the overdominance/dominance hypothesis; 

the hetorozygote in the overdominance hypothesis would be fitter than the fittest 

homozygote and in the dominant theory, the heterozygote would be fitter that the 

homozygotes on average, but no more than the fittest homozygote. The negative 

frequency-dependent selection hypothesis, also known as the rare-allele advantage 

hypothesis, proposes that parasites evolve to exploit the defects in the most common host 

genotype, and the host therefore benefits from the rare alleles. Fluctuationg selection 

proposes that the spatial and temporal diversity and the amount of pathogens are the 

driving force, rather than co-evolution.  

The reproductive model is based on sexual selection and also has two different 

hypotheses. The first suggests that disease-based fitness differences between MHC 

genotypes favour reproductive mechanisms that would produce offspring with high fitness 

genotypes. This MHC-dependent mating might enhance parasite resistance in two ways, 

either by providing advantageous heterozygotes or by racing with the evolution of 

mutating parasites. The latter is known as the moving target hypothesis. The second 

reproductive model is based on inbreeding avoidance hypothesis, and the aim is to avoid 
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the negative consequences of inbreeding, such as accumulation of recessive deleterious 

mutations 
58

. 

MHC has been associated with almost every autoimmune disease, although the causal 

variants are not being characterized in most cases due to extensive linkage disequilibrium 

(LD) in the region 
54

. Some of the predisposing HLA alleles and haplotypes have been 

listed along with other susceptibility genes in Table 1. 

2.1.4. Environmental background of autoimmune diseases 

Autoimmune diseases have a strong genetic influence, but often environmental factors are 

needed to trigger the disease in genetically predisposed individuals. There are several 

mechanisms by which pathogens trigger the autoimmune diseases. Firstly, autoreactive T-

cells can be activated via molecular mimicry by cross-reactive recognition of an infectious 

antigen that has similarity to self-antigen. Secondly, infection causes tissue damage, 

revealing self-antigens that are normally not exposed. This together with the secreted 

inflammatory mediators may activate bystander lymphocytes not specific to the pathogen. 

Self-antigens can then be taken up by activated APCs, processed and presented to 

autoreactive T-cells in a process known as bystander activation. Tissue destruction may 

also cause epitope spreading. Thirdly, microbial superantigens may activate a large subset 

of T-cells, some of which are specific to self-antigens. In most cases, the autoimmune 

reaction ends as the pathogen is eradicated, but may sustain in genetically predisposed 

individuals. Drugs and toxins may react chemically with self-proteins and form 

compounds foreign to the immune system. These haptenated proteins may activate the 

immune response, leading to autoimmune reactions 
1
. It has also been suggested that 

exposure to environmental toxins during early development causes inherited epigenetic 

modifications 
59

. 

The hygiene hypothesis proposes that the decreasing incidence of infections in 

developed countries is the cause of the increasing incidence of both autoimmune and 

allergic diseases. This cannot be explained only by different genetic background. For 

example, the incidence of type 1 diabetes (T1D) with the same genetic background is 

close to six-fold higher in Finland than in the adjacent Karelian Republic of Russia 
60

. On 

the other hand, environmental risk factors alone do not explain this difference, as 

evidenced by the high concordance of T1D in monozygotic twins. The best support for the 

theory is provided by different animal models, such as the non-obese diabetic (NOD) 

mouse 
61

. NOD mice bred in ‘conventional’ facilities show little or no diabetes, whereas 

close to 100% of the female NOD mice bred in specific pathogen-free conditions develop 

the disease. In addition, a protective effect of probiotics and bacterial extracts was 

reported at the onset of diabetes. The proposed underlying mechanism is a TH1–TH2 

deviation, caused by antigenic lymphocyte competition for cytokines, recognition for 

MHC-self-peptide and growth factors necessary for the activation of B- and T-cells. Also 

Treg cells or antigen-independent stimulation through TLRs may be involved. Two 

immune responses caused by different antigens are known to inhibit each other, and 

therefore, a strong immune response to a pathogen might inhibit a weak immune response 

to an autoantigen 
62

. 
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2.1.5. Shared autoimmune disorders in humans and dogs 

The Online Mendelian Inheritance in Animal (OMIA) database lists a total of 506 

inherited diseases in dogs (20.09.2010), from which at least 235 are considered as 

potential disease models for human diseases. Table 1 lists the autoimmune diseases 

thought to be shared with humans and identified genes according to OMIA 
63

. Canine and 

human clinical diagnostics vary and dog diseases are usually not divided into as many 

sub-phenotypes as diseases in humans. Therefore, in the Table 1, human diseases are 

referred to using more general nomenclature. 
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Epidemiological studies are scarce compared to human autoimmune diseases, but some 

dog breeds are clearly overrepresented with immunological disorders. Breed-specific 

prevalence estimates were reported only in 21 from a total of 312 disorders based on a 

PubMed search 
64

. The few examples available of prevalence estimates in autoimmune 

diseases are: haemolytic anemia 11-25% in eighteen different breeds, Sebaceous adenitis 

24% in Akitas. The Orthopedic Foundation for Animals lists breed statistics based on 

laboratory testing. These numbers are only indicative since the individuals may not 

present random sampling of a breed, although some numbers of evaluated animals are 

high enough to make suggestive conclusions. In Table 2 are listed some examples of the 

breeds predisposed to hypothyroidism. A recent study in Swedish Giant Schnauzers gave a 

prevalence of 16% for the canine autoimmune lymphocytic thyroiditis (CLT) as it is here 

6.6% 
65

. A similar phenotype in human is Hashimoto’s thyroiditis which has been listed as 

a rare disease by Orphanet, the portal for rare diseases and orphan drugs (www.orpha.net). 

 

Table 2 Top 25 breeds affected with hypothyroidism according to Orthopedic Foundation 

for Animals database. Breeds with over 50 evaluations are listed. Modified from www.offa.org, 

24.22.2010. 

 

2.1.5.1 Systemic lupus erythematosus (SLE) 

Lupus erythematosus (LE) in humans is a heterogeneous autoimmune disease with 

varying immune responses and clinical course. LE can be divided into two subclasses 

according to characteristic clinical features, Systemic lupus erythematosus (SLE) and 
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cutaneous lupus erythematosus (CLE). CLE can be subdivided to discoid lupus 

erythematosus (DLE), acute cutaneous lupus erythematosus and subacute cutaneous lupus 

erythematosus (SCLE), which usually manifest solely in skin lesions, but may sometimes 

show extracutaneous signs. SLE is a multisystemic disease with variable symptoms such 

as skin manifestations, arthritis, serositis, proteinuria and neurological disorders. 

Autoantibodies are infrequent in DLE, but are practically always present in SLE in 

multiple specifities and almost always in SCLE. One of these autoantibodies is antinuclear 

antibody (ANA) 
66,67

. The prevalence of SLE varies between different populations from 

3/100 000 in Iceland and Japan to 91/100 000 in Spain 
68

. The CLE prevalence has not 

been as widely studied, but is estimated to be two to three-fold more common than SLE 
69

. 

Both genetic and environmental factors are thought to contribute to the aetiology, and 

selected genes underlying SLE have been listed in Table 1. 

2.1.5.2 Hypoadrenocortisism (Addison’s disease, AD) 

The clinical and pathological features of Addison’s disease (AD) were first described by 

Thomas Addison in 1855. AD is caused by insufficient production of corticosteroids and 

mineralocorticoids due to autoimmune destruction of the adrenal cortex 
70

. Autoantibodies 

in AD are directed against the enzymes involved in steroid synthesis, and they have 

predictive use, which is exploited by the ACTH stimulation test, detecting subclinical 

adrenocortical dysfunction with a high sensitivity. Isolated AD cases are rare and usually 

accompanied by other endocrinopathies such as autoimmune thyroid disease, pernicious 

anaemia and diabetes mellitus. AD is a part of the autoimmune polyendocrine syndrome 

(APS) in 100% of APS II cases and in 72% of APS I (APECED) cases. The prevalence of 

APECED is increased in Finland and is included in the “Finnish heritage of disease” with 

a prevalence of 1/25 000 
71

 The prevalence of AD in the general population is from 30/1 

000 000 to 60/1 000 000 
72

. The aetiology of AD is not fully understood, but, as a part of 

the APS I, it has been associated with the HLA-DRB1*03 allele, whereas other symptoms 

of APS I are associated with over 60 different mutations in the AIRE gene and other MHC 

class II variants 
71

. AD in the isolated form and in the context of APS II has been 

associated with HLA-A1, -B8 and -DR3 
72

. 

2.1.5.3 Autoimmunity in the eye: an immune-privileged site 

Immune-mediated diseases are relatively common in humans and dogs and present 

mechanistically interesting autoimmune conditions without reactive lymphoid tissues. 

Ocular disorders may affect the eye globe as a whole or individual structures such as the 

cornea, conjunctiva and eye lids, sclera and episclera, optic neuron, retina and extraocular 

muscles 
73

 (Figure 3). This might seem surprising because of the absence of lymphatic 

drainage, except for the conjunctiva, and selective blood-ocular barriers, which restrict the 

access of antigens to potentially reactive lymphoid tissue. The cornea has for long even 

been considered an immune-privileged organ because of the lack of lympatics and blood 

vessels 
74

. 
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Autoimmune uveitis in humans comprises a group of potentially blinding ocular 

inflammatory diseases, with an annual incidence of over 150 000 persons in the United 

States. Anterior uveitis is less destructive to the vision and affects mainly the front of the 

lens. Posterior uveitis (uveoretinitis) is more likely to result in blindness due to 

irreversible damage to the neural retina and adjacent structures. Posterior uveitis may 

involve only the eye, as in sympathetic ophthalmia and birdshot retinochoroidopathy or be 

a part of a systemic syndrome, such as of Behcet’s disease, sarcoidosis and Vogt-

Koyanagi Harada disease 
75

. 

 

 
 

Figure 3 Ocular immune-mediated diseases in dogs. Many of these diseases are poorly 

described and the pathogenesis is mostly unknown. 

2.1.6 Autoimmune disorders in Nova Scotia Duck Tolling Retrievers 

Nova Scotia Duck Tolling Retrievers (NSDTRs) are highly susceptible to several 

autoimmune diseases, including IMRD, SRMA and AD. Other autoimmune diseases, such 

as AIHA and hypothyroidism, have been reported in lower frequency by the Finnish breed 

club. IRMD and SRMA may be a part of the same immune disease syndrome SLE-related 

disease 
15,17,18

. We focused on IMRD, SRMA and AD, which will be described in more 

detail below. 

