Archaeometric analysis of ceramic production in Tiwanaku state (c.500-1000ce) : An exploratory study

Ogalde, J. P.

2020-08-14

http://hdl.handle.net/10138/346139
https://doi.org/10.1111/arcm.12597

unspecified
acceptedVersion

This is an electronic reprint of the original article. Please cite the original version.
ARCHAEOMETRIC ANALYSIS OF CERAMIC PRODUCTION IN THE TIWANAKU STATE (CA. 500-1000 A.D.): AN EXPLORATORY STUDY

Juan P. Ogalde, Antti Korpisaari, Camila Riera-Soto, Bernardo Arriaza, Carolina Paipa, Patricio Leyton, Marcelo Campos-Vallette, Nelson Lara, and Juan Chacama

Juan P. Ogalde* (japabloogalde@yahoo.es) y Bernardo Arriaza (barriaza@uta.cl)

Laboratorio de Bioarqueología, Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile.

Antti Korpisaari (antti.korpisaari@helsinki.fi)

Department of Cultures, University of Helsinki, Helsinki, Finland.

Camila Riera-Soto (cami.riera.soto@gmail.com)

Programa de Magíster en Antropología, Instituto de Investigaciones Arqueológicas y Museo, Universidad Católica del Norte, San Pedro de Atacama, Chile.

Carolina Paipa (carolina.paipa@vtr.net) and Patricio Leyton (patricio.leyton@pucv.cl)

Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.

Marcelo Campos-Vallette (facien05@uchile.cl)

Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.

Nelson Lara (nlarah@uta.cl)

Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile.

Juan Chacama (jchacama@uta.cl)

Departamento de Antropología, Facultad de Ciencias Sociales y Jurídicas, Universidad de Tarapacá, Arica, Chile.

*Corresponding author: E-mail: japabloogalde@yahoo.es
ARCHAEOMETRIC ANALYSIS OF CERAMIC PRODUCTION IN THE TIWANAKU STATE
(CA. 500-1000 A.D.): AN EXPLORATORY STUDY

ABSTRACT

We report the chemical and mineralogical characterization of seven ceramic fragments produced within the Tiwanaku State (ca. 500-1000 A.D.). Instrumental techniques used included: X-ray elemental and mineralogical chemical analysis, Raman spectroscopy, scanning and light microscopy. The results show that there are several clay types, although they show similarities, such as the use of a plant-based temper. The red color of the decoration is hematite, and manganese oxides such as jacobsite are present in the black. The white color is a mixture of gypsum and clay, and the orange is a mixture of hematite and clay. The use of colors, the quality of clays, and the temperatures reached during pottery firing point to expertise in ceramic production and to complex decision-making processes. The multi-elemental archaeometric approach documented here could become an important tool to shed light on ancient ceramic technology and the internal variance of Tiwanaku pottery.

Keywords: Tiwanaku ceramics, mineralogy, SEM(EDX), Raman spectroscopy.
In this report, we present and discuss the archaeometric characterization of seven ceramic fragments of Tiwanaku style. Instrumental techniques used included: X-ray elemental and mineralogical chemical analysis, Raman spectroscopy, scanning and light microscopy. The Tiwanaku State flourished during the so-called Middle Horizon (ca. 500-1000 A.D.), spreading its influence over large parts of the south-central Andes (Figure 1a). The Tiwanaku capital, Tiahuanaco, was located in the southern Lake Titicaca Basin (Bolivia), at an altitude of over 3,800 m. The long history, expansive nature, and lavish state rituals of Tiwanaku involved the use of several different styles, types, and forms of pottery (see Alconini 1995; Bermann 1994; Isbell and Korpisaari 2015; Janusek 2003; Kolata 2003a; Korpisaari 2006; Korpisaari and Pärssinen 2011; Korpisaari et al. 2012; Sagárnaga 2007). Many of these ceramic vessels, however, were associated with a rather standardized iconography, which acted as a visual support for the ideological message of the Tiwanaku State (Berenguer 1993, 1998; Cook 1994; Korpisaari and Pärssinen 2011; Llagostera 2006; Torres 1987, 1994, 2001, 2004; Uribe and Agüero 2001; Villanueva and Korpisaari 2013).

