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The recent hardware evolution has widened the speed gap between main memory and the
processor. As a consequence, in many cases memory access has become the main bottle-
neck even in disk-based databases. The performance of indices is especially influenced
by cache misses; therefore new cache-conscious indices have been proposed. This the-
sis surveys general methods for enhancing data locality of data structures and how those
methods can be applied to database indices. The Cache-Conscious B

�
-tree (CSB

�
-tree) is

revisited and formally defined. The worst-case space utilization of the CSB
�

-tree is 25%.
Improving the space utilization is one of the main contributions of this thesis. A new,
remarkably less-memory-consuming variant of the CSB

�
-tree called the Search-Intensive

B
�

-tree (SIB
�

-tree) is presented. The most important cache-conscious index structures
are also reviewed and a new, memory saving insertion algorithm is presented. Several
methods improving the cache-consciousness of data structures are tested in isolation and
as a part of the SIB

�
-tree implementation. The search performance of the SIB

�
-tree is

compared with that of the B-tree and the compressed trie. The results show that hard-
ware evolution may be disasterous to data structures with poor data locality such as tries.
The cache-conscious search-tree implementation shows the best search performance in all
tests.
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1 Introduction

Database index structures have been researched for decades. Disk databases use hard
disks as primary non-volatile storage and the main issue is to keep the number of disk
operations as low as possible. This is due to the fact that disk access is magnitudes slower
than main-memory access. By offering the shortest possible path to data, indices can
substantially reduce the need for disk operations. This has led to the popularity of low,
bushy tree-structures. In a B

�
-tree [Com79, Sag86], for instance, the node fanout, i.e.,

the number of children per node, is high. The B
�

-tree suits well for disk databases and is
the most common index structure used.

Since relatively large main memories became available in the mid 1980’s, partially or
fully memory resident databases became feasible [DKO

�
84, GMS92, JLR

�
94, CPP97,

DKK99, BBG
�

99, LNPR99]. This evolution also motivated the research of index struc-
tures especially designed for main-memory databases (MMDB). The properties and needs
of MMDB indices differ from those of traditional disk-based databases. Although the aim
of the design of MMDBs is the efficient use of processor cycles as well, the emphasis has
been on minimizing the stress of the CPU rather than optimizing the usage of the cache.

For over two decades the speed of CPUs has increased faster than the speed of main
memory. As a consequence, the speed gap between the CPU and memory has rapidly be-
come steeper, and memory access has become the new bottleneck in databases [RBH

�
95,

Pat97, CHL99, BKM99, ADHW99, BDFC00, PH02]. Therefore, it is crucial to minimize
both the number of memory accesses the application causes and the latency incurred from
the memory accesses. The performance of the CPU should not be the problem anymore
in data-intensive programs. The target of this thesis, in general, is to explore the methods
which enhance the cache usage of index structures of totally memory-resident databases.

The B
�

-tree has many benefits over binary trees, such as short access paths with equal
length. However, these benefits lose their importance if memory access is relatively fast
as it was in the mid 1980’s [LC86b, GMS92]. DeWitt et al. showed in 1984, that if at least
80% of the database data resides in main memory, an AVL-tree, or any balanced binary
tree outperforms a B-tree [DKO

�
84]. As a consequence binary trees became widely used

in main-memory databases. At the time the T-tree [LC86a] was proposed, memory access
was not yet the primary bottleneck in databases as it is today. Instead, the aim of the
design was to strain the CPU with as simple and few instructions as possible. Thus, the
efficient CPU-cycle usage materialized with a T-tree. It enhances the poor storage proper-
ties of the AVL-tree, still retaining the binary structure. Unlike the nodes of an AVL-tree,
each T-tree node has multiple elements, thus reducing the need for rotations typical to
balanced binary trees. The original T-tree has data items in each node. To achieve better
scanning properties, some variants of the T-tree have been proposed. In a T

�
-tree [LC86a]

data is stored only on leaf nodes as in a B
�

-tree. In a T
�
-tree [JKN

�
01], the leaf nodes

are also linked in order to allow sequential access from leaf to leaf. For over ten years,
different variations of the T-tree have been widely used in existing MMDB products.
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Optimizing the main-memory and cache usage is topical due to the increase in the memory-
processor speed gap. This issue has come up quite recently and nearly all MMDB prod-
ucts rely on solutions based on outdated or too optimistic ideas about main-memory per-
formance. A property called data locality (or reference locality) relates to how most-
frequently-referred-to data is placed into the memory [CHL99, PH02, Ch.1.6]. Arrays
inherently expose good data locality while pointer structures usually do not. The relative
retardation of main memory is disastrous for pointer-based binary trees, which typically
expose bad reference locality. Despite of the efficient search properties of binary trees,
the increased cost of memory access makes them inefficient. As a consequence of this
long-term hardware evolution, the B

�
-tree, surprisingly, has been shown to perform better

on modern hardware than the T-tree [LNT00]. Regardless of the relatively good perfor-
mance of the B

�
-tree, many of its properties, such as data locality, can be enhanced in

many ways. Within the past few years many cache-conscious data structures, program-
ming conventions and design issues have been proposed [ADHW99, BKM99, CHL99,
Leb99, RR99, RR00, Gra01, ZR02, ZR03]. Cache efficiency can be improved both by
a careful design and an efficient implementation. Both aspects will be examined in this
thesis. However, this thesis covers only the software enhancements, thus, hardware issues
are not discussed.

Two methods, coloring and clustering have been proposed to enhance the reference lo-
cality of programs [CHL99]. Assume two consecutively accessed elements, both in size
equal to the cache block. Coloring is used to allocate these elements to such memory
addresses that they will not conflict in cache. That is, they can both be in the cache at
the same time. Coloring materializes with explicit memory management which aims at
non-conflicting data placement. Clustering attempts to store consecutively-accessed ele-
ments into a same cache block. Clustering is the main idea in the Cache-Conscious Search
tree (CSS-Tree) [RR99]. It performs well in searches but supports updates poorly. The
structure of the CSS-tree consists of arrays; like virtually all sorted arrays, when a write
operation occurs, large parts of the array must be re-written. When a write occurs, the
whole tree must be re-created. Clustering also materializes in proposed cache-conscious
variants of the B

�
-tree, called CSB

�
-trees. They support read and write operations, but

locking and concurrency-control schemes are not discussed [RR00]. An optimistic, latch-
free traversal (OLFIT) concurrency-control scheme for multiprocessor systems has been
implemented on a tree which resembles the CSB

�
-tree [CGM01]. Read and update algo-

rithms are described; delete operations are achieved by a well-known versioning scheme
[BLR

�
95]. Data prefetching is an efficient method to amortize memory-access cost while

accessing consecutive blocks from the main memory [CGM01, CGMV02]. Prefetching
reads data items which are to be accessed soon, beforehand into the cache, asynchronously
with program execution. The theoretical “cache-oblivious search-tree” is a tree structure
that performs well with multiple levels of memory [BDFC00]. The solution conforms
to a weight-balanced B-tree [AV96]; it is independent of the memory levels, block sizes,
number of blocks on each level, and the speed of memory access.
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A full CSB
�

-tree is a variant of the CSB
�

-tree [RR00]. In the full CSB
�

-tree the nodes are
stored in constant-size node groups. A node group is actually an array of nodes contain-
ing keys and pointers. Arrays are used to eliminate pointers from nodes, thus increasing
both the node fanout and reference locality. Eliminating pointers requires physical group-
ing of nodes. Unfortunately, this may remarkably increase the memory overhead. As in
B
�

-trees, the minimum node utilization (i.e, space utilization within a node) in the CSB
�

-
tree is

�����
. However, the minimum node-group utilization, the number of nodes present

against the maximum number of nodes a node group can have, is also
�����

. In other
words, any node group is at least half-full and so are all the nodes. Thus, the minimum
overall utilization in the CSB

�
-tree is only 	 ��� , which can be disastrous to the perfor-

mance of the structure. This issue is noticed in [RR00], but the focus is on decreasing the
memory usage of internal nodes because they are more relevant when the cache usage is
considered. The total memory usage, which depends on the number of leaf-node groups,
is also important when the amount of memory is limited.