2.1.6.1 SLE-related disease  

IMRD and SRMA are hypothesized to be a part of the same autoimmune disorder, SLE-

related disease syndrome, based on the breed predisposition and segregation of both 

phenotypes in the same breeding lines 
15

. 
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2.1.6.1.1 Immune mediated rheumatic disease (IMRD) 

Typical immune-mediated rheumatic disease (IMRD) -affected dogs show similar clinical 

signs as patients with human SCLE and SLE; 84% of SCLE patients and 96% of SLE 

patients show antinuclear antibodies, while IMRD-affected dogs show ANA positivity in 

70% of cases. Another typical clinical sign is polyarthritis, which is seen in 16% of SCLE 

and 68% of SLE patients, whereas all IMRD dogs display arthritis. Other common 

symptoms include skin manifestations, fever and kidney and liver problems 
15,76,77

. The 

median age of disease onset is three years, and the disease frequency is clearly elevated 

compared with other breeds 
15

. The prevalence of SLE has not been studied in dogs, but it 

is a rare disease in dogs in general. In eleven-year period (1991-2001), 83 dogs had been 

diagnosed with noninfectious, nonerosive, immune-mediated polyarthritis, from which 

only seventeen dogs had been confirmed to have SLE, in the veterinary teaching hospital 

at the Western College of Veterinary Medicine. The total number of canine patients from 

this period was 23 661 
78

. In a five-year period (2002-2007), 121 SLE affected dogs had 

been tested ANA positive in Clinical Pathology Laboratory of the University Animal 

Hospital in Uppsala and 26% of these dogs were NSDTRs, suggesting that this breed is 

highly susceptible for IMRD.  

2.1.6.1.2 Steroid-responsive meningitis arteritis (SRMA) 

Dogs have two forms of steroid-responsive meningitis arteritis (SRMA). In the acute form 

of SRMA, acute neck pain is typical, which manifests in a reluctance to turn the head and 

lowering it while walking. Other clinical signs are fever, stiff gait, hunched back while 

walking, depression and anorexia, probably because of difficulties in lowering the head 

and opening the mouth. Often dogs pant excessively due to severe pain. Cerebrospinal 

fluid (CFS) shows a significant neutrophilic pleocytosis and an elevated protein 

concentration. CSF is not a widely used diagnostic method, and therefore, exclusion of the 

main potential differential diagnoses, such as disc herniation and polyarthritis of the 

cervical facet joints, as well as breed disposition, are used to confirm the diagnosis. The 

more protracted form shows severe neurological signs such as ataxia, paresis, tetraparesis 

or paraplegia, mild to moderate mixed cell pleocytosis in CSF and possible protein 

elevation. Some dogs develop polyarthritis, which is always seen in IMRD-affected dogs. 

The dogs develop signs of SRMA at the age of 4-19 months and a lifelong therapy with 

corticosteroids may be needed to avoid relapses, which occur in 50% of cases. 

Unresponsiveness to medical treatment may lead to euthanasia. The estimated prevalence 

of SRMA according to a Norwegian study is around 2.5%, which may be underestimated 

because of strict inclusion criteria 
17

. 

2.1.6.2 Hypoadrenocortisism (Addison’s disease, AD) 

Dogs as well as humans affected with AD often present with a variety of non-specific 

signs, including vomiting, diarrhea, lethargy, anorexia, muscular weakness and depression 
79-81

. The age of onset in NSDTRs is around four years, and the dogs as well as humans 
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are treated by supplementing the missing hormones 
80

. The diagnosis is confirmed with an 

ACTH stimulation test. 

2.1.7 Autoimmune disorders in German Shepherd dogs 

From all breeds, German Shepherd dogs have been reported to have the most inherited 

defects, total of 77 
64

. Even if conformation-related defects are excluded, the number of 

familial disorders is 58. It is therefore not surprising that also several autoimmune diseases 

are included, such as congenital focal alopecia areata 
21

, SLE 
22

, exocrine pancreatic 

insufficiency (EPI) 
23

, AF 
24,25

, CSK 
20

 and MG 
26

. Our focus in this study is on CSK, 

which will be described here in more detail. 

2.1.7.1 Canine chronic superficial keratitis (CSK) 

Canine chronic superficial keratitis (CSK) is a progressive autoimmune ocular disease 

often leading to blindness if left untreated. Characteristic for CSK is progressive, bilateral 

vascularisation, fibrous tissue formation and pigmentation of the anterior corneal stroma 
20

 

(Figure 4). Although CSK is found in many breeds, it is most prevalent in GSDs 
74,82-86

 

(Table 3). 

 
 

Figure 4 Progressive, bilateral vascularization, fibrosis and pigmentation of the 

anterior corneal stroma in the eye of German Shepherd Dog affected with chronic 

superficial keratitis. Photo: Elina Rusanen. 
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Table 3 Dog breeds reported with chronic superficial keratitis in the literature.  

 

The initial phase of CSK mainly involves IFN-  -producing CD4+ T-lymphocytes that 

infiltrate from the temporal region of the limbus into the superficial corneal stroma. The 

next phase involves invading macrophages, plasma cells and neutrophils 
87

. Increased 

expression of MHC class II proteins has been observed in the central cornea. This aberrant 

MHC class II expression has been proposed to be associated with the IFN-  secretion of 

the invading T-helper cells 
41

. The presence of CD4+ T-cells is typical for ocular 

autoimmune diseases 
88

. In addition, CSK is responsive to topical steroids and 

cyclosporine, further indicating an autoimmune origin 
89

. 

2.2. The dog as a model species for human inherited disorders 

2.2.1 Origin of the domestic dog 

Dogs were domesticated from wolves less than 16 300 years ago 
90

 (Figure 5). The latest 

study based on genomes of mitochondrial DNA (mtDNA) suggest that the existing canine 

breeds have a common origin, most probably in south-eastern Asia, south of the Yangtze 

river. It is estimated that at least 51 female wolves with different mtDNA haplotypes and a 

total of several hundred individuals were domesticated and that the modern domestic dogs 

originate from these wolves 
90

. Domestication has been estimated to have a 5% reduction 

in nucleotide diversity, whereas breed formation resulted in an average reduction of 35% 
91

. Therefore, the domestication event itself has not affected the genetic diversity as 

extensively as modern breeding practices.  
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Figure 5 Illustration of the bottlenecks in the history of the domestic dog. 

2.2.2 Breed creation 

Most of the over 400 modern dog breeds have been created over the last 400 years. The 

founder effect is very strong in pure-bred dogs 
4
. Each pure breed represents a group of 

genetically very similar animals that have descended from only a few ancestors. Some 

breeds have gone through several severe bottlenecks during the World Wars or depression 

and infectious disease breakouts, reducing the effective breeding population to only a few 

dogs. Modern breeding practices have also extensively narrowed the genetic diversity. 

Tight inbreeding accumulates recessive disease alleles and the frequency of these alleles is 

further increased by a use of ‘‘popular sires’’. Popular sires are dogs successful in dog 

shows or in competition events or otherwise considered superior representatives of the 

breed, and they may produce >100 litters in their lifetime.  

It is clear that in-breeding accumulates recessive mendelian diseases, but the effect of 

‘in-breeding depression’ on polygenic, late-onset diseases is more complex. Firstly, the 

combined effect of individual risk factors for complex disease is multiplicative rather than 

additive. Secondly, late-onset diseases may not be selected against as they are first visible 

after reproductive age. Thirdly, the negative effects of rare homozygous mutations may be 

more severe than effects of common risk variants, as they usually do not exist in out-bred 

populations where homozygotes are rare. Fourthly, in-breeding affects the response to 

environmental factors such as infections. Fifthly, if the theory of heterozygote advantage 
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exists, inbreeding reduces clearly the polymorphism and even if homozygosity itself is not 

harmful in some genes or gene areas, these benefits are lost 
92

. As an example of 

inbreeding effects, the study of sea lions in California showed increased bacterial and 

helminth infections and longer recovery time 
93

. 

As a result of the founder effect and tight inbreeding, breed-specific physical features, 

behaviour and over 500 diseases, such as epilepsies, cancers, allergies and autoimmune 

disorders, have been accumulated in pure-bred dogs 
4
. Only humans have been identified 

with more known genetic diseases. Today the OMIA database identifies 506 inherited 

canine diseases and more than 60% of these are thought to be shared with humans with 

very similar physiology, disease presentation and clinical response. Even among the top 

ten most common inherited canine diseases, there are several that serve as a disease model 

for humans 
3-5

. Mutations behind several monogenic diseases have already been identified, 

such as the hair ridge, which causes predisposition to dermoid sinus 
12

, recessive cone-rod 

dystrophy 
13

 and ectodermal dysplasia 
14

. 

2.1.2.1 Nova Scotia Duck Tolling Retriever 

The NSDTR was developed in the Yarmouth region of Nova Scotia in 

the early 1800s as a gundog to assist hunters to lure and retrieve 

ducks. Canine Distemper Virus (CDV) outbreaks were reported to 

occur twice in 1908 and 1912 reducing the population to only a few 

individuals. The first NSDTRs registered with the Canadian Kennel 

Club (1945) were derived from the stock that survived these distemper 

outbreaks, and the first NSDTRs were imported to the Scandinavian 

countries as late as in the middle of the 1980s 
94

 (Figure 6). 

Figure 6 Novascotian Duck Tolling Retriever. Photo Jarno 

Nevalainen. 

2.2.2.2 German Shepherd Dog 

The GSDs originate from the herding and farm dogs in southern- and 

central Germany and have been systematically bred since the breed 

club ”Verein für Deutche Schäferhunde” was founded in 1899. The 

purpose was to create a versatile working dog to serve humans and 

the breed remains the most popular working dog worldwide. The first 

GSDs were imported to Finland in the 1910s 
95,96

 (Figure 7). 

Figure 7 German Shepherd Dog. Photo Eila Kärkkäinen. 
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2.2.3 Dog genome and genomic tools 

The fundamental element in identifying the genes for a particular characteristic or disease 

is a founder effect. The study cohort would ideally consist of individuals with a common 

ancestry such as Icelanders and Finns in humans, and inbred laboratory animals or pure-

bred breeds of pet dogs. When the population descends from a small group of ancestors, 

they are more likely to share the same founder mutations, and genetic heterogeneity is 

much lower. In a study of 85 dog breeds, humans and dogs were shown to have essentially 

the same level of nucleotide heterozygosity when all the dog breeds were considered as 

one species. As stated earlier, the genetic diversity did not markedly diminish during 

domestication of the dog from wolves. Within a dog breed, the homogeneity is much 

greater than within distinct human populations, 94.6 % and 72.5%, respectively, which is 

supported by the history of severe bottlenecks in breed creation. Therefore, much of the 

total genetic variation comes from differences between dog breeds and is nearly 6-fold the 

variation between human populations 
97

. 

2.2.3.1 Dog genome structure provides advantages in gene mapping 

The dog genome consists of 76 acrocentric autosomes, and two sex chromosomes. A 

female chromosome is X and a male chromosome Y, giving a total diploid number of 78. 