This “state-style” pottery was originally conceived of as a spatially homogeneous group with sequential temporal phases (e.g., Bennett 1934, 1936; Ponce-Sanginés 1981; Rydén 1947). However, it has since become clear that in many areas up to three of these “cultural phases” coexisted, while different subtypes of the Tiwanaku style also selectively emerged and some local pottery types remained independent of state processes (see Alconini 1995; Augustyniak 2004; Bermann 1994; Burkholder 2001; Korpisaari 2015). Thus, we now recognize that a complex and socially heterogeneous group of peoples produced objects in the Tiwanaku style. We also have a better understanding of the colonial enclave that Tiwanaku established in the Moquegua Valley in southern Peru (Baitzel and Goldstein 2015; Buikstra 1995; Goldstein 2005, 2013; Goldstein and Owen 2001; Goldstein and Palacios 2015; Palacios and Goldstein 2015; Sharratt 2010, 2015, 2016a, 2016b; Williams et al. 2015) and of the social groups and pottery styles that emerged after the collapse of Tiwanaku and its Moquegua colony (Korpisaari et al. 2014; Ogalde 2015; Owen 2005; Owen and

To sum up, in the Andean high plateau and in several valley settings, pottery studies have been fundamental in establishing the chronology and investigating the cultural development and complexity of Tiwanaku. Little by little, these investigations have changed our understanding of Tiwanaku, from that of a centralized state to an entity of growing social complexity using several ceramic styles to express its internal variety. Furthermore, it is now clear that in the former enclaves or colonies of the Tiwanaku State, several derived, post-Tiwanaku styles (such as Tumilaca and Ilo-Cabuza), earlier interpreted as manifestations of centralized state rule, were developed and could live on for some centuries after state collapse. We feel that an increasing precision and depth of pottery studies on a transversal scale (referred to the notion of "state-style pottery") and/or regional scale (referred to the notion of "internal variety") are necessary to gain an even better understanding on these topics, fundamental for interpretations of Tiwanaku and its internal social complexity. Both approaches (regional and/or transversal) in Tiwanaku pottery studies would call for extensive, long-term investigations. As a necessary first step toward such more extensive archaeometric research projects, we selected seven ceramic samples from different Tiwanaku contexts (see Table 1). Below, we present our samples, methods, and results, and discuss the technological processes and necessary knowhow related to the raw materials identified. We hope to show that, when applied to a larger sample, the analytical approach documented here could provide solid empirical grounds on which to characterize and differentiate between ceramic substyles, while also opening up new ways in which to study particular aspects of ceramic manufacture, including the agency of individual potters, workshops, and/or groups. As far as we know, ours are the first published results using this kind of approach to study and characterize Tiwanaku-style pottery.
Archeological sites and samples

For this exploratory study of the applicability of detailed archaeometric analyses to study ceramic production in the Tiwanaku State, we chose to analyze ceramic fragments from four different sites. These sites and samples are briefly characterized below:

Tiahuanaco. The archeological remains of the type site of the Tiwanaku culture, located in the Department of La Paz in Bolivia, 16 km SW of Lake Titicaca, cover an area of about 6 km² (Kolata 2003b). Our sample includes two polychrome fragments, TWTIA001-IAI485 and TWTIA003-IAI487, recovered during surface collections made in Tiahuanaco.

Pariti Island. Pariti is located in the Bolivian part of the Lago Menor of Titicaca, 20-30 km NW of Tiahuanaco. Archeological excavations carried out in 2004-2006 uncovered two deep pits containing the remains of at least 435 intentionally broken ceramic vessels, buried near the foundations of a possible ceremonial structure (see Korpisaari and Pärsinnen 2011; Korpisaari et al. 2012; Sagárnaga 2007; Villanueva and Korpisaari 2013). One of our samples (TWPRT00286-IAI490) comes from Offering Pit 1. It is from a quero beaker in the so-called blackware style. Our other sample, TWPRT001-IAI488, was surface-collected in the present-day village of Pariti. As for its iconography, this latter fragment is very similar to two ch’alladores (PRT 00334 and 00335, Figure 1b, 1c) found in the scientifically excavated offerings pits of Pariti.