We propose a variant of the CSB
�

-tree, called the search-intensive B
�

-tree (SIB
�

-tree),
which guarantees at least

�����
memory utilization on the leaf level of the SIB

�
-tree. In

other words, the worst-case memory usage of the SIB
�

-tree is half of that of the CSB
�

-
tree. The enhancement is due to the proposed split-delay insert algorithm (SD algorithm),
which delays the splitting of a full leaf-node group until all the nodes are full. The for-
mal definitions for the CSB

�
-tree and for the SIB

�
-tree are presented. We also define an

order-preserving compression method, called the difference compression method, which
in many cases multiplies the number of keys a node can contain. Finally we investigate
several methods for search within a node (of the CSB

�
-tree) and propose a method which

combines binary search and sequential scan in the most efficient way.

The SIB
�

-tree was implemented with the SD algorithm and with an optimized node
search, its memory usage and cache behaviour were compared to those of a B-tree and
of a compressed trie [INT99, Sed98, Ch.15]. The search performances of the SIB

�
-tree,

the B-tree and the compressed trie were thoroughly tested on several machines with vary-
ing properties. The test results of different indices are compared against each other and
profoundly analyzed. The analysis is based both on the properties of the structures and
on the properties of the hardware used. The difference-compression method was tested
on several machines with different properties. The test results are compared to those of
the uncompressed storing method. The results of the comparison are presented and ana-
lyzed. Two linked-list-like data structures, called the B

�
-chain and cache-conscious chain

(CC-chain) were implemented in order to explore the performance of CPU-efficient and
memory-efficient data structures. The chains were tested on several machines with vary-
ing properties. The results for both chains are compared and profoundly analyzed.

The remaining part of the thesis is organized as follows. The main principles of computer
memory are surveyed in Chapter 2. The different ways to enhance memory usage are
discussed in Chapter 3. Cache-sensitive index structures are reviewed in Chapter 4. The
definition of the SIB

�
-tree is presented in Chapter 5. The operations implemented and
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the details of the implementation are presented in Chapter 6. The tests and results are
documented in Chapter 7, and Chapter 8 concludes the thesis.
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2 Computer Memory

It would be desirable to have an unlimited amount of memory, so that any word would
instantly be available for processing. “Unlimited” means that one does not need to worry
about the adequacy of storage regardless of the number and the size of the programs one
uses. An “instant” access means that memory must be able to feed the processor with data
without delaying the CPU.

Consider a computer with a processor running at a clock rate of 1,5GHz, a 40GB hard
disk, 512MB main memory and 384 kilobytes of cache. The total size of the memory
is tens of gigabytes, which can be considered “infinite”. Furthermore, we can always
add one or two additional hard disks to our computer in order to multiply the overall
storage capacity. However, the data on the disk is not immediately available. It must be
transferred to the processor via main memory and cache before use. Thus, the amount
of memory the computer includes is sufficient but the speed of the memory is mostly too
slow.

2.1 Role of the memory hierarchy

In an above described computer only the smallest and fastest part of the memory hierar-
chy meets the requirements of “instant access”. In other words, 0,001% of the memory
(the cache) is fast enough while 98,7% is millions of times slower than desired. The re-
maining part consists of moderately fast main memory holding a 1,3% share of the total
memory size. Therefore, user expectations often collide with the reality as can be seen
from Figure 1. One reason for the situation is an economical one. The cost of a megabyte
varies greatly between the different memories. If it were possible for manufacturers to
produce small and “fast enough” memory chips, they would be far too expensive for con-
sumers. Currently hard disk is the only non-volatile storage type in computers. Therefore,
it cannot be replaced by large volatile main memory.

100 00010 000

Access time

Storage capacity
(megabytes)

main memory

hard disk

memory
desired

(nanoseconds)

10 000

100

1000

10 000 000

1000 000

100 000

10

1

1 100

cache

Figure 1: The speeds and sizes of different memories.
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The different types of computer memory constitute a multilevel memory hierarchy (see
Figure 2). On the top of the hierarchy are processor registers and the cache, which both
are located on the CPU chip. The size of the registers is only a few words while the
size of the cache is 32 to 2048 kilobytes. The second level of memory consists of main
memory. The main memory is placed on the memory bus of the motherboard and its
size varies from 128MB to a few gigabytes. Finally, at the bottom of the memory hier-
archy there is the hard disk, whose size is typically dozens of gigabytes. Motivation for
this kind of a hierarchy is the user’s need for a fast memory with large enough capac-
ity. Such a facility cannot be offered, but it can be simulated to some extent with a set
of different, co-operating memories using the principle of locality (or reference locality)
[Leb99, CHL99]. Assuming that only a small portion of data will be heavily accessed, it
is enough to keep this “hot” data quickly available in cache and store other data to mem-
ory or to disk.

Generally, every computer has one non-volatile storage device which usually is a hard
disk. All data is stored on hard disk, from where the requested parts of the data are copied
to the processor via main memory and cache. If the data needed can mainly be found from
the cache or from the main memory, the user shares the illusion of having large amounts
of moderately fast memory always available. In order to successfully create such an im-
pression, the memory management of the computer must recognize the most frequently
used data and keep it as close to the CPU as possible (i.e. on highest possible memory
level) by using of the memory hierarchy. The data found on one level of the hierarchy is
actually a subset of the data found on the next lower level (see Figure 2).

Cache Main memory Hard disk

read
request faultmiss

cache page

a blocka word

CPU

Register

a page or a segment of pages

Figure 2: Data request through the hierarchy. Participants and units of transfer.

Data is transferred between memory levels in blocks. The transfer block between hard
disk and main memory is a page or a segment. The segment usually consists of multiple
pages. The size of a page varies typically between 4 and 64 KB. Data is transferred from
the main memory to the cache in blocks equal to the size of the cache line, which is the
basic addressing unit in cache. The size of a cache line is usually 16-128 bytes. The CPU
reads data in one-word pieces; the word size depends on the processor architecture used
(16 bits in 8086 and 64 bits in Intel Pentiums).
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In data-centric programs the processor spends most of its execution time by waiting data
to come from the bus. That determines the main challenges in designing an efficient
data structure: avoid cache misses and thus minimize the CPU’s stall cycles resulting
from memory references. The situation is slightly alleviated by processors including non-
blocking caches, which in some cases can continue processing while waiting for the data
from the cache [CB92][PH02, Ch.5.6]. However, this works only as long as the CPU has
data to process, thus being only a minor enhancement.

2.2 Common main-memory and cache types

Every computer includes a memory controller that creates and manages signals needed in
reading and writing information from and to the memory. The main signals are control,
address and data signals. A control signal tells the memory the type of the operation, and
an address signal tells the memory the location of the cell where the operation should be
executed. Data signals are used to transfer data to and from the memory. The memory
controller is usually integrated into the system chip set.

The most familiar types of memories used in desktop computers and servers are the dy-
namic RAM (DRAM) and static RAM (SRAM). The main memory constitutes usually of
some type of DRAM. Similarly, the cache is nearly always made of SRAM, regardless of
whether it is internal or external to the CPU. Main memory consists physically of a set of
DRAM chips. Chips are grouped and attached to a piece of silicon that is connected to
memory slots of the main board. Data flows from memory via connector pins.

DRAM is called dynamic because it must be refreshed frequently to retain its contents.
DRAM has only one transistor per bit and one capacitor, while SRAM has at least six
transistors. The capacitor holds or releases an electrical charge to express ’1’ or ’0’, re-
spectively. The transistor is used to read the content of the capacitor. The capacitors are
very small and they hold the charge only for a short time before it fades away. This is why
refreshing is needed: each cell must be read before it loses its information. The reading
is done by a particular refresh circuit that reads the content of each memory cell. The
refresh circuitry is part of the memory controller. Refreshing must be done periodically,
regardless of the actual need for accessing data. The memory is also refreshed as a side
effect when data is read.

In theory, if 32-bit addressing is used, the memory needs 32 address lines to manage the
addresses. In order to save space, DRAM address lines are multiplexed. The main mem-
ory constitutes logically a square of rows and columns. The address is divided into two
parts, row address and column address, which are sent through the same connector pins
one after another. This slows the DRAM further, but it also halves the number of address
lines and saves valuable space.
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The capacity of main memory has increased very fast, but the speed of DRAM has in-
creased much slower than the speed of the CPU. As the size of memory has grown over
50% per year, the speed of memory has increased only about 5% per year. The row ac-
cess strobe (RAS), which is related to latency, of fast DRAMs has decreased from 150ns
(1980) to 40ns (2002) in 22 years [PH02, Ch.5.9].