The abbreviation CFA is used here for canis familiaris chromosomes. The dog genome 

project, which was completed in 2005, provided a high-quality dog genome sequence and 

a dense single-nucleotide polymorphism (SNP) map containing 2.5 million SNPs. In 

addition, a detailed haplotype analysis was performed on the whole boxer sequence and a 

6% sequence of the genome from 10 additional dogs representing different breeds 
9
. LD in 

domestic dog breeds correlates with breed history. Breeds like the akita, Bernese mountain 

dog and Pekingese, which have experienced severe bottlenecks in the last 100 years, have 

LD blocks that extent over 3 Mb. In golden and Labrador retrievers, which are popular 

breeds without severe bottlenecks in the past, the LD blocks are around 1 Mb. By 

comparison, in humans, LD blocks are < 100 kb. Extensive LD blocks are an advantage in 

genome-wide association studies where fewer markers are needed to map the genomic 

location of the association. The disadvantage is that the identified loci are usually several 

megabases long. Strong inbreeding of dogs has also resulted in low haplotype diversity in 

regions of extensive LD, and dog breeds, although highly differentiated genetically, share 

haplotypes with each other to a high degree. Shared haplotypes are short (<10 kb) and 

enable the use of related breeds with the same phenotype, and presumably with the same 

founder mutation, to narrow down the associated loci 9,10 (Figure 8). 
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Figure 8 Haplotype surrounding the mutation in ancestral wolf haplotype and in 

haplotypes on chromosomes of modern dog breeds. 

Power calculations estimate that genome-wide association analyses may be performed 

on dogs with 15 000 SNPs. To identify alleles for a simple recessive trait, 20 affected and 

20 healthy control dogs are needed. To map complex traits, one would need at least 100 

cases and 100 controls for traits that have a fivefold increased risk. For complex traits with 

only a twofold increased risk, 500 cases and controls are estimated to be needed 
9
.  

There are several other reasons why the dog is an excellent model for complex 

diseases, in which both genes and environmental risk factors contribute to the 

development of the disease. Dogs share most of the environmental risk factors with 

humans. As companion animals, dogs are exposed to smoking, environmental pollution, 

toxins, radon and sometimes even the same diet. The health of companion dogs is well 

taken care of and documented. The insurance companies and breed and kennel clubs keep 

records of pedigrees, and diseases and there are several databases and computing tools 

available for genetic research. Also full post-mortem tissues are available. Most 

importantly, the coding sequences of dogs and humans are more similar to each other than 

to mice and they have a similar physiology, histology and clinical course of the disease 
6,98

. 

2.2.3.2 Dog genetic resources and genomic tools available 

New high-throughput technology and dog genome sequence, enable studies at a genome-

wide level within a reasonable time and relatively low costs. The dog genome sequence 

and related resources are available in the databases of the University of California, Santa 

Cruz (UCSC) http://genome.ucsc.edu/ and the National Center for Biotechnology 

Information (NCBI) http://www.ncbi.nlm.nih.gov/projects/genome/guide/dog/. Moreover, 

several databases on canine inherited disorders are available, including the Online 

Mendelian Inheritance in Animals (OMIA) database at the NCBI site 

http://omia.angis.org.au/, Canine Inherited Disorders Database (CIDD) 
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http://www.upei.ca/cidd/intro.htm, which is a joint initiative  of the Sir James Dunn 

Animal Welfare Centre at the Atlantic Veterinary College, University of Prince Edward 

Island, and the Canadian Veterinary Medical Association and the Inherited Diseases in 

Dogs Database (IDID) http://server.vet.cam.ac.uk/index.html compiled by David Sargan 

at the University of Cambridge. In addition, there are several web pages related to genetic 

research, including the FHCRC Dog Genome Project at the National Human Genome 

Research Institute, which is a part of the National Institutes of Health (NIH) in Bethesda, 

Maryland, the Animal Healthtrust in Newmarket, Suffolk http://www.aht.org.uk/ and the 

LUPA project, a collaborative research project funded by the European commission under 

the 7th research framework programme http://www.eurolupa.org/. 

Traditional sequencing and microsatellite markers are still used, but the new SNP-, 

CNV- and sequencing array technologies have revolutionized genetic research. The first 

genome-wide SNP genotyping microarray generated by collaboration of the Broad 

Institute and Affymetrix contained ~27 000 markers. The improved version with ~50 000 

markers and the first Illumina array with ~22 000 SNPs have been subsequently launched 
11

. 
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3 Aims of the study 

The purpose of this study was to identify genetic loci and variants influencing the 

susceptibility to different autoimmune diseases in dogs. The main approaches used in this 

thesis were demonstrating association through known MHC class genes and 

demonstrating SNP association through a genome-wide association study.  

 

Specific aims were as follows:   

 

1. To investigate whether MHC class II genes DRB1, DQA1 and DQB1 are associated  

a. with IMRD , SRMA and Addisons’ disease in NSDTRs.  

b. with CSK in GSDs. 

2. To identify novel susceptibility loci for IMRD, SRMA and Addisons’ disease in 

NSDTRs by a genome-wide association study. 
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4 Materials and methods 

4.1 Research site 

This study was carried out in Professor Hannes Lohi’s research group at the Department 

of Veterinary Biosciences, the Department of Medical Genetics, the Program in Molecular 

Medicine, University of Helsinki, and The Folkhälsan Institute of Genetics, Department of 

Molecular Genetics, Biomedicum I, Helsinki. 

SLE project was conducted in collaboration with the research groups of Professor 

Kerstin Lindblad-Toh at the Broad Institute of Harvard and Massachusetts Institute of 

Technology (MIT), USA, and the Department of Medical Biochemistry and Microbiology, 

Uppsala University, Sweden, Associate Professor Helene Hansson-Hamlin at the 

Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU) and 

Professor Göran Andersson at the Department of Animal Breeding and Genetics, SLU. 

The Addison’s disease project was conducted in collaboration with Associate Professor 

Danika Bannasch at the Department of Population Health and Reproduction and Angela 

Hughes, DVM at the Department of Medicine and Epidemiology, University of 

California, USA. Lorna Kennedy, PhD of the University of Manchester has assisted with 

MHC haplotyping in all three MHC studies. 

4.2 Study population 

A total of 222 NSDTRs, 65 GSDs, six Cocker Spaniels, twelve boxers and four Petit 

Basset Griffon Vendeens were included as cases in our studies. In addition, 203 NSDTRs, 

39 GSDs, four Cocker Spaniels, twenty boxers and six Petit Basset Griffon Vendeens 

served as healthy controls. The case control association analysis was performed with 44 

SRMA dogs, 37 IMRD and 57 controls. Table 4 describes the study population in detail. 

Affected dogs and population controls, unrelated at the grandparent level, were used in 

all studies, except the AD study, where we used discordant sib-pairs. A partial pedigree of 

the Finnish SLE-affected NSDTRs is presented in Figure 9. 
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4.3 Diagnostic procedures 

Dogs were chosen based on strict inclusion and exclusion criteria. To be classified as 

affected by IMRD, the dogs had to have displayed musculoskeletal disorders consistent 

with symmetrical polyarthritis, suffered from pain affecting several joints of the 

extremities and displayed stiffness, mainly after rest. Signs needed to be apparent for at 

least 14 days. The presence of ANA was tested by using indirect immunofluorescence 

(IIF-ANA).  The test was considered positive at a titre of 1:100. 33 out of 51 study dogs 

tested IIF-ANA positive. Positive ANA tests were repeated 2-3 months later, with the 

same positive result and the same IIF-ANA pattern. Sera from all healthy controls were 

negative on the IIF-ANA test. Dogs classified as SRMA-affected displayed high fever and 

strong neck pain and responded to corticosteroid treatment. The diagnostics procedure is 

described in more detail by Hansson-Hamlin 
15

. 

For a dog to be classified as affected by AD, an adrenocorticotropic hormone (ACTH) 

stimulation test must have been performed with pre- and post-ACTH stimulation serum 

cortisol concentrations <2.5 g/dl (68 nmol/l). Exclusion criteria were dogs with no 

clinical signs of any autoimmune disease and >7 years of age.  

The dogs diagnosed with CSK, as well as the healthy controls, had undergone a 

thorough ophthalmic eye examination by an experienced ophthalmologist to ensure their 

recent ocular health status. We also developed a detailed health questionnaire that was sent 

to all participating dog owners. Besides the demographic information and specific 

questions about CSK, the questionnaire collected information about the dog’s relatives. 

All dogs affected with any other eye or autoimmune diseases were excluded. 

4.4 Blood samples and DNA isolation 

All animals in our study were privately owned pets. A DNA sample was donated for use 

in a genetic study. EDTA- blood (3-5 ml) was collected at various veterinary clinics and 

dog shows with the owners’ consent. DNA was isolated using standard procedures 

(studies II, III). 

4.5 Sequencing for MHC class II and allele assignment (I-III) 

To identify the MHC class II haplotypes, we first sequenced the purified PCR products of 

exon 2 from DLA locus genes DRB1, DQA1 and DQB1 using an ABI 3730 or 3730xl 

sequencer. The sequences were analysed manually and compared with a consensus 

sequence with the MatchToolsNavigator program. The program MatchTools was used to 

assign the DRB1-, DQA1- and DQB1 alleles by comparing the sequences against a large 

sequence library (http://www.ebi.ac.uk/ipd/mhc/index.html). MHC-II haplotypes were 

built using information from previous studies (Dr. Lorna Kennedy, personal data). 
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4.6 Genome-wide genotyping (IV) 

Genome-wide association (GWA) genotyping was performed at Biomedicum Helsinki 

using 22,000 validated SNPs in the CanineSNP20 BeadChip panel and the Illumina’s 

Infinium HD DNA Analysis instrument. Automated genotype calling was performed using 

the Illuminus software 
99

.  

4.7 Fine-mapping of the associated regions (IV) 

A total of 822 SNPs at 1 SNP/10 kb density were genotyped by the iPLEX SEQUENOM 

MassARRAY platform at the Broad Institute. Fine-mapping was performed with samples 

used in GWA, additional samples of NSDTRs and dogs with the same phenotype from 

other breeds. Additional breeds with the IMRD or SRMA phenotype were included to 

identify shared haplotypes across breeds (Figure 8).  Also NSDTRs with other 

autoimmune diseases, AD and CLT, were included to identify loci predisposing to 

autoimmune disorders in general. The total sample size at this point was 416 NSDTRs and 

included 81 IMRD cases (32 ANA-positive), 78 SRMA cases, 43 AD cases, 20 CLT cases 

and 203 healthy controls. The details of the samples are presented in Table 4. The normal 

procedure requires an independent association in each breed, but due to low sample sizes 

we performed the haplotype analysis without this prior knowledge. 