Tiraska. This habitation and cemetery site is located a few kilometers NE of Pariti. In 1998-2003, 32 tombs of (post-)Tiwanaku affiliation were excavated (Korpisaari 2006). Both Tiraska samples we studied, TWTIR001a-IAI492 and TWTIR001b-IAI493, were surface-collected in the present-day village and are very similar to one another.

AZ-141. This cemetery site is located in the Azapa Valley, in the extreme north of Chile. 55 funeral contexts have been excavated, and a number of these tombs contained Tiwanaku-style ceramics and/or other objects indicative of high plateau influence (Korpisaari et al. 2014). The final ceramic sample included in our study, fragment TWAZ141-IAI495 recovered at AZ-141, comes from a Tiwanaku-style polychrome quero.
Methods

Mineralogical analysis. We cut pieces of 30x30 mm or less to be preserved in Epofix resin blocks, which were cut and polished with alcohol-based lubricants and emulsions to avoid humidifying the fragment. Finally, the bricks were covered with a ca. 200-250 Å carbon layer for analysis. The mineralogical analysis was performed with a Quantitative Evaluation of Minerals by Scanning electron microscopy (QEMSCAN) model E430 based on ZEISS EVO 50 SEM combined with Bruker Series 4 EDS detectors and processed with the software iDiscover v5.3.2. The composition map was built with the Fieldscan operation, with a separation of 10 µm between measurements. These analyses were performed in the Scientific Equipment Unit (MAINI) of the Universidad Católica del Norte, Chile.

Scanning and optical microscopy. We took microphotographs of the ceramic fragments analyzed using an Olympus SZX-7 stereo microscope. Then the ceramic fragments (approx. 1 cm²) were mounted on the stubs of an EVO LS SEM (scanning electron microscope) for chemical analysis with an EDX Oxford detector (8.5 WD, 450 kV, detection limit 0.1% by weight). The SEM images were captured at 100x and 600x with the secondary electron and retrodispersed electron detectors. The analysis was performed in the Laboratorio de Bioarqueología of the Instituto de Alta Investigación de la Universidad de Tarapacá, Arica, Chile.

Raman analysis. The ceramic samples were mounted on coverslips to obtain the Raman spectrum of the different colored surface areas using a Renishaw Raman Microscope System RM1000 (laser diode at 785 nm), a Leica microscope, a CCD detector cooled electrically, and a notch filter to eliminate elastic scattering. The spectra were obtained using a 50x object, with the laser out at 2.0 mW and a spectral resolution of 2 cm⁻¹. This analysis was performed in the Facultad de Ciencias of the Universidad de Chile, Santiago, Chile.

Statistical tools. The results for the elements detected by EDX were analyzed with principal components analysis to select those that contributed most to the variability. The normality of the reduced set of elements was examined with the Shapiro and Wilk tests. ANOVA was used to compare
pigments and clay matrixes when their distributions were normal, and a non-parametric test was used when these were not. When the null hypothesis of equal means or medians was rejected, significant differences were detected using Tukey’s post-hoc tests.

Results

Fragment TWPRT00286-IAI490 from Pariti Island (Figure 2a) has a very fine, uniform dark brown paste with a porosity of 8%. The matrix is 60% clay, considering all the grains less than 15 µm as matrix (Courtois 1976); micas (muscovite > chlorite > biotite) and quartz are less common. The non-plastic inclusions are of the size of medium to fine sand, subangular to subrounded, with good selection and distribution. The inclusions are composed of quartz crystaloclasts, biotite (rich in Fe-Mg), potassium feldspar (orthoclase), and plagioclase (oligoclase > albite). The sample also has 15% of rounded clay lithoclasts, which are differentiated from the matrix by their dark brown color and the scarcity of muscovite. The accessory minerals are crystaloclasts of titanium oxide.

The second sample from Pariti Island (TWPRT00-IAI488, Figure 2b) has a grey-brown center (reducing area) and brown, slightly reddish borders (oxidizing area). The paste is medium, moderately compact, with a porosity of 5%. The clay matrix has an abundance of 58%, mostly clays, and in lower proportion muscovite, chlorite, quartz, and feldspars. The 37% of non-plastic inclusions are from coarse sand to medium silt (1000-15 µm) in size, angular to subrounded, with moderate selection and distribution. Some inclusions are plagioclase crystaloclasts (oligoclase > albite), quartz, biotite, and potassium feldspar; others are lithoclasts of probable volcanic origin, while the accessory minerals are crystaloclasts of titanium oxide and iron.