Unlike the DRAM (main memory), the evolution of the SRAM (cache) has followed
tightly the evolution of the CPU. Fetching data from the cache takes only one clock cycle.
Depending on the CPU, the cache latency is 4 to 10 nanoseconds. SRAM differs from
DRAM in (at least) three things:

1. SRAM does not need to be refreshed in order to preserve its contents. Therefore,
SRAM needs less power than DRAM.

2. As opposite to DRAM, SRAM address lines are not multiplexed. Thus, SRAM
needs twice as many connector pins as DRAM, but addressing is faster because the
whole address can be received during the same clock cycle.

3. Cache is integrated with CPU, therefore the cache runs at the clock rate of the CPU
making the few nanoseconds access time possible.

As a consequence, SRAM is much more expensive than DRAM. One-megabyte SRAM
module costs 86,5 euros [Dat02] while the price of the same amount of DRAM is 0,3
euros [Ver02]. SRAM thus costs nearly 300 times more than DRAM. This is, of course,
partially due to manufacturing volumes. In comparable technologies, SRAM is 8 to 16
times as expensive as DRAM [PH02, Ch.5.9]. By way of comparison, one megabyte of
hard-disk costs 0,002 euros [Ver02].

2.3 Memory access

When a program is being executed, each instruction and required data item is generally
retrieved from the memory. The memory reference (to access data or an instruction) starts
with requesting the intended bytes from the cache. Because each process uses a dedicated
virtual-memory address space, the virtual address must first be translated into a physical
address. This is done by extracting the virtual page number from the virtual address and
then translating the virtual page number to the physical page number. The remainder of
the virtual address, an offset, is then concatenated to the physical page in order to form
the physical address.

The physical address is sent to the cache. If the data is found, a cache hit occurs and
the data is copied to the registers of the processor, which continues the execution. If the
data cannot be found in the cache, a cache miss occurs. As a consequence, the processor
stalls and the data is searched from the main memory and, if found, copied to the cache.
If the page cannot be found in the memory, a page fault occurs and the CPU invokes the
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operating system by using an exception. As a consequence, the page is read from the disk
to the main memory and forwarded to the cache. When the data is available in the cache,
the CPU continues the execution from the point it was stalled by redoing the memory
reference to the cache. Since the focus of this thesis covers the problems arising from the
relatively slow memory references originating from cache misses, further examination of
lower-level memories such as hard disks or network file systems, is beyond the scope of
the thesis.

Cache misses in a uniprocessor system can be divided to three distinct types [PH02,
Ch.5.5]:

1 A compulsory miss occurs at the first time the data is referenced.

2 A capacity miss occurs when the size of the data to be read exceeds the cache
capacity.

3 A conflict miss is a consequence of the cache’s limited associativity. Data can be
stored to a limited set of cache blocks. A conflict miss means that the missing data
was replaced by another block, whose memory address is mapped to the same set
of cache lines than the address of the replaced data.

Compulsory misses can be reduced, for instance, by using a prefetch mechanism [CB92,
CGM01, PH02, Ch.5.6]. Capacity misses can be avoided by increasing the physical size
of the cache or by diminishing the program’s cache footprint. Coloring [CHL99], in turn,
can be used to reduce conflict misses. Coloring and prefetching are studied briefly in
Sections 3.3 and 3.4, respectively.

A shared-memory multiprocessor system is one possibility for a parallel computing en-
vironment. In such an environment an additional type of cache miss, called a coherence
cache miss exists. The coherence cache miss occurs when many processors have cached
a block at the same time and one writes it. As a consequence, the block written is invali-
dated in the caches of the other processors. A cache miss occurs when the other processors
try to access the block written. The effect is multiplied if processors repeatedly access the
same cache block.

2.4 Principle of locality

The principle of locality is an important property for program efficiency [PH02, BO03,
Ch.1.6, Ch.6.2]. It states that if a program uses a piece of code once, it is likely to use the
same code again soon. A common rule says that a program spends 90% of its execution
time in using only 10% of the code. The principle of locality means that it is possible to
predict what instructions a program will use in the future based on its usage in the recent
past. The principle of locality also applies to data access, but not as strongly as to code
access. Depending on the data access pattern, two kinds of locality have been defined.
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Temporal locality means that if a piece of data has been accessed recently, it will likely
be accessed again soon. Spatial locality states that two data items, which are physically
close to each other, tend both to be accessed in a short period of time.

Data structures can roughly be divided into two categories, arrays and pointer structures.
In an array, subsequent data items are physically side by side. The reference locality of
an array can be improved by rearranging the data access pattern. In Figure 3, a 2x4 ma-
trix, whose line size equals to cache line size, is accessed. With access pattern (a), every
access may result in a cache miss. If two cache lines are mapped to the same set in the
cache, they may replace each other every time they are copied to the cache. With access
pattern (b), the number of cache misses is minimized. The spatial locality of arrays may
also be improved by using some compression method. The effect of compressing internal
structure of index nodes is examined in Section 3.2.

for (i = 0; i < 4; i++)
  for (j = 0; j < 2; j++)
    read[j][i];     read[j][i];

for (j = 0; j < 2; j++)
  for (i = 0; i < 4; i++)

i

j

i

j

(a) (b)

Figure 3: Improving spatial locality by rearranging the data access pattern.

Pointer structures have a property called location transparency, which is generally a pow-
erful feature. It allows changing data placement without changing the semantics of a
program. This may sometimes lead to poor reference locality. Subsequently accessed
items in a pointer structure are seldom physically side by side as in an array. As a con-
sequence, subsequent items can reside in different cache lines. It is also possible that the
next-to-be-processed item for a recently processed item is currently placed on the disk.
Furthermore, the access pattern of a pointer structure, such as a B

�
-tree, usually cannot

be changed. Thus, methods for enhancing locality that apply to arrays will usually not
work with pointer structures. However, the cache usage of a pointer structure can still be
improved by shortening the data-access path or replacing certain, often-accessed parts of
the structure by arrays. The latter is sometimes called pointer-structure compression. It
is studied further in Subsection 3.2.1.

2.5 Cache access

The cache consists of fixed-size blocks, cache lines. Each cache line has three types of
components: a tag field, a valid bit, and one or more data fields, each being equal in
size with a word. The valid bit indicates whether or not the tag field includes a proper
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memory address. It is set when the cache line is filled with data. There is also an index
field associated with every group of cache lines which are mapped to the same memory
address. Those groups are called cache sets and they relate to cache associativity (Sub-
section 2.5.1). The index fields are used to locate the correct cache line among the cache
lines. The value of the index field is called also the cache line number. One possible way
to achieve the bit operations needed in address mapping is presented in Appendix 1.
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multiplexor

Memory
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Cache using two−word cache lines

0100 110 0

0100 101 1

0100 110 1

0100 111 0

0100 111 1

0101 000 0

0101 000 1

0101 001 0

0101 001 1

0101 010 0

0101 010 1

0101 011 0

0101 011 1

0101 100 0

0101 100 1

0101 101 0

0101 101 1

0100 101 0

tag index

index

word address
bits [7,...,0]

tagvalid

Figure 4: A direct-mapped cache using two-word (2 bytes each) cache lines. Bit 0 of
word address (the rightmost) addresses the word inside the cache line, bits 1-3 determine
the cache line number (the index value), and bits 4–7 identify the word(s) inside the cache
line (the tag value).

2.5.1 Cache associativity

When the CPU sends an address of a data item to the cache, the address is mapped to one
or more cache lines in the cache. The mapping depends on the way the address associates
with the cache lines, thus it is dominated by the cache type. Caches facilitate different
mappings; from those in which each memory address is mapped to exactly one cache line,
to those in which any memory address can be mapped to any cache line. Caches applying
the former mapping, as in Figure 4, are called direct mapping caches. Caches that allow a
single address to be mapped to any cache line are called fully associative caches. Between
these two is the most typical model in which one main-memory address can be mapped
into two or more cache lines. This kind of a cache is called a set-associative cache. Gen-
erally, if a single memory address can be mapped to n cache lines, it is called an n-way
set-associative cache.
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The terms to be used in address mapping are defined as follows. A byte address is a bit
string that uniquely addresses a byte from the memory. A word address is a bit string that
uniquely addresses a word from the memory. A cache line address is a subset of a byte
address which is used to determine the cache lines(s) the byte address is mapped to.