4.8 Statistical analysis (I-IV) 

In studies I-III, the cases and controls were divided into separate groups in various ways 

based on the presence or absence of an allele, genotype or haplotype. In each group the 

number of allele, genotype or haplotype was calculated and a 2x2 Contingency Table was 

created to display the proposition of each variable in a matrix format. The significance of 

the frequencies between cases and controls was assessed by 
2
 statistics and odds ratios 

(OR) and relative risks with 95% or 99% confidence intervals and p-values were 

calculated. While calculating the OR for the risk haplotype homozygosity in CSK and AD 

where the number of homozygous controls was zero, we used a pseudocount (1) to be able 

to perform the calculations. This approach means adding number one to each observed 

number of counts 
100

. 

In study IV, all SNP and haplotype associations were analyzed with the software 

package PLINK 
101

. For marker quality control, SNPs with a minor allele frequency of 

<5% were excluded, as were SNPs with call rates <75%. Our GWA samples were 

collected from two different countries in which the NSDTR breed may have been divided 

into separate subpopulations causing a false association due to differentiated allele 

frequencies between the subpopulations (=population stratification, PS). To test for the 

presence of PS in our sample we used multidimensional scaling (MDS) analysis to 

construct multidimensional scaling plots, where each spot corresponds to a specific 

individual. PS was adjusted by IBS clustering with two groups, which reflects the 

population structure in our sample. We opted for a multi-population analysis approach, 
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and chose Cochran-Mantel-Haenszel (CMH) conditional on clustering as the primary 

association analysis method 
102

. The robust and generally accepted p<5 x 10-6 was chosen 

as the limit for significance, with further interest for follow-up studies paid to loci 

showing with multiple SNPs within close proximity with p-values between 1 x 10-5 - 5 x 

10-6. A quantile-quantile plot of the CMH analysis and overall inflation factor (  = 1.2) 

were used as final quality control measures. The genome-wide significance was assured 

by using 100 000 permutations. The analysis was performed for the IMRD and SRMA 

sub-phenotypes separately and all cases combined. 

At fine-mapping stage, for marker quality control, SNPs with a minor allele frequency 

of <1% were excluded, as were SNPs with call rates <80%. The same settings were used 

to analyse two to eight SNP haplotypes generated with a sliding window approach 

provided by PLINK. 

4.9 Ethical issues 

We have a license authorized by the Animal Experiment Committee of the County 

Administrative Board of Southern Finland (ESLH-2009-07827/Ym-23, valid until 

16.10.2012). No genetically modified dogs are produced in our Finnish dog genetics 

programme. We do not breed dogs for research purposes or own any of the dogs studied. 
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5 Results 

5.1 MHC class II candidate gene studies (I-III) 

MHC class II gene region has been associated in most, if not all, autoimmune disorders in 

humans and in several autoimmune disorders in dogs. As there are no previous genetic 

studies reported in CSK, IMRD, SRMA or AD, we investigated whether specific DLA-

DRB1*DQA1*DQB1 – risk haplotypes exist in any of these disorders. 

5.1.1 DLA class II polymorphism in Finnish, Swedish and North-American 

NSDTRs 

We genotyped altogether 241 NSDTRs, 64 from Finland, 114 from Sweden and 63 from 

North America (Table 4) and identified five DLA-DRB, four DLA-DQA1 and five DLA-

DQB1 alleles, which formed seven different haplotypes (Table 5). Two of the most 

common haplotypes were seen in very high frequencies, the third, fourth and fifth most 

common haplotypes were seen in moderate frequencies and the rest were extremely rare, 

seen in only a few dogs. A clear difference existed in haplotype one and five frequencies 

between North-American and Scandinavian dogs, with p-values of 1.97
e-25

 and 1.076
e-07

, 

respectively.
 
Finnish and Swedish dogs showed a similar distribution of haplotypes with 

each other, as did the US and Canadian dogs. 

Table 5 Haplotype frequencies in Scandinavian and North-American Nova Scotia Duck 

Tolling Retrievers. 

Haplotype 

no. DRB1 Allele DQA1 Allele DQB1 Allele

1 00601 005011 02001 142 40.3 31 22.8

2 01502 00601 02301 120 34.1 43 31.6

3 01501 00601 00301 53 15.1 26 19.1

4 02301 00301 00501 34 9.7 10 7.4

5 01501 00601 02301 22 16.2

6 00401 00201 01501 3 0.9 2 1.5

7 01502 00601 00301 2 1.5

Total 5 4 5 352 100.0 136 100.0

Scandinavian AmericanHaplotype

Haplotype frequency       

(no.    +    %)

Haplotype frequency       

(no.    +    %)

 

5.1.2 DLA class II polymorphism in Finnish GSDs 

We genotyped 55 GSDs and identified eight DLA-DRB1, five DLA-DQA1 and eight 

DLA-DQB1 alleles, which formed eleven different haplotypes (Table 6). The haplotypes 

were unevenly distributed and the two most common ones were seen in very high 

frequencies, comprising over 75% of all haplotypes in the study population. A third 

haplotype was seen at a moderate frequency of 9.1%. All of the other haplotypes were 
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rare, seen only in one to three dogs. Three of the dogs carried a double DLA-DQB1 allele 

on one haplotype, consisting of alleles DQB1*01303 and DQB1*01701; this was named 

DLA-DQB1*013017. One of the identified alleles in the DLA-DRB1 locus was new and 

was officially named DLA-DRB1*01104 and submitted to the NCBI database (accession 

number FN995992). One DLA-DQB1 allele was also new and has now officially been 

named DLA-DQB1*05901 (accession number FN995993). 

Table 6 Haplotype frequencies in the Finnish German Shepherd Dogs. 

Haplo-type 

no. DRB1 Allele DQA1 Allele DQB1 Allele

1 01101 00201 01302 20 34.4 26 53.3 46 41.8

2 01501 00601 00301 26 43.1 11 22.2 37 33.6

3 00101 00101 00201 5 8.6 5 11.1 10 9.09

4 00201 00901 00101 1 1.7 2 2.2 3 2.7

5 00102 00101 00201 2 3.4 1 0 3 2.7

6 01201 00401 013017 1 1.7 2 4.4 3 2.7

7 01502 00601 02301 2 3.4 2 1.8

8 01104 00201 01302 2 4.4 2 1.8

9 01502 00601 05901 2 3.4 2 1.8

10 01101 00201 01303 1 1.7 1 0.9

11 01501 00601 02301 1 2.2 1 0.9

Total 8 5 8 60 100 50 100 110 100

Haplotype frequency    

(no.    +    %)

All

Haplotype frequency    

(no.    +    %)

Haplotype frequency    

(no.    +    %)

CSK ControlsHaplotype

 
CSK=chronic superficial keratitis 

5.1.3 DLA class II haplotype association with CSK in GSDs 

We genotyped thirty affected CSK dogs and twenty-five healthy population controls to 

search for an association with the MHC class II region. All of the dogs participating in the 

study had been examined by an experienced ophthalmologist to confirm the diagnosis, to 

exclude other eye diseases and to confirm the recent health status of control dogs. The 

DLA-DRB1*01501/DQA1*00601/DQB1*00301 haplotype was significantly associated 

with the CSK in GSDs (OR=2.67, 95% CI=1.17-6.44, p = 0.02) (Table 7). 

Table 7 Association of the risk haplotype DRB1*01501/DQA1*00601/DQB1*00301with 

chronic superficial keratitis in German Shepherd Dogs. 

CSK % (no.) Control  % (no.) Odds ratio 95% CI p-value

43.1 (26) 22.2 (11) 2.67 1.17-6.44 0.02

DRB1*01501/DQA1*00601/DQB1*00301

Association with risk haplotype

 
CSK=chronic superficial keratitis 

 



Identifying genetic risk factors in canine autoimmune disorders 

 

44 

 

5.1.4 DLA class II haplotype association with hypoadrenocortisism in 

NSDTRs 

To test for an association between the MHC class II locus and AD, we genotyped twenty-

nine AD-affected NSDTRs, twenty-one from the USA and eight from Canada. The 

diagnosis was based on the ACTH stimulation test. In addition, five AD-suspected 

NSDTRs were included, three from the US and two from Canada. The diagnosis of these 

dogs was based on clinical signs and findings, and response to treatment.  Eleven 

unaffected full- and half-siblings of the affected NSDTRs, nine from the US and two from 

Canada, and twenty-three country-matched NSDTRs were included as controls. We found 

that the DLA-DRB1*01502/DQA*00601/DQB1*02301 haplotype was significantly 

associated with AD in NSDTRs (OR = 2.1, 95% CI = 1.0-4.4, p = 0.044) (Table 8). The 

association was even stronger when examining the US population alone (OR = 2.8, 95% 

CI = 1.1-7.1, p = 0.025). 

Table 8 Association of the risk haplotype DLA-DRB1*01502/DQA*00601/DQB1*02301 

with hypoadrenocortisism in American Nova Scotian Duck Tolling Retrievers. 

Addison's disease          

% (no) Control  % (no.) Odds Ratio 95% CI p-value

USA dogs 39.6 (24) 18.8 (24) 2.8 1.1-7.1 0.044

Canadian dogs 40.0 (10) 35.0 (10)

All dogs 38.6 (34) 22.9 (34) 2.1 1.0-4.3 0.047

DLA-DRB1*01502/DQA*00601/DQB1*02301

Association with risk haplotype

 

5.1.5 DLA class II haplotype association with IMRD in NSDTRs 

A total of 176 dogs were genotyped in this project. We studied 51 IMRD dogs, 33 dogs of 

which tested ANA positive on the IIF-ANA test. The sample also included 49 SRMA dogs 

and 78 healthy controls. Two dogs were affected by both SRMA and IMRD. We found an 

elevated risk for IMRD in dogs that carried the DLA-

DRB1*00601/DQA1*005011/DQB1*02001 haplotype (OR = 2.0, 99% CI = 1.03-3.95, p 

= 0.01) and for ANA-positive IMRD dogs (OR = 2.3, 99% CI = 1.07-5.04, p = 0.007) 

(Table 9). No association was observed with the SRMA.  
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Table 9 Association of the risk haplotype  DLA-DRB1*00601 /DQA1*005011 

/DQB1*02001 with immune-mediated rheumatic disease in Scandinavian Nova Scotian Duck 

Tolling Retrievers. 

Disease

% (no.) affected

IMRD  

51.0 (52) 34.6 (53) 2.0 1.0-4.0 0.01

ANA +

54.5 (33) 34.0 (53) 2.3 1.1-5.0 0.007

Association with risk haplotype

DLA-DRB1*00601 /DQA1*005011 /DQB1*02001

Control  % (no.) Odds ratio p-value 99% CI

 
IMRD=immune-mediated rheumatic disease, ANA=antinuclear antibody. 