Samples TWTIR001a-IAI492 and TWTIR001b-IAI493 from Tiraska (Figures 2c and 2d) have 72% and 70% of their matrix of clay, respectively. The porosity is well distributed, 4% and 6%. The clay matrix of TWTIR001a-IAI492 is composed of clay minerals and, in lower proportions, of micas (muscovite > biotite > chlorite) and quartz. The matrix of TWTIR001b-IAI493 has clay minerals, with little micas, quartz, or feldspars. Both samples have 24% of non-plastic inclusions,
with sizes from fine sand to medium silt (250-15 µm), subrounded to rounded, with a good selection and distribution. The inclusions of TWTIR001a-IAI492 are composed of crystals of potassium feldspar, quartz, plagioclases, and biotite. The most important accessory minerals are oxides of Ti and Fe and amphiboles. In sample TWTIR001b-IAI493 the important accessory minerals are crystals of plagioclase, quartz, potassium feldspar, and, in lower proportion, a felsic lithoclast and others, probably of volcanic origin.

Sample TWAZ141-IAI495 from the Azapa Valley has a uniformly brown paste from the borders to the center. The paste is fine and highly compacted, with a porosity of 3% and good distribution. The abundance of clay in the matrix is 64%, with clay minerals and micas in lower proportion. The 33% of non-plastic inclusions are from medium to very fine sand in size (500-63 µm), angular-elongated to subrounded, with a moderate selection and good distribution. They have quartz crystaloclasts, plagioclase, potassium feldspar, and biotite, while the accessory minerals have crystaloclasts of titanium and iron oxides, as well as pores filled with evaporitic minerals.

The chemical compositions determined by SEM-EDX (Table 2) were analyzed through principal components analysis, indicating a maximum of 14 elements important in the first three components. The first component explained 62% of the total variance. It included 8 elements: those with the highest weights were magnesium (Mg), carbon (C), titanium (Ti), aluminum (Al), and silicon (Si), while calcium (Ca), phosphorous (P), and iron (Fe) had low weights. ANOVA showed significant differences among the elements; Tukey tests showed that Al and Si appeared in significantly greater proportions in the clay matrix and the white and orange colors than in the black. The Kruskal Wallis test on Ca, P, and Fe found significant differences in their medians; the Tukey tests showed that Fe appears in higher proportion in the black color than in the red (Figure 3a). The orange color has the highest concentration of Fe, and white the lowest; this latter color is rich in Ca.

The topographic analysis in the white areas of the polychrome fragments showed that they have heterogeneous Ca and S contents in some cases, while in others Si and Al are also increased
The color orange also appears associated with an increase of Fe and with clay and/or increases of Ca and S. The Raman spectra (Figure 4) showed peaks at 220, 290, 408, 492, 608, and 1320 cm$^{-1}$ for red, which correspond to hematite (α-Fe$_2$O$_3$). For the black color in sample TWTIA003-IAI487, the spectrum shows the hematite peaks and an additional peak at 645 cm$^{-1}$, which corresponds to jacobsite ($\text{Mn}^{2+}(\text{Fe}^{3+})_2\text{O}_4$). The spectrum for the white in sample TWAZ141-IAI495 shows a peak at 1009 cm$^{-1}$ characteristic of gypsum ($\text{CaSO}_4 \cdot 2\text{H}_2\text{O}$), as well as hematite peaks at 220, 290, 408, 492, 608, and 1320 cm$^{-1}$.