Mapping a memory address to a cache line in a direct-mapped cache is performed as
follows:

word address ' (byte address) div (bytes per word)

cache-line address ' (word address) div (words per cache line)

By using these definitions, the cache line number (the index value) is resolved as follows:

cache-line number ' (cache-line address) modulo (number of cache lines)

For example, the word address of byte address
�)(*���)(+�)(�(*�

or
�)(*���)(*�)(�(�(

is
�)(*���)(*�)(�(

, if
there are two bytes per word. Similarly the cache-line address of word address

�,(*���)(*�,(�(
(as well as for

�,(*���)(*�,(*�
) is

�)(*���)(*�)(
, if the cache uses two-word cache lines. Finally, the

word in address
�)(*���,(*�)(�(

is mapped to the cache line attached with number
(*�)(

, if the
number of cache lines in the cache is 8 and

�)(*���)(+�)(.-0/2143657/98 ' (*�)(
.

Mapping to an n-way set-associative cache differs only a little from the method used in
a direct-mapped cache. While in a direct-mapped cache the number of different mapping
targets is same as the number of cache lines, one address maps to exactly one cache line,
in an : -way set-associative cache there are: 3;-=<?>+@A/�BDCE>GFHCJI :LKNM,KPO > ' : 36-=<P>+@Q/�B KNMRKGO >J5SI : >EC:
possible targets, that is, sets for mapping. The cache-line address is calculated as in a
direct-mapped cache, but since there are multiple cache lines whereto a memory block
may be mapped the cache lines address is divided by the number of sets instead of the
number of cache lines. A memory address is mapped to an : -way set-associative cache
as follows:

cache-line number ' (cache line address) modulo (number of sets in the cache)

Reading a word from a direct-mapped (“1-way set-associative”) cache is simple: the
memory address needs only to be mapped to a cache line, and if the valid bit is set,
the word found from the cache line is sent to the CPU registers. In a 2-way set-associative
cache the address maps to a slot that includes two cache lines. In order to find the right
word, both of the cache lines may have to be inspected (if the first does not match). This is
performed by looking at the tag field of both cache lines. The matching tag field indicates
a cache hit. Reading data from an : -way set-associative cache begins with searching the
matching index field, that is, the correct set for the data. After locating the correct set, at
most n tag fields must be inspected in order to find the searched word. In a fully associ-
ated cache all tags of the cache lines of the cache may have to be read, because all cache
lines belong to the same set. Fully associated caches are rare and when one exists it is
usually very small in order to be efficient [PH97, Ch.7.3].
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2.5.2 Cache write policies

Writing the data only to the cache, but not to the memory, or vice versa, could result in a
situation where the contents of the cache differ from the contents of the memory. That is,
the cache and the memory may be in an inconsistent state. Therefore, the requirement for
all write strategies is to keep the memory and the cache consistent as well as to achieve
sufficient performance. A simple method to retain consistency is to write everything to the
memory immediately after it is written to the cache. This method is called write-through.
In a direct-mapped cache the updated value can be written straight to the cache without
trying to read it first. In a set-associated cache the old value must be located (among cache
lines in the same set) and replaced with the new value. If the data which is to be written
is not in the (set-associated) cache, a write miss occurs. A write miss is managed by first
selecting the cache line for the data, and then the updated value is written to the selected
cache line as well as to the memory.

Write-through is not a very efficient solution since it causes writing both the cache and
the memory on each write operation. In practice, write operations do not benefit from
the existence of a cache in the write-through scheme because the CPU is stalled during
the write. When the processor waits the write to complete, a write stall takes place. The
impact of a write stall may be alleviated by using a write buffer to which the data is writ-
ten instead of the main memory. The data in the write buffer is written to the memory
simultaneously thus allowing the CPU to continue its execution. If the write buffer is full,
the CPU stalls until a slot is freed in the buffer. A slot of the write buffer is freed only
when some data is written from it to the memory.

An alternative write scheme is write-back, which operates only to the cache during a write.
Thus, the time needed for a write is much shorter than when also the main memory must
be accessed. The updated cache-line content is written to memory only when the cache
line is to be replaced by some data. Write-back is effective especially when the same
value is rewritten multiple times, because of multiple memory accesses are avoided. If
the content of the cache line is updated, the dirty bit attached to a cache line is set. When
a cache line is to be replaced by another cache line, the dirty bit determines whether or
not the data needs to be written to memory.

In general, write-back is more efficient than write-through; especially when writes are
bursty and memory referencing would stall the CPU for a long time. On the other hand,
implementing the write-back scheme is more complicated than the write-through scheme
[PH97, Ch.7.3][PH02, Ch.5.2].

In set-associative caches some block-selection strategy must be used to determine which
cache block (a victim block) must be replaced when new data arrives. Some possible
strategies are: first-in-first-out (FIFO), least-recently-used (LRU), or random. In the case
of FIFO, the oldest line among the cache lines in the set is overwritten. If LRU is used,
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the line which is the oldest untouched is replaced.

2.6 Multilevel caches

Modern computers usually include a first-level cache (L1 cache) internal to the CPU and
a second-level cache (L2 cache) external to the CPU. The L1 cache is typically 16–256
kilobytes while the size of the L2 cache may be up to four megabytes. Since the L1 cache
is attached to the CPU it is synchronized with the CPU clock. It cooperates with the pro-
cessor so that the CPU will not starve. The L2 cache is located on the data bus, but very
close to the CPU. As the L1 cache, the L2 cache consists of a set of SRAM chip(s). It is
slower than the L1 cache, but requesting data from it is still remarkably faster than from
the main memory.

The L2 cache usually decreases the overall cache-miss rate. Since memory access requires
checking two levels (1 and 2) of the cache, using L2 also increases the total cache-miss
latency. If the L2 cache exists, the L1 cache is checked as described earlier, but in the case
of an L1 cache miss the L2 cache is checked instead of the main memory. If the requested
data is found in the L2 cache it is copied both to the L1 cache and to the CPU. When an
L2 cache miss occurs the main memory is accessed.

Suppose we have a processor that does one instruction in one clock cycle (CPI=1) with
an L1 cache hit and a clock rate of 500 MHz. Suppose further that the access time for the
main memory is 200ns and for the L2 cache 20ns. The L1 cache-miss rate is 5% and with
L2 cache the overall miss rate is 2%. The miss penalty for the main memory is 100 clock
cycles and for the L2 cache 10 clock cycles. Therefore, the average CPI without the L2
cache is

(UTV���XWY(*��� '[Z and with the L2 cache
(UTV���[W\(*�AT 	 �XWY(*��� 'X],^ � . Thus,

the computer is 1.7 times faster with the L2 cache than without it.

2.7 Virtual memory

The main memory can be seen as a layer between the cache and the hard disk. It is ac-
cessed as a consequence of a cache miss or a write. Furthermore it acts as the I/O interface
for the rest of the system.

In our example computer the fraction of main memory out of the total amount of mem-
ory is 1.3% while that of hard disk is over 98%. To create an illusion of a single flat
memory, a mechanism called virtual memory is used. The virtual memory wraps the two
memory layers below the cache to look like a single memory. Virtual memory frees pro-
grammers from worrying about things like how to make an application fit entirely into
memory or what particular parts of a program must be loaded at a certain step of execu-
tion. A program in execution and the data it uses always seem to be in memory in their
entirety, although only some of the virtual addresses may simultaneously be mapped to
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main memory while the rest are mapped to hard disk, as shown in Figure 5. Each pro-
cess is given a dedicated and contiguous logical memory address space. Furthermore, the
virtual memory restricts each process to its own memory area so that processes cannot
disturb each other.

0
4K
8K

16K
32K
64K

128K
256K

8K
4K

0

Main memory

Hard disk

b

c

a
b
c

a

Physical address

Virtual address

Figure 5: Mapping a logical memory area to physical memory.

When data is to be read from memory the process submits a virtual address consisting of
a virtual page number and a page offset. The virtual address is translated to a physical
address by means of a page table. The page table contains the physical page addresses
and it is indexed by the virtual page numbers. The virtual page number is mapped to a
physical page address and the page offset is added to it.