5.1.6 Association of MHC class II homozygosity with autoimmunity 

Homozygosity for the risk haplotype increased the disease risk significantly in all studies. 

In CSK and AD, none of the control dogs were homozygous for the risk haplotype, 

whereas in IMRD 11.5% of the controls carried two copies of the risk haplotype. The 

DLA-DRB1*01501/DQA1*00601/DQB1*00301 haplotype was homozygous in 8 CSK-

affected dogs and none of the controls (ORestimate  > 8.5, 95% CI = 1.4-224, pfisher = 0.017) 

(Table 10). 

Table 10 Association of homozygosity in DRB1*01501/DQA1*00601/DQB1*00301 risk 

haplotype with chronic superficial keratitis in Finnish German Shepherd Dogs. Pseudocount (1) 

has been added to the numbers. 

CSK % (no.) Control  % (no.) Odds ratio 95% CI p-value

36.0 (9) 4 (1) 8.5 1.4-224 0.017

Homozygosity for risk haplotype

DRB1*01501/DQA1*00601/DQB1*00301

 
CSK=chronic superficial keratitis 

 

 

The DLA-DRB1*01502/DQA*00601/DQB1*02301 haplotype was homozygous in six 

AD-affected NSDTRs and in none of the controls (ORestimate  > 8.9, 95% CI = 1.4-237.7, 

pfisher = 0.02) (Table 11). 

Table 11 Association of homozygosity in the DLA-DRB1*01502/DQA*00601/DQB1*02301 

risk haplotype with hypoadrenocortisism in American Nova Scotian Duck Tolling Retrievers. 

Pseudocount (1) has been added to the numbers. 

Addison's disease         

% (no.) Control  % (no.) Odds ratio 95% CI p-value

20.6 (7) 3.5 (1) 8.9 1.4-237.7 0.02

Homozygosity for risk haplotype

DLA-DRB1*01502/DQA*00601/DQB1*02301
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The twofold risk present in heterozygous IMRD dogs increased up to fivefold if the 

dogs were homozygous for the haplotype (OR = 4.9, 99% CI = 1.52-16.0, p = 0.0005). 

ANA-positive dogs were even more susceptible, with a sevenfold risk (OR = 7.2, 99% CI 

= 2.0-25.9, p  0.0001) (Table 12). 

Table 12 Association of homozygosity in the risk haplotype  DLA-

DRB1*00601/DQA1*005011 /DQB1*0200 haplotype with immune-mediated rheumatic disease in 

Scandinavian Nova Scotian Duck Tolling Retrievers. 

Disease

% (no.) affected

IMRD 

39.2 (20) 11.5 (9) 4.9 1.52-16.0 0.0005

ANA +

48.5 (16) 11.5 (9) 7.2 2.0-25.9 <0.0001

Controls % (no.) Odds ratio p-value 99% CI

DLA-DRB1*00601 /DQA1*005011 /DQB1*02001

Homozygosity for risk haplotype

 
IMRD=immune-mediated rheumatic disease, ANA=antinuclear antibody. 

 

In addition, in CSK and AD, an overall homozygosity, regardless of the haplotype was 

shown to increase the risk, and in AD it was also associated with early onset of the 

disease. Fourteen out of 30 CSK cases versus four out of 25 controls were homozygous 

for the MHC class II haplotypes in general (OR=4.37, 95% CI=1.27-18.46, p = 0.02) 

(Figure 10). Ten AD-affected dogs were homozygous for MHC class II compared with 

only two control dogs (OR = 6.7, 95% CI = 1.5-29.3, p = 0.011) (Figure 11). 

 

Figure 10 Number of dogs homozygous for major histocompatibility complex (MHC) 

class II region: comparison of dogs with and without chronic superficial keratitis 

(CSK). CSK dogs indicated in dark gray and control dogs in light gray. 
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Figure 11 Number of dogs homozygous for the major histocompatibility complex (MHC) 

class II region: Comparison of dogs with and without Addison’s disease (AD). AD 

dogs indicated in dark grey and control dogs in light gray. 

5.2 Genome-wide association and fine-mapping studies in dogs 
(IV) 

In study IV, we performed the first successful genome-wide association study for a 

complex disease in dogs identifying IMRD and SRMA loci in NSDTRs . Genotyping on 

81 SLE-related disease affected dogs and 57 healthy control dogs was performed using the 

Illumina’s canine-specific 22k SNP chip arrays. GWA was followed by fine-mapping the 

associated regions with additional samples and markers. 

5.2.1 GWAS 

Based on the MDS analysis, we observed some stratification when all dogs were analysed 

together and when SRMA-affected dogs were analysed alone (Figure 12).  
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Figure 12 Multidimensional scaling plot of the genome-wide SNP data showing minor 

population stratification (PS). When spots are totally overlapping each other, there is 

no PS. 

We identified five loci associated with the SLE–related disease complex, from which 

three loci reached genome–wide significance after correction for multiple tests (p-value = 

0.02-0.04). All results are combined in Table 13.  

We found a large region containing multiple associated SNPs on canine chromosome 

(CFA) 32 at 25 Mb (praw= 1.5 x 10
-5

 and pgenome= 0.12) when all cases were analysed as 

one group. After correction for stratification, the region showed an even stronger 

association (praw= 7.9 x 10
-6

 and pgenome= 0.06). 

Analysis of the ANA-positive IMRD sub-phenotype separately revealed four highly 

associated regions in CFA 3, 8, 11 and 24. The strongest associations were found for a 

single SNP on CFA 8 at 69 Mb (praw= 1.5 x 10
-6

 and pgenome= 0.02) and on multiple SNPs 

on CFA 24 at 38 Mb (praw= 3.2 x 10
-6

 and pgenome= 0.04). Both associations reached 

genome-wide significance. We also found multiple associated SNPs on CFA 11 at 66 Mb 

(praw= 7.4 x 10
-6

 and pgenome= 0.08) and on CFA 3 at 57 Mb (praw= 2.2 x10
-5

 pgenome= 

0.18), which did not reach genome-wide significance. Very minor population stratification 

(IR= 1.2) did not need to be corrected for. 

SRMA-affected dogs showed stronger stratification by nationality and were analysed 

in three different ways, as one group and as Swedish and Finnish dogs separately. When 

analysing all SRMA-affected dogs together, we identified two regions with multiple 

associated SNPs, one on CFA 28 at 14 Mb (praw= 6.5 x 10
-5

 and pgenome= 0.37) and 

another on CFA 32 at 25 Mb (praw= 7.4 x 10
-5

 and pgenome= 0.40). The latter overlapped 

the peak seen in the analysis of both phenotypes together and reached genome-wide 

significance after correction for stratification (praw= 7.10 x 10
-6

 and pgenome= 0.04), while 

the former association was lost. The association on CFA 32 persisted when the Swedish 
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dogs were analysed alone, but did not reach genome-wide significance (praw= 2.1 x 10
-4

 

and pgenome= 0.69) (data not shown). When analysing the Finnish SRMA dogs separately, 

genome-wide significance was found for a single SNP on CFA 30 at 29 Mb (praw= 6.7 x 

10
-6

 and pgenome= 0.03). 

Table 13 Results of the genome-wide association and finemapping studies using 81 affected 

and 57 healthy control dogs. Modified from 
103

. 

 
 

GWA=genome-wide association analysis. The sizes of the associated regions are based on the 

fine-mapping data within the breed complemented with the areas of haplotype-sharing across 

breeds. 

5.2.2 Fine-mapping 

To replicate and narrow down the associated regions, we performed fine-mapping with 

additional samples and 822 SNPs. The average density of SNPs was one SNP/10 Kb. We 

used a total of 425 NSDTRs, 81 IMRD-affected, of which 32 tested ANA-positive, 78 

SRMA-affected, 43 AD-affected, 20 CLT-affected and 203 healthy controls. Additional 

breeds were used to identify shared haplotypes between the breeds, which are expected to 

be much shorter than within a breed. To analyse ANA-positive IMRD, GSDs and cocker 

spaniels were included, and to analyse SRMA Boxers and Petite Basset Griffon Vendeen 

were included (Table 4).  

Fine-mapping data obtained from IMRD- and SRMA-affected dogs and their healthy 

controls were analysed in three groups: dataset 1 (dogs included in GWA, n = 138), 

dataset 2 (additional NSDTRs, including related individuals, n = 186) and a combined 

dataset (datasets 1 and 2, n = 324).  

Two of the loci associated with both sub-phenotypes, CFA 8 and CFA 32. P-values 

and odds ratios are presented in more detail in Table 13, but were in the range of 10
5
–

10
8
 and 2.4–3.4, respectively. The CFA 32 locus remained at approximately the same 

strength and is still relatively large with three signals across a 1.6-Mb region. The CFA 32 

locus contains three relevant candidate genes (DAPP1, PPP3CA and BANK1); BANK1 has 

previously been associated with human SLE 
104

. Other genes within the CFA 32 locus 
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include MAP2K1IP1, DNAJB14, H2AFZ, RPS23, DDIT4L, EMCN, RPS24 and RPS17. 

The locus in CFA 8 contains the genes SNRPE and VRK1 and four SNPs with a 97-kb 

haplotype were shared between Boxers and Petit Basset Griffon Vendeens affected with 

SRMA. 

When analysing the ANA-positive dogs alone, three of the four peaks showed an even 

stronger association on chromosomes 3, 11 and 24, with p-values of 10
11

–10
13

 for the 

combined dataset and with higher, but nevertheless significant, P-values for datasets 1 and 

2 (10
4
–10

11
). The strongest association was found on CFA 11, which contains a highly 

associated 124-kb five-SNP haplotype in NSDTR and a 127-kb shared haplotype between 

NSDTR, GSD and Cocker Spaniel (CS) cases. This locus contains the genes EPB41L4B, 

C9orf4 and PTPN3. The second best association is found on CFA 24, containing a seven-

SNP 96-kb haplotype in NSDTR and a 127-kb shared haplotype between NSDTR, GSD 

and CS cases. This candidate locus contains six genes, AK128395, WFDC10B, WFDC13, 

AY372174, WFDC1 and DNTTIP1. The association on chromosome 3 includes a two-SNP 

113-kb haplotype in NSDTR and a 256-kb shared haplotype between NSDTRs, GSDs and 

CSs. This locus contains seven genes, AK126887, AP3B2, SCARNA15, FSD2, RPL23A, 

WHDC1L1 and HOMER2.  
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6 Discussion 

Characterization of the genetic background behind canine SLE-related disease, AD and 

CSK, will likely reveal novel genes and pathways and help to elucidate the aetiology of 

the diseases. It will also establish clinically relevant large animal models for human 

studies in canine breeds, and gene discovery would enable development of new gene tests 

to assist in breeding plans.  