Discussion

The mineralogical analysis indicated that sample TWPRT00286-IAI490 had the finest paste, although it was also the most brittle of all the seven fragments analyzed (probably due to extensive use). The other fragment from Pariti Island, TWPRT001-IAI488, had coarser raw materials (medium sand). The samples from Tiraska were very similar to one another, but had a few differences. The matrix of sample TWPRT00286-IAI490 was rich in clays, while the quero TWAZ141-IAI495 from the Azapa Valley has a fine paste, but is different from the previous samples in having proportionally more inclusions that were not very rounded (perhaps not sieved). In spite of these differences, all of our seven samples have common characteristics, such as the regular micropores that are homogeneously distributed on all the external and internal surfaces, oriented towards this axis. Our EDX analysis of samples near these micropores found high carbon and nitrogen content. This may be evidence of the incorporation of organic material, such as finely powdered and homogeneously distributed ash, which was carbonized and evaporated as CO$_2$ during firing.

The dark color of sample TWPRT00286-IAI490 is mainly due to firing in reducing conditions, which chemically reduced the iron minerals to dark chromophores. This kind of pottery is called blackware. It has a hard paste with well-polished surfaces and modeled decoration depicting birds, camelids, and human features, as well as other decoration such as incisions or post-firing coloring (Alconini 1995; Burkholder 2001; Korpisaari and Pärssinen 2011; Korpisaari et al. 2012). Blackware
is also present in the Tiwanaku colony of Moquegua, in cemetery M10P the of Omo 10 site and in cemeteries M43A and M70B of the Río Muerto site (Goldstein 2005; Goldstein and Palacios 2015; Palacios and Goldstein 2015). However, Tiwanaku blackwares are scarce in the Azapa Valley and are exclusively associated with cemeteries such as AZ-143 (Acori 2017), which has yielded the most numerous and finest Tiwanaku ceramics of this valley (Goldstein 1996, 2005). Blackware allowed the manufacture and diffusion of a pottery type in which the black color was part of the clay matrix itself – not only a layer of painted slip covering this matrix – and, therefore, more permanent and resistant to wear than any slip could ever be.

Sample TWPRT001-IAI488 has polychrome iconography, applied on a red slip, in which only hematite was identified. Thermogravimetric analysis (TGA) has shown that between 30 and 60 ºC there is complete transformation of limonite into goethite by evaporation of the chemically retained water. The goethite is dehydroxylated at 210-300 ºC, forming the respective oxides. The retention of residual OH groups at 900-1000 ºC has led to the idea of phase transitions in the sequence goethite-protohematites-hematite, where the protohematites are formed only by thermal decomposition of crystalline goethite at 900-1000 ºC (López et al. 2006; Rendon et al. 1983; Romero-Gómez et al. 2013). Finding only hematite by Raman spectroscopy (see the example of TWAZ141-IAI495 in Figure 6) suggests that a temperature of 900-1000 ºC was reached in the consolidation of this chromophore as slip.

Numerous studies in the south-central Andes corroborate the use of hematite in very diverse pictorial supports, areas, and chronological periods (see Brooks et al. 2008; Eerkens et al. 2009, 2014; Petersen 2010; Vaughn et al. 2005). Hematite is a common chromophore with a strong color and good adherence and opacity, and it is easily powdered (Harben and Kužvart 1996). The extraction of hematite is also among the first evidences of mining processes in South America (Petersen 2010; Salazar et al. 2011; Vaughn et al. 2005, 2007, 2013).

Over the hematite slip, black bidimensional designs were painted using Mn chromophores. Jacobsite was identified in the black chromophore based on the Mn in sample TWAZ141-IAI495.
The TGA curves of Mn show that at 300 °C, the decomposition of the hydrated phases such as todorokite and danusite occurs. The decomposition of MnO₂ oxides (i.e., pyrolusite and cryptomelane) begins at 600 °C and is complete at 850 °C. At 900 °C, the oxides of Mn₂O₃ type are transformed into Mn₃O₄-type oxides, and minerals such as hausmannite appear. Jacobsite (the least common mineral) may be formed from hematite and pyrolusite (the most common mineral) at temperatures above 1200 °C (Faria et al. 2012; Ortega et al. 1995). Thus, the color of the Mn oxide identified in sample TWAZ141-IAI495 could be fixed without problems during the ceramic firing process.