The page table itself may be stored in main memory and can also be paged. In such a case
the cost of each memory reference may be doubled. In order to avoid this extra cost, an
additional cache for page mapping is used. This special cache is a translation look-aside
buffer (TLB). Instead of using the page table the virtual address is first searched from the
TLB. If it is found, a TLB hit occurs and corresponding physical page number is retrieved.
Otherwise a TLB miss occurs and the physical page number must be obtained from the
page table.

As in memory caches, according to the principle of locality, only a small number of the
memory pages are usually accessed. Thus, when storing recently translated addresses to
TLB, most address translations do not need to access the page table. TLB is quite similar
to a memory cache. TLB entries have generally a tag and a data portion, which hold
a virtual page number and a referring physical page number, respectively. In addition, a
TLB entry usually contains a dirty bit and a valid bit. The dirty bit is set when the physical
page is dirty, that is, updated. The valid bit is used in the same way as with caches.
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3 Means for Improving Memory Usage

Memory accesses based on poor data locality may reduce substantially the performance
of a program. The locality can be improved by careful design of data structures and
algorithms. Modern processors also offer functionalities such as non-blocking caches or
prefetching, which alleviate the main memory bottleneck.

3.1 Amdahl’s law

An enhancement in one part of a computer results in improved processing. The quantity
of the improvement can be estimated by Amdahl’s law. It gives the speedup which can be
obtained as a result of the change. The speedup is defined as follows [PH02, Ch.1.6]:

Speedup ' Execution time for an entire task without using the enhancement
Execution time for an entire task using the enhancement when possible

A speedup tells how much faster the computer is with the enhancement than without it. A
speedup depends on two factors:_ fraction ` ( . The fraction of the computing the enhancement applies._ improvement a (

. The increment in computing power when the enhancement was
effective the whole processing time.

The new execution time constitutes of the fraction of the old execution time the enhance-
ment is not effective and of the fraction of the new execution time which is affected by
the enhancement. Formally [PH02]:

Execution time bGcedf' Execution time gihkj WYlmln(po fraction q T fraction
improvement

q
The speedup can be resolved from the equation:

Speedup ' Execution time gihrj
Execution time bPcsd

Assume a computer including an L1 cache only. The fraction of L1-cache hits in the
machine is (only) 35%. Each single, non-sequential memory access in the computer lasts
45ns on average. Adding an L2 cache would reduce the data-access time by 25% on the
average by decreasing the number of (L1 and L2) cache misses. In a similar machine
including an L2 cache, the average fraction of L2 hits is 92%. Therefore the hypothetic
L2 cache has impact at most on tvuswiwyx{zR|i}yx�~���� � xuswiw � Z ��� of all memory references. By
using Amdalh’s law, it is possible to estimate the speedup originated in the existence of
L2. In the example machine the speedup is calculated as follows:

Execution time bGcedf'�� � : CpWL� (*������o Z ���(*��� T � ^�Z( ^�	 �6� '�]��,^�Z�: C
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and
Speedup ' � � : C]��)^�Z�: C � ( ^ ( ]�Z

By adding L2-cache memory to the example computer, memory references became nearly
14% faster. If memory access is the main performance bottleneck, the calculated speedup
applies directly to the program performance. That is, running the program on the example
computer would be about 14% faster with an L2 cache than without it.

Amdahl’s law demonstrates that each particular improvement affects only to a certain
portion of computing. A technological gain depends on how widely new technology can
replace the old and inefficient solutions. According to Amdahl’s law, the use of enhanced
parts of the computer should be maximized if the performance is the goal. Similarly, the
hardware development should be focused on those parts whose fraction of total comput-
ing time is biggest.

Normally executing a program stresses both the CPU and the memory. Based on the
knowledge about the current hardware development trend and Amdahl’s law, it is justified
to suppose that moving the stress more on the CPU will make the program faster.

3.2 Enhancing data locality of an index node

The number of main memory references can be decreased by increasing the cache hit rate.
In that sense, locality is one of the most effective properties of a program. To benefit from
spatial locality, concurrently or consecutively accessed data should be located into mem-
ory within the same cache line. If the data exceeds the size of the cache line, contiguous
cache lines should be used. This reduces the number of memory accesses and also the
number of cache misses. In a B

�
-tree, keys are stored into nodes. When a key is read,

with a high probability the next bigger key is to be read soon. If the next key lies in the
same cache line, reading it does not result in an additional cache miss. Therefore, the
B
�

-tree benefits from the spatial locality due to its data access pattern. Spatial locality,
however, can be enhanced by compressing both the node structure and the information
the node includes.

The compression of node structure is achieved in CSS- and CSB
�

-trees [RR99, RR00].
Both structures, however, include many other enhancements in addition to the pointer
elimination and the effect of pointer elimination alone is hard to isolate from the results.
Therefore the pointer elimination is further investigated here by looking its impact on
the number of nodes needed and on the efficiency of the node search (Subsection 3.2.1).
Compressing the node information relates to the general problem of compressing integers
so that the order is retained. One such compression method is defined and evaluated in
Subsections 3.2.2 and 3.2.3, respectively.
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Figure 6: A traditional B
�

-tree in which half of the node is filled with pointers.
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Figure 7: A CSB
�

-tree in which the node fan-out is increased by removing unnecessary
pointers and storing additional key values instead.

3.2.1 Compressing pointer structures

A cache line is relatively small compared to a memory page. The size of a memory
page is typically 4–16KB. The size difference emphasizes the need for using economical
data storage conventions in main-memory databases. Nodes of a classic B

�
-tree include��� >+�.� M 5S3�>��e�6/2I : Fn>+@E� -pairs, as shown in Figure 6. With a 32-bit address space, 4-byte key

values and 32-bytes-wide cache lines, there is space for at most 4 keys and their pointers
in one node, if the size of a node is restricted to that of a single cache line. The height
of a tree using such nodes would be about

57/*��� : with : keys. For :�' (������Q�����
the

height would be 10. If the number of keys could be doubled, the height of a tree would
be reduced to

57/*��� :�'�� . In large structures, where reading a node close to the leaf level
is likely to cause a cache miss, the difference of three in height may be significant.

Let us assume that a B
�

-tree node : consists of
�

key values (
�
) and

�
pointers (

�
). The

number of keys in one node can nearly be doubled by removing most of the pointers.
Only one pointer needs to be left for each node, as shown in Figure 7. The space freed is
used for storing additional key values. The compressed node structure, called CC-node,
is used in the CSB

�
-tree [RR00].

In pointer removal the child nodes K � ���Eo K ��� o�(G� pointed to by the pointers
� � ���Eo � ��� o�(G�

are copied to a contiguous memory area
�
, which is called a node group. The pointer

� � ���
is set to point to the beginning of the node group

�
.
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During the tree-traversal of this compressed structure the right child node is located as
follows:

key_offset = 0;
while ((v[key_offset]<search_key) ||

(key_offset==the node size-1))
{
key_offset++;

}
child_offset = key_offset;
if (v[key_offset] < search_key) child_offset++;
current_node = current_node->p.c[child_offset];

Assume that two linked lists called a B
�

-chain and a CC-chain are built from set of B
�

-
nodes and CC-nodes, respectively. Both chains have one node representing the root. The
other nodes are linked to each other by child pointers (see Figures 27 and 28 in Section
7.2) each node having exactly one child node. Both structures are entirely filled with
keys and pointers. The use of compressed CC-nodes results in a less memory consuming
structure in which, however, the search within a CC-node requires more comparisons than
in B

�
-node. For any ¡¢a£� a B

�
-chain uses

5
times the amount of memory used by the

corresponding CC-chain. The value of
5

is calculated as follows:5 '¥¤� T¦(¡ o§(
The impact of the pointer compression on the search efficiency can be evaluated by stor-
ing some large number of keys into the chains, traversing them through and by comparing
the time spent. During the traversal each node is accessed only once. Therefore the test
causes at least one cache miss every time a node is accessed thus emphasizing the influ-
ence the data locality and the size of the structure has on the traverse speed. This is not the
case when a corresponding tree structures are traversed since the nodes on the uppermost
levels of the trees are practically always already in the cache. Therefore accessing a node
rarely causes a cache miss during a tree traversal.