Given the major role of the MHC II in human autoimmune disorders, we strongly 

suspected an influence of the DLA region behind the aetiology of these canine diseases 

and chose to perform a candidate gene study to see if this was the case. We also aimed to 

prove the dog’s power in genome-wide studies since it had been hypothesized that the 

unique breed and genome structure of dog would simplify association studies also in 

complex diseases. The dog genome sequence was published in 2005 and the first 

microarrays were launched in 2007, and we were fortunate to be among the first 

researchers to whom these tools were available.  

No genetic risk factors have previously been identified behind any of the canine 

diseases in this study. Our findings support the suspected autoimmune origin of all 

diseases investigated, as the associations were identified with genes strongly linked with 

autoimmune diseases in humans and dogs and with genes functioning in potential 

immunological pathways. 

6.1 Genetic diversity and population structure indicate narrow 
genetic diversity in GSDs and NSDTRs 

The distribution and frequencies of the DLA-DRB1, -DQA1 and -DQB1 alleles and 

haplotypes vary between breeds. Some alleles may be breed-specific or limited to a few 

breeds, while some breeds show only a very limited distribution of alleles due to breed 

history 
56,105

. 

Considering the population history, we observed an expected number of haplotypes in 

NSDTRs, which were unevenly distributed. The level of genetic diversity is lower in this 

breed than that found in many other dog breeds 
106

. We identified five DLA-DRB, four 

DLA-DQA1 and five DLA-DQB1 alleles, which formed seven different haplotypes. Two 

of the most common haplotypes were seen in very high frequencies in both Scandinavian 

and American study populations, consisting together of 74.4% and 54.4% of all 

haplotypes, respectively. The third and fourth common haplotypes were seen in moderate 

frequencies in both populations, and the fifth in American dogs. The rest were extremely 

rare and seen in only a few dogs. There was a clear difference in the haplotype frequencies 

between North-American and Scandinavian dogs. Finnish and Swedish dogs showed a 

more similar distribution of haplotypes. The samples had been selected for a disease 

association study and were not therefore ideal for population diversity studies. In addition, 

in AD study we used also discordant sib-pairs as healthy controls. Larger number of 

unrelated individuals should be genotyped to evaluate the DLA polymorphism in 

American NSDTRs more accurately. Both the history and pedigree information suggest 



Identifying genetic risk factors in canine autoimmune disorders 

 

52 

 

that today’s NSDTRs are one population, but during the last three decades, the 

subpopulations in different countries have diverged in different directions. MHC studies 

show that MHC haplotypes do not differ between countries, but a slight difference exists 

in haplotype frequencies. In addition, the MDS plot based on genome-wide genotyping 

indicates that breeds on different continents have become differentiated to some degree.  

The situation was better for GSDs, but as it is one of the most common breeds in the 

world, one might have expected to see more genetic diversity. The study population was, 

however, much smaller, but our objective was to explore the association with a disease 

phenotype, not to study the diversity in the breed. Unrelated population controls were 

used, giving a wider perspective to the diversity than could be seen by using discordant 

sib-pairs. Still, the Finnish data is biased by half of the dogs being selected for being 

affected with CSK. The data provided by Lorna Kennedy show 10 haplotypes considered 

typical for the breed and an additional 21 haplotypes common in other breeds but seen in 

only a few GSDs and could therefore be descendant from breed-crosses (Table 14). The 

haplotypes were unevenly distributed, which is commonly seen in pure-bred dogs and 

reflects the narrowed gene pool. 
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Table 14 Haplotype frequencies of 322 German Shepherd Dogs with mainly European 

origin (Lorna Kennedy, personal communication). 

DRB1 DQA1 DQB1 n

No. of 

haplos

Haplotype 

frequency

No. of 

dogs % Dogs

01101 00201 01302 332 245 36,9 196 59,0 49 14,8

01501 00601 00301 332 141 21,2 119 35,8 22 6,6

00101 00101 00201 332 70 10,5 66 19,9 4 1,2

00102 00101 00201 332 46 6,9 43 13,0 3 0,9

01501 00601 02301 332 43 6,5 39 11,7 4 1,2

01201 00401 013017 332 25 3,8 23 6,9 2 0,6

00201 00901 00101 332 14 2,1 13 3,9 1 0,3

01502 00601 02301 332 14 2,1 13 3,9 1 0,3

01502 00601 00301 332 10 1,5 10 3,0 0 0,0

00601 005011 00701 332 8 1,2 7 2,1 1 0,3

DRB1 DQA1 DQB1 n

No. of 

haplos

Haplotype 

frequency

No. of 

dogs % Dogs

00202 00901 00101 332 5 0,8 5 1,5 0 0,0

02001 00401 01303 332 5 0,8 5 1,5 0 0,0

00401 00201 01501 332 4 0,6 4 1,2 0 0,0

01201 00401 01303 332 4 0,6 2 0,6 2 0,6

00102 00101 00802 332 3 0,5 3 0,9 0 0,0

01101 00201 01303 332 3 0,5 3 0,9 0 0,0

01104 00201 01302 332 3 0,5 3 0,9 0 0,0

04001 01001 01901 332 3 0,5 3 0,9 0 0,0

01801 00101 00802 332 3 0,5 2 0,6 1 0,3

00601 00401 01303 332 2 0,3 2 0,6 0 0,0

01601 00101 00201 332 2 0,3 2 0,6 0 0,0

01501 00601 02201 332 2 0,3 1 0,3 1 0,3

00801 00301 00401 332 1 0,2 1 0,3 0 0,0

00901 00101 008011 332 1 0,2 1 0,3 0 0,0

01201 00101 00201 332 1 0,2 1 0,3 0 0,0

01501 00901 00101 332 1 0,2 1 0,3 0 0,0

01501 00601 01901 332 1 0,2 1 0,3 0 0,0

01501 00601 05401 332 1 0,2 1 0,3 0 0,0

02001 00401 01302 332 1 0,2 1 0,3 0 0,0

02301 00301 00501 332 1 0,2 1 0,3 0 0,0

04801 00402 02301 332 1 0,2 1 0,3 0 0,0

Haplotypes considered specific for GSDs

Haplotypes considered to present GSD crossbreeds

Homozygous dogs 

No.    +     %

Homozygous dogs 

No.    +     %

 

6.2 MHC class II is a major genetic risk factor also in canine 
autoimmune diseases, proving the autoimmune origin 

MHC class II gene region is the major risk locus in human autoimmune disorders and has 

been associated with several autoimmune disorders also in domestic dogs. The DLA 

associations of IMRD, CSK and AD combined with previous reports provide strong 

evidence for DLA class II being the major risk locus in canine autoimmunity. Table 15 

lists all reported MHC class II associations with canine autoimmune disorders. 

The risk haplotype for IMRD in NSDTRs is present in 45% in the overall study 

population, being the most common haplotype. The frequency among the control dogs is 

slightly over 30% in each country. The risk haplotype has also been found in six other 
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breeds: Alaskan malamute, Labrador retriever, Newfoundlander, golden retriever, Cavalier 

King Charles spaniel and Cocker spaniel 
106

. A similar haplotype, differing only by a 

DLA-DQB1 allele, has been shown to predispose to immune-mediated haemolytic 

anaemia in a combined dataset of different breeds 
30

. The DLA-DRB1 allele in IMRD risk 

haplotype has been found in 100% of the Dobermans affected with Doberman hepatitis 
107

 

The risk haplotype for AD is the second most common haplotype in NSDTRs 

worldwide, present in over 40% of the dogs. The AD risk haplotype has recently been 

shown to be protective against NME in pug dogs 
108

 and shares a DQA1 allele with the 

CSK risk haploype (Study I). In addition, it has previously been associated with a slightly 

increased risk for diabetes and a similar haplotype carrying the same DRB1- and DQA1 

alleles has been associated with IMHA, although this association was lost when using 

breed-matced controls 
27,30

.  

It remains to be seen whether DR or DQ or both are the actual genetic risk factors for 

IMRD and AD. The high frequency of both risk haplotypes in NSDTRs is problematic 

because removal of breeding animals carrying this haplotype would create a serious 

genetic bottleneck, which would severely threaten the viability of the breed. A careful 

planning in breeding, including exclusion of the affected individuals from breeding and 

avoiding production of litters with puppies homozygous for the risk haplotype, is the only 

solution, unless breed-crosses are considered. Increasing the frequency of the rare 

haplotypes might be an option, but there is of course no knowledge of either their 

protective or disease-causing associations. The MHC class II haplotypes are not the only 

genetic risk factors behind these autoimmune disorders, although the DLA gene region is 

probably the major predisposing locus. The GWAS results will be discussed later in this 

section. 
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Table 15 All reported DLA-DRB1, DQB1 and DQA1 associations with canine autoimmune 

disorders, including our results. 

 

CSK=chronic superficial keratitis, AF=anal furunculosis, IMRD=immune-mediated rheumatic 

disease, ANA=antinuclear antibody, AD=Addison’s disease, CLT=canine lymphocytic thyroiditis, 

IMHA=immune mediated hemolytic anemia, CRA=canine rheumatic arthritis, NME=necrotizing 

meningoencephalitis, VHK-like syndrome=Vogt-Koyanaki-Harada-like syndrome, JGD=juvenile 

generalized demodicosis, SLO=symmetrical lupoid onychodystrophy, GSD=german shepherd, 

NSDTR=Nova Scotia Duck Tolling Retriever, GS=giant schnauzer. 
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The MHC class II risk haplotype for CSK in GSDs is the second most common 

haplotype in the breed. This genetic association with the DLA gene region supports the 

previous clinical, histological and pharmacological studies of CSK as an immune-

mediated disease 
20,41,87,89

. The third common haplotype has previously been associated 

with AF in GSDs and has no common alleles with the CSK risk haplotype. Table 14 

displays the haplotype frequencies of 322 mostly European GSDs, and the risk haplotype 

is present in over 20% of the dogs. The frequency of the haplotype is over 30% in the 

Finnish study population, which reflects the study design, half of the dogs being affected 

with the associated disease. The risk haplotype has been found in 18 other breeds, but at a 

much lower frequency 
106

. Any breed can be affected with CSK, but whether this risk 

haplotype contributes to the disease risk in any other breed has not been examined. 

The DLA-DRB1*015/DQA1*006/DQB1*023 haplotype has previously been 

associated with canine diabetes in the Samoyed, Cairn terrier and Tibetan terrier 
27

. The 

CSK risk haplotype differs from the diabetes haplotype at the DLA-DQB1 locus, although 

DLA-DRB1 was not characterized in as much detail as in our study. The three DLA-

DRB1*015 alleles differ from each other by one nucleotide. The DLA-

DRB1*015/DQA1*00601/DQB1*00301 haplotype has been associated with canine 

IMHA in English Springer Spaniels 
30

. As in the diabetes study, the first allele was not 

characterized in detail and the association was lost when using breed-matched controls. 