The use of gypsum (CaSO₄·2H₂O) to obtain the white color of sample TWAZ141-IAI495 from the Azapa Valley is suggested by the increases in Ca and S, and the decreases in Si and Al. The application of a white color of a dihydrated gypsum base would have had to have taken place post-firing, since this could not withstand heats in excess of 300 °C. Gypsum is a sedimentary mineral of calcium sulfate that is part of the evaporates, common due to its geological origin related to the drying of salt lakes or seas without spillways to the ocean; it is found in compact masses, soft rocks, earthy masses, and, in some cases, dissolved into certain waters (Sánchez 2003). This mineral is generally present in two forms, one anhydrous and crystallized (CaSO₄), which is called anhydrous, and the other a hydrated form, with two molecules of water (CaSO₄·2H₂O), which is called gypsum rock. The expulsion of water from the dihydrate happens in two phases at low temperatures. The first evaporation to produce the mono-hydrate is at 120-180 °C (CaSO₄·H₂O), while at 180-300 °C it is completely dehydrated (CaSO₄) as soluble anhydrate. In the range of 400-800 °C, the anhydrate becomes insoluble, and at 900-1000 °C, hydraulic gypsum is generated (Sánchez 2003).

The white color in the ceramic sample from the Azapa Valley was produced by post-firing thermal processes at low temperatures, which leads to differentiated thermal aspects in the production of this color. By contrast, the white color in sample TWTIA003-IAI487 shows an increase in the Si and Al content, as well as in Ca and S, which suggests the mixture of gypsum with white caolinite-type clays. This means that at least two different technological processes were used to achieve the
white color. Preliminary observations suggest that the mixture of clay and gypsum gives a white which is more resistant but with less shine. This was preferentially used when there were large areas to be covered with the white color. For lines painted in white, only gypsum was used in order to produce a white color more labile but with greater shine. It follows that these technological decisions about the white color were made with respect to the pictorial role it would fulfill.

Analogously, the orange color was produced by combining hematite and white clays. This mixture is resistant and capable of consolidating the desired color at high temperatures. The orange color of sample TWAZ141-IAI495 shows low Si and Al content, as well as increases of Ca and S. This could be due to the use of gypsum to generate the orange color. In summary, in the polychrome fragments we studied, the complex technological production of the white and orange colors necessarily implied different thermal processes and mixtures of substances.

The small differences in the mineralogy of the two Tiraska samples, and the fact that only one has the black color rich in Fe, suggest that there were different sources of provisions and/or technical treatment in this regional ceramic style (see Korpisaari 2006). Given the great outward similarity of our Tiraska fragments, we see detailed archaeometric analysis as a very promising way to advance in the characterization of this substyle of Tiwanaku pottery. Furthermore, we are certain that such fine-grained analysis of larger datasets pertaining to different substyles of Tiwanaku ceramics would help us understand the technological choices and identities of individual potters, workshops, and groups of people within the larger Tiwanaku phenomenon.

Final Comments

The main results of our exploratory analysis of a sample of seven Tiwanaku ceramic fragments are:
1) Tiwanaku potters had a general tendency to work with (different) fine raw materials, which undoubtedly increased the difficulty of pottery production at the modeling stage. 2) This technological expertise is most notable in the ceramic fragments found in the ritual context of Pariti Island and in the Tiwanaku capital Tiahuanaco. 3) Some general patterns imply the use of a plant-
based temper (perhaps ash) in Tiwanaku pottery production. 4) There were slight differences in the raw materials used by different potters, workshops, and/or groups, and these differences seem to distinguish the regional ceramic styles preliminarily sampled here.

In America and in the area of interest, the archaeometric approach is highly useful for evaluating the material and technological characteristics and knowhow of ancient populations (see Giesso et al. 2010; Scott and Mayers 1994, for example). Furthermore, to the extent that an archaeometric focus provides detailed information about ceramic traditions (see Martinez and Santos Valero 2020; Weber et al. 2020, for example), it will be possible to analyze the technological decisions of the potters, workshops, and/or groups that manufactured particular styles of ceramics. Particularly, useful are the archaeometric studies of regional ceramics from the Tiwanaku and Wari period and/or post-state moments (see Knudson 2007; Montoya et al. 2009; Sharratt et al. 2009, 2015; Stovel et al 2013, among others). Thus, we feel that an archaeometric approach of the kind preliminarily tested and documented here would be highly suitable for a future large-scale, systematic study of Tiwanaku pottery, taking into account and further clarifying the regional diversity and chronological depth within the Tiwanaku cultural and political phenomenon.