The smaller size of the CC-chain causes less cache misses. The increased probability of
two items being in the same memory page reduces the possibility for TLB-misses while
traversing the CC-chain. The smaller size of the CC-chain also reduces the amount of
memory the structure needs. Since in the CC-chain adjacent nodes are in contiguous
memory space, reading successive nodes becomes a little faster due to the avoidance of
translating the pointer addresses. On the other hand, an additional calculation must be
done in order to resolve the right child node from the child node group. Since the solution
is an array in its nature, updating the structure is more expensive than updating similar
pointer structure. Both the B

�
-chain and the CC-chain were implemented by the author in

order to evaluate the possible performance benefits resulting from the pointer elimination
(see Chapter 7). The search speed of the chains were tested by creating chains including
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varying number of key values and traversing them through. The tests are documented in
Section 7.2.

3.2.2 An order-preserving compression method for numeric values

In many cases the keys to be inserted to an index are numeric, such as 32-bit integers. De-
pending on the numbering scheme, of course, the indexed values are likely to lie more or
less close to each other. If the difference between the biggest key, the high value of a node,
and the other keys in the same node can be represented by using one or two bytes, it would
be beneficial to represent only the difference values between the keys instead of storing
the actual values into the node. The method is called the difference compression hereafter.

Assume that the key values are 32-bit integers and that there are : keys (
��� �)� ^�^¨^ � : o©(G� ) in a

node. By using the difference compression only the high value (
��� : oª(G� ) is presented “as

is”. The other key values
��� �,� ^¨^�^ � : o 	 � are represented by difference values

1 � �,� ^¨^�^ � : o 	 �
so that 1 � ¡ � ' ��� : oV(G�«o �¬� ¡ �e�­� `§¡®`§: o 	
Difference values are expressed on 1,2 or 4 bytes, that is, 8, 16 or 32 bits, respectively.
Let : 36-=<?>+@)l7� q be a function which returns the number of key values in a node which are
expressed by

�
bytes. Let

Cm� MRK >�l ¡¬q be a function which returns the minimal number of
bytes needed in expressing the value ¡ . The function is defined by the equation:Cm� MRK >�l ¡¬q¯'±° 57/E� � ¡8 ²
The difference values

1 � �)� ^�^¨^ � : o 	 � are ordered, so that
��� : oV(G�´³V1 � ���´³ ^�^�^ ³µ1 � : o 	 �

and
Cm� MRK >�l ��� : o¶(G� qUa Cm� MRK >�le1 � ��� q·a[^�^�^«a Cm� MRK >�le1 � : o 	 � q . Because a node can include

difference values with different sizes, the number of keys of each size must be stored
in nodes. For that reason, each node includes fields M , < and K with MV'¸: 36-=<?>+@,l �,q ,< '¹: 36-=<?>+@,l 	4q , K0'º: 3;-=<?>+@,lH( q . In other words, the value of M includes the number
of key values in the node, which are represented by 4 bytes. If other key values exist in
the same node, M gives the offset to the first key value which is represented by less than 4
bytes. Similarly the values of

<
and K include the number of key values represented by 2

bytes and by 1 byte, respectively.

The search of a key
C

within a node starts by calculating a difference value
F ' ��� : o(G�»o�C

. The search is restricted to those difference values
1 � ¡ � for which the conditionC¼� M,K >�le1 � ¡ � qf' Cm� MRK >�l7F q holds. The search among the relevant difference values may

be accomplished either by binary or sequential search. An example of a node which is
organized by using the difference compression method is depicted in Figure 8. The pseu-
docode for a search from a compressed node is presented in Appendix 2.

Let x be the number of unused bytes in the node and i the size of keys being inserted.
In order to estimate the memory consumption of the difference compression method an
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Figure 8: An index node which is filled with one full key value, difference values and
counters of occurrences of each key-size.

average difference
1

between any two subsequent keys must be assumed. The memory
consumption of the difference method for storing a given set of keys can be calculated by
using the following algorithm:B½l ¡ �¼I q�'¿¾ M TµBÀl ¡ o M WJIH�¼I;T¦( q if ¡®a I�

if ¡®Á I
Here M9' -=I : ÂE¡ 14Is�\IH�pl 	 � �sÃ oµ( q 14Is�.1«Ä
The execution of the algorithm begins by initializing the arguments as follows:¡=' number of bytes available for keys in the node,I ' the size of key-values to be inserted at this round,1 ' the difference between any two subsequent key-values.

As an example, assume a 64-byte node. The high value reserves 4 bytes thus leaving 60
bytes for keys and offset values. Three offset values require 3 bytes, so keys have 57
bytes. Key values are integers and, in theory, lie between

� ( ^¨^�Å � and they are inserted in
ascending order. In this example the difference of any consecutive key values, the value
of
1
, is assumed to be 64. In the first round, the key size is 1. Thus, we have:¡=' � � ,I ' (

,1 '�Z�� .
The calculation begins by determining the M . If the difference between the high value
and the 57th key is smaller than or equal to 255 (which is the biggest value which can be
expressed by a single byte), we choose M9' � � 14Is�Æ( ' � � . In this example the difference
between the high value and the

� � th key is Z�� WÇ� � '[]�Z�� 8 . Therefore only the biggest 3
key values (= 3 smallest difference values) can be stored by using only a single byte. So,
in the first round, M9'¦� . That means that four keys can be stored into the node by using 1
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byte. 53 bytes will be left for other difference values. The whole calculation proceeds as
follows:MÈ' -=I : l�� � 14Is�È(��*l 	 � oV( q 14Ie� Z��,q½'�	 ���A14Is� Z���'�]É B½l�� � �+( qÀ'�] TµB½l�� � � 	4qMÈ' -=I : l�� � 14Is� 	 �Jl 	 usÊ o§( q 14Ie� Z��,q½' � � 1RIe� 	Ë'�	��É B½l�� � � 	4qÀ'�	�� TµB½ls� � o 	�� W 	 � ]Rq½'�	�� TÌB½ls�,� ]Rq½'�	��] T 	��.'�] �
As a result, 30 compressed keys and the high value can be stored into each node. Three
difference values out of 30 are expressed by a single byte and 27 difference values by 2
bytes.

3.2.3 Comparing uncompressed and compressed node structures

Assume a data structure in which integer keys are stored into 32-byte nodes. Besides
keys, there is a 4-byte pointer in each node which points at the first child node and makes
traversing the structure possible. Keys are, by default, 4-byte integers stored into nodes
in ascending order. Each node can include at most 7 keys in addition to the child-pointer.
Such a structure is called an uncompressed list. To enhance the spatial locality of nodes,
keys could be compressed by using the difference method (Subsection 3.2.2). By this
way the number of keys which can be stored on a 32-byte node varies between 6 and
21. The structure consisting of such compressed nodes is called a compressed list. Stor-
ing keys into the uncompressed list is space-inefficient but it makes the processing of the
nodes simple. Therefore, this method should intuitively be efficient in a computer with
relatively fast memory and relatively slow processor. The compressed list consumes less
memory than the uncompressed list, but inspecting a compressed node necessitates more
processing power from the CPU. Thus, using compressed lists should work well with a
computer with high memory latency and an efficient processor.

The difference in memory consumption between uncompressed and compressed lists is
notable. Assume that the maximum difference between any two consequtive keys is 64.
A compressed node can include at least 13 keys if the difference method is used. That
is 1.86 times more that can be stored into an uncompressed node. As a consequence, the
uncompressed list including the same amount of keys consumes at least 1.86 times more
memory than the compressed list.

The read-access times of the structures was tested with four computers. The structures
were filled with approximately 1.7 million keys. Keys were stored into 32-byte nodes in
ascending order. Structures were traversed 1000 times and the average read-through time
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CPU Bogomips
i586 Intel Pentium MMX 233 MHz 460.92
i586 Intel Pentium III 733 MHz 1458.17
i686 AMD Athlon 1333 MHz 2660.76
i786 Intel Pentium 4 2400 MHz 4784.12

Table 1: CPUs used in traversal test (see Figure 9) and related bogomips.

was calculated for each computer. Distinctly exceptional values, such as those originat-
ing from disk accesses or context switches, were discarded. Before each traversal it was
assured that the cache was cold, that is, the cache did not contain any of the data to be read.