The AD risk haplotype in NSDTRs has the same DLA-DQA1 allele, while there is a 

difference of one amino acid in the DLA-DRB1. In addition, the DRB1 allele in CSK risk 

haplotype is shared with the protective Doberman hepatitis haplotype, and together with 

the DQA1 allele with the protective NME haplotype in pugs. 

6.3 Homozygosity of the MCH class II risk haplotype increases 
the risk for autoimmune diseases – mechanism? 

Dogs carrying two copies of the risk haplotype were observed to have an elevated risk of 

developing the disease. In IMRD dogs, the risk was nearly fivefold, in ANA positive 

IMRD dogs over sevenfold, in AD dogs nearly ninefold and in CSK-affected dogs 8.5-

fold. These ORs are among the highest risks reported for an autoimmune disease and 

MHC class II 
54

. The risks calculated for AD and CSK dogs are estimates, since there were 

no control dogs homozygous for the risk haplotype. Low number of samples may also 

affect the OR estimate calculated by using pseudocount. Increased risk with homozygosity 

for risk haplotype has previously been shown with AF in GSDs and with necrotizing 

meningoencephalitis (NME) in pug dogs 
25,108

. In addition, two recent studies have shown 

a stronger susceptibility for a homozygosity for a DLA risk haplotype, one with 

Doberman hepatitis 
107

 and the other with symmetrical lupoid onychodystrophy (SLO) in 

Gordon Setters 
109

. In humans, a dose effect of HLA-DRB1*1501 has been observed in 

susceptibility of multiple sclerosis in two different studies and an HLA-DQB1*02 dose 

effect in coeliac disease 
110-112

. Also, the HLA-DRB1 gene has been associated with 

susceptibility, severity and progression of disease in rheumatoid arthritis 
113

. 

The mechanism of dose effect remains to be solved, but different theories have been 

proposed. As there is an extensive LD in the MHC region, other genes in LD within or 
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outside the MHC region might contribute to the disease risk. The MHC region is full of 

immunologically important genes, which might affect, for example the cytokine profile, 

thereby creating an advantageous environment for loss of peripheral tolerance. 

A homozygous disadvantage is a disputed theory, as many believe that it is the 

presence rather than the number of an MHC allele that causes the effect. However, a 

homozygous disadvantage of MHC alleles has been observed in both human and canine 

autoimmune diseases. For example, human T1D susceptibility displays unusual patterns of 

inheritance. Protective MHC alleles have been suggested to express a dominant nature and 

susceptibility alleles a recessive inheritance. This difference may be due to the binding 

affinity of the MHC molecules for the -cell antigens so that products of protective alleles 

bind very strongly, thus requiring fewer MHC molecules. MHC molecules coded by 

susceptibility alleles have a low affinity, requiring more molecules to effectively compete 

for binding 
39

. The binding of the MHC molecules coded by the susceptibility alleles then 

leads to the activation of autoreactive T-cells that have escaped negative selection in the 

thymus, which again has been assisted by MHC molecules, and possible onset of 

autoimmune disease. The MHC-assisted T-cell variety could by definition be responsible 

for susceptibility to autoimmune disease together with the peptide presentation properties 

of MHC class II. Therefore, higher levels of surface expression cannot be ruled out as a 

causative factor. Increased MHC class II expression has been observed in CSK, but it 

could also be a secondary effect due to IFN-  production and be related to the 

inflammation itself and be a part of the pathogenesis by elongating it rather than causing 

it. Elevated MHC class II expression has also been observed in endothelial cells in several 

human autoimmune diseases, including RA, SLE, multiple sclerosis and Crohn´s disease 
114

, and it has been shown to correlate with the severity of Doberman hepatitis 
115

.  

The effect of MHC molecules are usually allele or haplotype specific and may be 

predisposing or protective. However, we discovered not only an elevated risk with 

homozygosity for the MHC class II risk haplotype in two of the studies, but also an 

increased risk with homozygous individuals regardless of the DLA haplotype. In our 

knowledge, this phenomenon has not previously been reported in dogs or humans. Even 

isolated human populations are much more heterozygous than dogs, and it is very unlikely 

that this kind of homozygosity effect could be shown in any human population. One 

possible mechanism to explain an increased risk in general DLA-haplotype homozygosity 

is extensive LD in the MHC region, and therefore, homozygosity might uncover recessive 

non-beneficial alleles. The higher risk for homozygousity for risk haplotype indicates that 

it has itself an impact on pathology, as overall homozygosity might reflect the influence of 

neighbouring genes. Overall homozygosity might also reflect the situation in other parts of 

the genome, as the MHC locus is the most polymorphic region in the genome. When there 

is no heterozygosity left in the DLA region, the other parts of the genome are hardly any 

different. Especially when an inbred population is in question, this is likely the situation 

and recessive alleles are uncovered. 

Another mechanism might also be considered. As previously described in the context 

of the hygiene hypothesis, pathogens may mount up protective immune responses, and, as 

the MHC homozygous dogs are able to recognize fewer antigens, it is plausible to 

conclude that this protection is impaired. This would predispose the dogs not only to 

infections, but also to autoimmunity 
62

. This raises a question, if maximum heterozygosity 
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in MHC region is optimal within an individual. If this was true, in the evolutionary point 

of view, we would probably see more duplicated genes in MHC region or maybe wider 

repertoire of differently expressed MHC peptides. One could think that maximal MCH 

diversity within individual would be beneficial in fighting infections, but could it also 

mediate an over-reactive immune response, harmful for the individual or increase the 

number of potentially self-reactive T-cells? Some T-cells may also be cross-reactive with 

self antigens and it may not be beneficial to have excess in activated T-cells. Increase in 

MHC diversity within individual might actually also affect the ability to fight infections, if 

an elevated number of expressed MHC molecules decrease the variety of T-cells by 

negative selection. In conclusion, it is likely that the present level of diversity is optimal, 

but the alleles and haplotypes providing best fitness for an individual vary through time 

and place, that is for example changes in the environmental risk factors. At a presence of 

certain pathogen, particular allele in homozygous form might be beneficial, but predispose 

to an autoimmune disease later in life. 

6.4 The shared epitope in DLA-DRB1 allele is an indication of 
rheumatic autoimmune disease 

The DLA-DRB1*00601 allele in the IMRD risk haplotype contains a five-amino-acid-

long epitope RARAA at amino acid positions 70-74. These amino acids are part of the 

DNA segment that encodes the third hypervariable region (HVR-3). HVRs are mainly 

responsible for the peptide recognition and binding properties of the MHC class II 

molecule peptide binding groove. This group of amino acids is called RA shared epitope 

and it is found in all RA risk alleles both in humans and dogs and it is the most significant 

genetic risk factor for RA 
31,114

. A similar epitope (QARAA) is found in the human SLE-

associated HLA-DRB1*1501 allele 
117

. The mechanistic basis of the shared epitope is 

unknown, but effects on arthritogenic antigen presentation and T-cell repertoire selection 

have been proposed. Dose effects of the shared epitope on penetrance and disease severity 

of RA have been shown 
118

. 

Current evidence suggests that glutamine (Q) or arginine (R) at position 70 is critical 

for RA risk, and aspartic acid (D) at that position confers protection 
118

. The epitope in the 

IMRD-associated DLA-DRB1 allele has Q at position 70, therefore fulfilling the criteria 

of being a similar predisposing variant as those increasing the risk for human RA and 

SLE. This leads further supports for a common MHC class II-associated mechanism of 

rheumatoid disease in both humans and dogs. 

6.5 The first successful GWAS in complex diseases of dogs 
identifies several risk loci for autoimmune diseases in NSDTRs 

This was a proof-of-principal study to show the power of the unique canine breed 

structure in GWAS of genetic risk loci in complex diseases. An extensive LD within a 

breed enables the mapping with approximately 15 000 markers and with less than 100 
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cases and 100 healthy controls. Several traits have been mapped in canine Mendelian 

diseases such as the hair ridge, which causes predisposition to dermoid sinus 
12

, recessive 

cone-rod dystrophy 
13

 and ectodermal dysplasia 
14

, but this was the first successful GWAS 

regarding polygenic disorders. We identified five loci associated with SLE-related disease 

using only 81 affected dogs and 57 healthy controls. Futher mapping with additional 

genetic markers (822) and in additional samples (n=487) and phenotypes, also from other 

breeds, verified the results and suggests common risk factors as well as disease-specific 

variants that influence the disease course in a systemic or organ-specific direction. 

NSDTRs are strongly predisposed to several autoimmune diseases, such as SLE-

related disease comprising well-characterized sub-phenotypes IMRD and SRMA, and AD 
15,17,18

. The breed history of NSDTRs has had severe genetic bottlenecks, the ultimate 

being the canine distemper virus outbreaks in the early 1900s. Survival of only a few 

breeding individuals has likely accumulated rare recessive risk variants, and the surviving 

dogs may have had over-reactive immune responses capable of overcoming the repeated 

infections. As today’s dogs descend from these survivors, it is clear that they carry the 

same genetic make-up.  

We identified two loci that were associated with more than one phenotype with 

GWAM. The large CFA 32 region is shared between IMRD and SRMA, and it is plausible 

that common autoimmune predisposing loci containing risk factors leading to interruption 

of maintainance of self-tolerance exist. On the other hand, it is possible that the 1.6-Mb 

region contains several loci and variants contributing to different phenotypes. Three 

excellent candidate genes are found in the CFA 32 region: DAPP1, PPP3CA and BANK1. 

BANK1 encodes a B-cell–specific scaffold protein and LYN tyrosine kinase substrate that 

promotes tyrosine phosphorylation of inositol 1,4,5-trisphosphate receptors. A non-

synonymous substitution in the BANK1 gene causes alternative splicing and has been 

associated with human SLE 
104

. Ca(2+)/calmodulin-regulated protein phosphatise 

(calcineurin) is a heterodimer of a Ca(2+)-binding protein (calcineurin B) and a 

calmodulin-binding catalytic subunit (calcineurin A). There are several isoforms of the 

catalytic subunit, derived from alternative splicing of gene products of at least two genes, 

one of which is PPP3CA 
118

. PPP3CA has been shown differential expression in human 

SLE patients compared with controls 
119

. Calcineurin has also been reported to be the 

target of two important immunosuppressive drugs: cyclosporine A and FK506 
120

. The 

third of the top three candidates in the CFA 32 locus is DAPP1 gene, expressed in both T- 

and B-cells, where it leads to an indirect dose-dependent inhibition of TCR- and BCR-

induced activation of the NF-AT pathway 
121,122

.  