Acknowledgements. We thank the Alfred Kordelin Foundation (Finland) for financing this study. We especially thank Riikka Väisänen and Mauricio Rojas for their help and comments, Danilo Villamor of the UNAR-Bolivia, and Mariela Santos, Teresa Cañipa, and Gustavo Espinosa of the Universidad de Tarapacá. Nelson Lara and Juan P. Ogalde thank project UTA-Mayor 4752-19, and Marcelo Campos-Vallette thanks Fondecyt project 1140524. The authors gratefully appreciate the support of the Unidad de Equipamiento Científico - MAINI, Universidad Católica del Norte in sample preparation, analysis, and data acquisition by automated mineralogical analysis by QEMSCAN, along with the contribution of Dr. Andrew Menzies.
References

Berenguer, J.R., 1993, Gorros, identidad e interacción en el desierto antes y después del colapso de Tiwanaku. In Identidad y prestigio en los Andes: Gorros, turbantes y diademas, edited by J. Berenguer, pp. 41-64. Museo Chileno de Arte Precolombino, Santiago, Chile.

Figure 1. a) Map of the general area discussed with the sites mentioned in the text. b) and c) Polychromic ceramics found in the offering wells of Pariti Island of two ch’alladores b) PRT 00334 and c) PRT 00335 that show iconography similar to one of the samples analyzed in this study.
Figure 2. Mineralogical maps provided by iDiscover (above) and photograph of fresh paste (below) of the samples a) TWPRT00286-IAI490, b) TWPRT001-IAI488, c) TWTIR001a-IAI492 and d) TWTIR001b-IAI493.
Figure 3. a) Optical microscope and SEM (x100) photographs of samples TWPRT001-IAI488 (upper row) and TWTIA003-IAI487 (lower row), indicating the area of black color mapped along with the respective contents of magnesium (Mn) and iron (Fe). b) Optical microscope and SEM (x100) photographs of the white color of samples TWTIA003-IAI487 (upper row), with an increase of Ca, S, Al and Si, and TWAZ141-IAI495 (lower row) which only showed an increase of Ca and S.
Figure 4. Raman spectra of sample TWAZ141-IAI495 for: a) red, b) black and, c) white.
Table 1. Samples analyzed, with detail of the fragments used to study all the colors and clay matrix.

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>SITE</th>
<th>FRAGMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWTIA001-IA1485</td>
<td>TIAHUAÑACO</td>
<td> </td>
</tr>
<tr>
<td>TWTIA003-IA1487</td>
<td></td>
<td> </td>
</tr>
<tr>
<td>TWPRT001-IA1488</td>
<td>ISLA DE PARITI</td>
<td> </td>
</tr>
<tr>
<td>TWPRT00286-IA1490</td>
<td></td>
<td> </td>
</tr>
<tr>
<td>TWTIR001a-IA1492</td>
<td>TIRASKA</td>
<td> </td>
</tr>
<tr>
<td>TWTIR001b-IA1493</td>
<td></td>
<td> </td>
</tr>
<tr>
<td>TWAZ141-IA1495</td>
<td>VALLE DE AZAPA</td>
<td> </td>
</tr>
<tr>
<td>SAMPLE</td>
<td>COLOUR</td>
<td>C</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>TWTIA001-IA488</td>
<td>Black</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>White</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td>Orange</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td>Matrix</td>
<td>8.7</td>
</tr>
<tr>
<td>TWTIA005-IA487</td>
<td>Black</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>White</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>Matrix</td>
<td>7.4</td>
</tr>
<tr>
<td>TWPRT001-IA481</td>
<td>Black</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>White</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>Orange</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>Matrix</td>
<td>6.4</td>
</tr>
<tr>
<td>TWPRT00286-IA480</td>
<td>Black</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>White</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>Matrix</td>
<td>4.1</td>
</tr>
<tr>
<td>TWTIR001-IA492</td>
<td>Black</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>Orange</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>Matrix</td>
<td>5.5</td>
</tr>
<tr>
<td>TWTIR001b-IA493</td>
<td>Black</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>White</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>Orange</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>Matrix</td>
<td>7.8</td>
</tr>
</tbody>
</table>