Most of the modern processors have a branch-prediction property [PH02, Ch.3.4], which
enables prefetching data from the memory before it is actually referenced. This is a pow-
erful mechanism, which efficiently can hide the memory latency. Therefore, it had to be
disabled in order to create an illusion of a realistic index-traversal situation. The hypo-
thetic prefetch mechanism was effectively disabled by surrounding each read operation
by a dummy if-clause. The meaning of the if-clauses were to offer 6 to 21 possible paths
to proceed after the current node. This corresponds to an index-search operation where
an inner node is inspected in order to determine the right child node on a lower level.

Figure 9 shows the measured behaviour. It also verifies the intuition to be discussed in the
end of Section 3.1. The traversal time of the uncompressed list is normalized to 1 in the
chart in Figure 9. Another bar represents the relative speed of traversing the compressed
list. The speed of traversing the compressed list is calculated as follows:

speed of traversing the compressed list ' traversal time of the uncompressed list
traversal time of the compressed list

The curve shows the relative difference between the sizes of uncompressed and com-
pressed lists. The curve having consistent value 1.86 shows how much faster the travers-
ing of compressed lists was if reading nodes of both lists would require an equal amount
of processing.

As expected, the computer with a relatively fast memory and a slow processor reads un-
compressed nodes faster even though the number of nodes read is nearly twice the num-
ber of compressed nodes. As the clock rate of the CPU increases and the relative speed
of memory decreases, reading compressed nodes becomes faster. The fastest machine,
Pentium 4 (Tables 1 and 4 on pages 23 and 56 respectively), reads the structure with
compressed nodes over 28% faster than the uncompressed list.
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Figure 9: Traversing compressed and uncompressed data structures by four different com-
puters.

3.3 Avoiding conflict misses by relocating data

Cache memory consists of sets (recall Subsection 2.5.1) whose size and number is related
to cache associativity. For instance, in a 4-way-associative cache, each set includes four
cache lines. Each set is actually a list with some item selection method, such as FIFO,
LRU or MRU. Recall the relation between cache size, cache line size and associativity.
Given a 4-way associative cache 16KB in size with 32B line size. According to the for-
mulas in Subsection 2.5, the cache consists of usÊiÍ¼Î| � Î ' �,( 	 cache lines and }nu �� ' ( 	 8 sets.
Depending on its address, data in main memory may be mapped to 128 different sets in
cache. Sensitive data arrangement tries to locate hot data items in such a way that they do
not compete against each others about same cache sets.

In pointer-based data structures data is located randomly into memory. For dynamic lists,
for instance, memory is allocated on-demand. That is, memory is allocated during the in-
sertion of the item. As a consequence there is no guarantee about the cache mapping and
if successively accessed data items will be mapped to the same slot in cache. Items that
map to the same cache set may conflict (see Figure 10). With a direct-associative cache
(“1-way-associative”), reading such items repeatedly, one after another, always causes a
cache miss. In the worst case, two successive items are located into different memory
pages, which may, in addition to unnecessary cache misses, raise additional TLB-misses.
Thus, storing data items carefully may result in a notable impact on the performance of
the program.

Data items equal in size with a cache line can be located so that concurrently accessed
items will not conflict in cache. Items are colored according to their access rate. In a
two-color scheme the cache is divided into two parts, one for items of each color. Hot
items are separated from cold ones so that rarely accessed items will not replace hot items
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Figure 10: Two memory blocks conflicting in cache.

in the cache. Often accessed items are distributed evenly into “hot areas” so that conflicts
among hot items will be minimized [CHL99].

3.4 Reducing compulsory misses via prefetching

Many processors offer means for loading data beforehand to the CPU before it is needed.
Prefetching means reading data from memory into the cache in parallel with other com-
putation before an actual cache miss occurs. Non-blocking caches are required so that
multiple cache accesses may be overlapped. Prefetching reduces the effect of memory la-
tency caused by cache misses. Prefetching can be done either by hardware or by software.
Here software prefetching is emphasized. It can further be divided into hand-inserted (=
explicit) prefetching and compiler-assisted prefetching [Met97].

Prefetching is especially interesting in the context of data structures. Many compilers,
like GNU gcc, offer library functions to perform an explicit prefetching. Using them may
notably decrease the number of compulsory misses. Compilers can typically investigate
loops, find a suitable distance for prefetch commands and insert them automatically to the
binary code. This makes traversing large arrays faster. Prefetching increases the degree of
the concurrency of computation in uniprocessor computers. However, careless usage of
explicit prefetching can also produce an increased number of conflict misses if prefetched
data items conflict with other concurrently accessed data items.

When supported by a compiler, prefetching commands can be added by hand into suitable
locations in program code. When met during the execution, prefetch commands launch
copying the data from a particular memory address into the cache. As a consequence,
the prefetched data arrives to the cache, hopefully before a cache miss is detected. If the
prefetch succeeds, the memory latency can be alleviated. If data comes to the cache too
early, it may be removed from the cache before it is needed.

The use of prefetch applies well to array-based structures but not that well to pointer-based
structures. The location of items of an array is known during compilation. Therefore, the
prefetch commands can be added during compilation. The location of the items of a linked
list, however, is known only one step ahead. Thus, only the next item can be prefetched



26

before it is referenced. It is likely that one-step lead is not enough and that the CPU must
wait for the data even it was prefetched. This problem can be alleviated by using “jump
pointers”. In addition to “next pointer”, each item has an additional jump pointer to some
item ahead. This enables prefetching items further than one step ahead but makes the
structure updates trickier [CGM01]. Selecting an optimal read-ahead distance is crucial
but when successful, the memory latency may nearly be hidden by concurrent prefetching
[CB92, Met97].

In cache-conscious indices the node size is small, usually equal to cache-line size or its
(small) multiplier. Usage of small nodes reduces cache misses originating from within
one single node. Small nodes, however, produce higher tree structures, thus increasing
cache misses during the traversal. An optimal solution seems to be a low structure with
nodes that can be read without extra memory latency.

Prefetching suits well to B-tree algorithms. Nodes larger than a cache line can be prefetched
immediately when the read of the node starts. Scanning the leaves of a B

�
-tree is similar

to a linked list. With explicit prefetch, over 90% of arising memory latency can be hidden.
In general, prefetching may be adapted to B-tree algorithms as follows [CGM01]:_ Search within a node: every cache line but the first is prefetched at the beginning of

the search._ Insert: when a node splits, new node and the splitting node are prefetched before
the key distribution._ Delete: keys of the sibling of a deleted node must sometimes be re-distributed.
Therefore, the sibling of a deleted node is prefetched during the search phase.

Prefetching applies also to bulk-loading of B
�

-trees [CGM01].

In the context of indices, prefetch allows the node size to be multiplied without signif-
icant additional memory latency. The overall performance, however, increases notably
due to the lower structure [CGM01]. For a programmer, designing a program so that
its data-access pattern is easily predictable is probably enough to achieve the benefits of
prefetching. It is likely that compiler optimization and hardware prefetch will lead to the
efficient processing of the data.

This section discussed various improvements for using memory. Means for enhancing the
spatial locality of a program include pointer elimination and compressing the values of
nodes. Amdahl’s law gives a hint about where a programmer should direct the heaviest
computational load and the tests support the intuition. Cache misses originating from
cache conflicts can be avoided by careful data placement. Moreover, temporal locality
can be improved by using explicit prefetching.
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4 Cache-Conscious Indices

The structure of the B-tree when compared to the structures of the T-tree and the Trie
expresses relatively good reference locality. Thus, many of cache-efficient indices are at
least loosely based on a B-tree of some kind. This is also true for all cache-conscious
indices to be introduced in following sections.

4.1 Cache-sensitive search tree

In some systems short look-up time and small size are the most important properties of
an index structure. The Cache-Sensitive Search Tree (CSS-tree) [RR99] is a structure
designed especially for fast search operations. This is achieved by aggressively main-
taining good data locality. On the other hand, incremental updates in a CSS-tree are
expensive. Inserting a key to a tree including : nodes requires reading Ï l :{q nodes and
writing Ï l : T[( q nodes. Therefore, the CSS-tree is most suitable for systems in which
updates are rare and bursty, such as a once-a-day updated on-line transaction processing
(OLTP)-system.