The other locus shared with more than one phenotype was on CFA 8. Both SRMA and 

ANA-positive IMRD subphenotypes were associated separately, but not jointly with the 

locus. This might reflect the fact that there are two adjacent loci. When ANA positive 

dogs were analysed alone, the association was seen on the small nuclear ribonucleoprotein 

polypeptide E (SNRPE) gene, and when SRMA dogs were analysed alone, the association 

was between the genes SNRPE and vaccinia-related kinase 1 (VRK1). SNRPE is one of the 

small nuclear ribonucleoprotein complexes (snRNPs) recognized by circulating 

autoantibodies in human SLE. This protein is one of four 'core' proteins associated with all 

known snRNAs in the U family (U1, U2, U4, U5 and U6). VRK1 is a novel serine-

threonine kinase that regulates several transcription factors, including p53. The gene p53 
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has been shown to be one the most consistently under-expressed genes in autoimmune 

diseases, causing differential expression of other genes involved in autoimmune disease, 

and is therefore suggested to be central to autoimmunity 
123

. 

ANA-positive dogs were associated with three more loci on CFA 3, 11 and 24 when 

analysed alone. The strongest association was found on CFA 11, which contains several 

genes, including protein-tyrosine phosphatise, non-receptor-type 3 (PTPN3). PTPN3 is 

involved in T-cell activation and belongs to the same family as protein-tyrosine 

phosphatase, non-receptor-type 22 (PTPN22).  PTPN22 is probably the second most 

common genetic risk factor after MHC for many autoimmune diseases in human, 

including SLE 
124

. PTPN3 has not been reported to be involved in autoimmunity, but it is 

thought to inhibit T-cell activation by de-phosphorylating targets involved in TCR 

signalling. The expression of PTPN3 has been shown to reduce activation of reporter 

genes driven by NF-AT 
125

. 

The second best association was found with CFA 24, containing six genes, and the 

third associated region on CFA 3 contains seven genes, HOMER2 appearing the most 

interesting, as it has been reported to act as negative regulator of T-cell activation. In 

addition, Homer -deficient mice are shown to develop an autoimmune-like pathology with 

lymphocyte infiltration and hyperplasia in lymph nodes 
126

. 

The ANA-positive associated loci on CFA 3, 11 and 24 showed higher p-values 

(10
11

–10
13

) after fine-mapping and odds ratios of 4.5–8. Both loci that were shared 

between IMRD and SRMA, CFA 8 and CFA 32, show P-values of 10
5
–10

8
 and odds 

ratios of 2.4–3.4. According to power calculations, reliable detection of risk factors 

contributing a two- to fourfold increased risk cannot be expected with our sample size, but 

the loci with the highest odds ratios are within the detectable range. The associated regions 

contain relevant candidate genes based on biological function and are all worthy of 

follow-up studies.  

The MHC locus previously associated with IMRD did not show an association here 

(Study III). We had three SNPs in GWAS in this region, from which two were totally 

homozygous in our NSDTR sample and were therefore not informative and the third 

showed very little heterogeneity. This region in general shows extensive polymorphism 

with for instance, 148 DLA-DRB1, 70 DLA-DQA1, and 26 DLA-DQB1 alleles, and it is 

therefore hard to tag with informative markers. 

Based on our results, we hypothesize that IMRD and SRMA are a part of the same 

disease complex and have common as well as sub-phenotype specific risk factors. 

Therefore we examined the affected dogs both as one group and the two sub-phenotypes 

separately. Shared loci with AD suggest a common locus predisposing to autoimmunity. 

6.6 New immunological pathway in SLE  

Three of the associated loci we found contain four genes that regulate the nuclear factor of 

the activated T-cell (NF-AT) signaling pathway. Antigen-specific immune responses are 

initiated by the interaction of the TCR with antigenic peptide bound to MHC proteins on 

the surface of antigen-presenting cells. The shared locus on CFA 32 contains two genes, 

PPP3CA and DAPP1, involved in the NF-AT pathway. PPP3CA encodes the catalytic 
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subunit of calcineurin. Calcineurin is the downstream target of intracellular Ca
2+

 signalling 

that follows the T-cell-MHC contact. Also increased translocation of calcineurin-

dependent transcription factor (NF-ATc2) to the nucleus in the early stages of cell 

activation has been observed in human SLE patients 
127

. In addition to their role in T-cell 

activation, NFATc transcription factors also generate peripheral tolerance against self-

antigens mediated by controlling activation-induced cell death and clonal anergy of T-

helper cells and the activity of regulatory T-cells 
128

. DAPP1 is expressed in both T- and 

B-cells, where it leads to an indirect dose-dependent inhibition of TCR- and B-cell 

receptor (BCR) -induced activation of NF-AT 
121,122

. The PTPN3 gene on ANA-positive 

CFA 11 is thought to inhibit this pathway as well, although it has not been associated with 

autoimmunity 
125

. The third inhibitor, scaffold protein competing for binding to NF-AT 

with calcineurin, is found in the ANA-positive locus CFA 3.  

A typical feature of SLE is clinical heterogeneity, resulting in variable disease 

manifestations. When we started in 2007, nine human lupus susceptibility genes had been 

convincingly identified, compared with the more than 30 convincing genetic associations 

known today 
129

. Both adaptive and innate immune systems are involved, producing 

different subphenotypes. Our results indicate strongly involvement of T-cell activation. 

We hypothesize that predisposition to autoimmune diseases in the modern NSDTR may 

be a result of the early NSDTRs’ ability to survive the outbreaks of canine distemper virus 

in the early 1900s. In addition, modern breeding practices may have accumulated certain 

risk factors. All in all, it is clear that there are several predisposing genes or regulatory 

elements that together contribute to development of these autoimmune diseases. The 

causing variants remain to be identified, as does the way they interact and accumulate the 

increasing risk. There may also be other variants with a smaller risk that have escaped our 

study due to the small sample size. In the future, the development of individual drug 

treatments, e.g. cyclosporine plus corticosteroids based on a dog’s particular risk 

genotype, as well as diagnostic tools and gene tests to aid in planning of breeding 

strategies might be possible. 

6.7 The dog is an excellent model for complex genetic studies  

Dogs have been used as models to understand many diseases, as in epilepsy research by 

cloning the first canine epilepsy gene, Epm2b 
130

. Mutations in the same gene were found 

in humans to cause a fatal form of epilepsy, lafora disease. The dog has also been used as 

a model to develop therapies before they are tested in humans, as is being done in the 

canine model of Duchenne muscular dystrophy in golden retrievers 
131

. 

Results of our successful GWAS of complex diseases in dogs proves the value of the 

domestic dog as a disease model for polygenic disorders. Predisposing high-risk mutations 

have accumulated and become relatively common in dog breeds due to several historical 

bottlenecks. While tens of thousands of samples may be needed to map human diseases 

with rare, low-risk variants due to clinical and genetic heterogeneity, this can now be 

performed in a domestic dog with less than 100 cases and 100 controls. Ancient mutations 

originating from ancient dog have been spread in several breeds after breed creation. 



Identifying genetic risk factors in canine autoimmune disorders 

 

62 

 

These mutations are still surrounded by very similar DNA segments, and advantage can be 

taken in GWASs of these shared haplotypes surrounding the causative variants. 

Dogs are exposed to the same environmental risk factors and often even share the same 

diet with humans. Therefore dog is an excellent disease model for autoimmune diseases 

common in both species and the findings may help to understand both common biological 

functions and interactions between genes and environment. Identification of new genes 

and pathways involved in canine autoimmune diseases increases our understanding of the 

pathogenesis of immunological disorders both in human and dog. This may open doors for 

novel diagnostics, gene tests, treatment and drug development in both species. In dogs, 

identification of mutations will help to reduce the incidence of the disease in the breed. 

Complex diseases are not easy to eradicate from the breed, but identification of risk 

variants at least provides more tools to accomplish this goal. Autoimmune disorders are 

already so common in some dog breeds that they threaten the existence of the whole 

breed.  
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7 Conclusions and future perspectives 

When I began my work in autumn 2006, I was full of enthusiasm and started literally from 

a clean slate. The canine genetics group was new and I was the first to be employed. I am 

a passionate dog lover, so it was a dream come true to be able to work towards improving 

dogs’ health, not to mention the potential benefits for human welfare.  

We found the first genetic evidence for canine SLE-related disease, AD and CSK. The 

MHC class II was a strong candidate locus based on both human and dog studies, and we 

were able to confirm an association with CSK, AD and IMRD phenotypes. Our results 

suggest in each of these phenotypes that the DLA-DRB1, -DQB1, -DQA haplotypes are a 

major genetic risk factor, but that they are all polygenic disorders with possibly several 

other genes contributing to the development of the disease. 

The development of technology has been rapid in these four years, with all the new 

dog arrays and high-throughput sequencing technologies becoming available. We 

performed the first successful GWAS in canine complex diseases and identified five loci 

that predispose to a SLE-related disease and AD in NSDTRs. Many of these loci are 

involved in a novel T-cell activation pathway. This study proves the strength of disease 

mapping in dogs. The power of the two-stage strategy is based on extensive LD and long 

haplotypes within a breed, and short haplotypes between dog breeds. In addition, a very 

small number of founders during breed creation and subsequent inbreeding have 

accumulated ancient mutations and diseases. Causative mutations may be detected with 

the new genotyping technologies and information provided by the full genome sequence. 

In addition, we have observed a narrow genetic diversity in NSDTRs and GSDs, and a 

clear increase in disease risk in dogs homozygous for the risk haplotypes. Surprisingly, we 

found that overall homozygosity for the MHC class II region is associated with increased 

risk in CSK and AD. The mechanisms behind the involvement of homozygosity in the 

DLA locus remains unknown, but may reflect either the T-cell repertoire or antigen 

presentation or be a consequence of other predisposing genes in LD within the DLA 

region.  

Our results provide tools and information to assist breeding practices and the fight 

against diseases in these breeds as well as important knowledge of the inheritance. 

Hopefully, our future work will provide more accurate knowledge of the pathogenesis by 

detecting the exact causative variants. These findings would open doors for new 

diagnostics, gene tests and drug development in both dogs and humans. 

Our future plans include identification of additional risk factors for CSK in GSDs by 

GWAS. We already have preliminary results connecting the aetiology of AF, EPI and 

CSK based on an association with common SNPs and haplotypes in these three 

autoimmune diseases. As in NSDTRs, it seems that there are indeed common risk factors 

for autoimmune diseases, as well as disease-specific risk factors. We are also interested in 

examining related breeds to see whether the predisposing MHC haplotype is an universal 

risk factor or specific only to CSK in GSDs. 

Future plans for identification of the disease-causing genetic variants in NSDTRs and 

in breeds sharing the associated haplotypes include a hybrid capture and targeted 

resequencing of the associated haplotypes. The full sequence data will provide thousands 

of variants and potential candidate mutations will be prioritized for further evaluation 
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based on two criteria: presence on haplotypes shared by individuals of multiple breeds and 

localization within the conserved elements.  
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