Figure 11: The logical layout of a CSS-tree. The numbers in the nodes denote the order of
the nodes and are shown only to assist the reader to understand how the search operation
proceeds [RR99].

The logical layout of a CSS-tree resembles a tree with internal search routers and leaf-
level keys. The layout of a CSS-tree differs from that of a B+-tree in that it is not balanced
and that it contains no pointers (see Figure 11). The physical structure of a CSS-tree con-
sists of two arrays, one for the leaves and the other for the internal nodes (see Figure 12).
Searching from such a structure is fast, whereas updates may be very expensive. Inserting
a new key to an array with : keys may require reading : and writing : T�( keys. Thus,
the CSS-tree structure is expected to be static once it has been created.
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Figure 12: The physical structure of a CSS-tree. The numbers in the nodes correspond to
those presented in Figure 11 [RR99].

Assume numbered nodes with four keys in each as in Figure 11. Therefore, internal nodes
are allowed to have at most five children. A single value is found from the tree as follows:
let M be the number of the node being inspected. The target child node of M is one of the
nodes

� M W¯l � TÐ( q TÑ(�� ^�^¨^ � M W­l � TÐ( q T � TÐ(G� . Let the key number
<

be the one matching to
the search value in node M . Thus, the search advances to the node number M Wple<»TÌ( q . For
example, let M=' (�(

and
< ' �

. The next node to be inspected is
(�(pWA�AT§� '�Z � which

belongs to the range
� � Z � ^¨^�^ � Z ��� . In practice, descending the tree is based on the rules how

internal nodes are located to the array. The target child node among all children of some
internal node can be resolved by knowing the location of the first child and the offset to
the target child node (see Figure 12).

The node size is chosen so that a whole node fits into a cache line. If the nodes are aligned
correctly into memory, searching one node causes exactly one cache miss. Assume a tree
with : keys on the leaf level with nodes including at most

-
keys each. In such a struc-

ture a search causes at most
57/*��Ò � u : cache misses, while the binary search causes at most5e/*� � : cache misses.

The CSS-tree fulfills the requirements of being both small and fast in searches. A CSS-
tree requires less space than structures supporting dynamic updates because pointers are
fully eliminated from the nodes. The structure never becomes sparse due to its static na-
ture. As a drawback, incremental updates would be too complex and expensive. On the
other hand, building a CSS-tree by one single operation is claimed to be pretty straight-
forward and efficient.

The performance of the CSS-tree has been measured and discovered to be good [RR99].
A search operation in a CSS-tree is faster than in a B

�
-tree and much faster than in a

T-tree. About a third of the difference was originated from the higher number of cache
misses when running on a B

�
-tree. It is likely that if the speed gap between the CPU and
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the memory grows further, the fraction of cache misses also will grow.

The good performance is also based on a careful implementation of the CSS-tree. The
tree has its own memory allocator to speed up the initialization of the structure. Searching
in internal nodes is achieved with hard-coded binary search. In leaves sequential scan is
used instead. Without these optimizations the performance was estimated to be from 20
to 45% slower [RR99].

4.2 Cache-sensitive B Ó -tree

The CSS-tree does not support incremental updates. However, the enhanced data locality
due to the pointer elimination and the cache-sensitiveness due to the careful data place-
ment may also be applied to the B

�
-tree. The structure including both properties is called

a Cache-Sensitive B
�

-tree (CSB
�

-tree) [RR00, Ros01]. The CSB
�

-tree is a combination
of the good search performance of the CSS-tree and efficiently updateable structure of the
B
�

-tree. All pointers but one are eliminated from the internal CSB
�

-tree nodes. One child
pointer pointing to the first child node is left. Unlike in the CSS-tree, not all nodes are
physically side by side. Instead, in the CSB

�
-tree, the child nodes of any given node are

stored in a contiguous memory area called a node group. Node groups including leaf and
internal nodes are called leaf and internal node groups, respectively. Internal node groups
are pointing to their child nodes and being pointed by their parent nodes. There are no
pointers to and from the sibling groups on the same level of the tree. In its simplest form,
an internal node group is only a contiguous memory area including its (internal) nodes.
Leaf node groups are interconnected and constitute a bidirectional linked list similarly as
leaf nodes in the B

�
-tree (see Figure 13).

Figure 13: A Cache-Sensitive B
�

-tree [RR00]. Dashed boxes represent node groups,
whose size is determined by the number of nodes that is included.
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Figure 14: A leaf-node split in a CSB
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4.2.1 Basic operations on the CSB
�

-tree

Searching a key from the CSB
�

-tree resembles searching in the CSS-tree. Assume that
the : th key in the currently inspected node is the smallest value which is bigger than or
equal to the search key then the node the target child node is the : th node among all
children. If all the keys in the node are smaller than the search key and the : th key is the
biggest key of the node then the target child node is the

l : T�( q th child. Generally a key
offset resolved in a parent is used as a node offset on the lower level. When the leaf level
is reached, the nodes are scanned until an equal or a bigger value has been found. For ex-
ample, searching value 20 from the tree in Figure 13 starts from the root node

l 	�	4q . The
first value of the node is 22 thus it is the hit value. The first child node

l �4q only includes
value 7. Since it is smaller than 20, the second child node

lH( ] �+( �Rq is chosen. The nodelH( ] �G( �Rq includes two values, which both are smaller than 20. Therefore the third child
node

l 	 �)� 	�	4q is selected and thus 20 is found.

Inserting a new key to a CSB
�

-tree is fundamentally similar to inserting a key to a B
�

-
tree. When the leaf, where the key is to be inserted, is reached, two cases are possible.
If there is space for the new key in the node, the key is simply copied into the node.
Otherwise the node is split [RR00].

When a node splits, two things may happen. If the parent of the group has space for a new
key, the new key is copied to the parent as in Figure 14. In this case the size of the node
group

�RÔ
is increased so that the new node fits to the group. If the node group cannot be

extended, a new bigger node group
�)Ô Ô

is created. The other possible situation is depicted
in Figure 15. If the parent

�
is full, the size of the splitting node group

� Ô
is decreased, the

new node group
�,Ô Ô

is created and the nodes are shared evenly between the split (shrank)
group

�RÔ
and the newly created group

�,Ô Ô
. Then the parent node

�
is split and the keys

of split node are shared between the split and the new node
� Ô

. Finally, after the parent
is split, a router key is copied to the grandparent, as shown in Figure 15. If the split of�

would have caused the node group
�

to be split, the parent node of
�

would have been
split. Splitting may continue through the tree and lead to the splitting of the root.
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Figure 15: A leaf-node group splits in a CSB
�

-tree, leading to the split of the parent node.

4.2.2 CSB
�

-tree variants

Three, slightly different variants of the CSB
�

-tree have been presented: a CSB
�

-Tree of
order n (also called the basic version), a segmented and a full CSB

�
-tree [RR00]. The

variants differ in how they allocate the memory they use and in how the child nodes of a
single parent node are organized into the memory. The : in the name of the basic structure
means that if there are space for

I
keys in any internal node, leaf nodes may include : WJI

keys each. The structure in Figure 13 is a CSB
�

-tree of order 1. The above outlined
insert algorithm applies to the basic version. According to the algorithm, when a node
splits the node group must be either extended or re-created. Therefore, during every node
split, a relatively heavy memory operation is required. In the worst case every node split
requires every node in the node group to be copied to another location. Therefore, the
basic CSB

�
-tree does not offer efficient incremental updates.

In a segmented CSB
�

-tree the child nodes of any given node are divided into more than
just one node group [RR00], opposed to the basic version. Pointers to all the groups, here
called segments, are added to the parent. This decreases the amount of data which needs
to be copied when a node splits. Assume that the number of segments for the children of
each internal node is two. When a new node is created as a consequence of a node split,
in the segmented CSB

�
-tree at most half of the nodes must be moved to the new node

group. The size of a segment may either be fixed of dynamic.

The full CSB
�

-tree offers the fastest search and insert operations among the three vari-
ants. It is quite similar to the basic CSB

�
-tree but it alleviates the cost of inserts. In the

full CSB
�

-tree node groups are created to their maximum extent in the beginning. There-
fore, memory for node groups must be allocated only in group splits. This decreases the
portion of time the memory allocation takes from total execution time, since memory is
allocated rarely and in larger pieces. In a full CSB

�
-tree a group split causes copying

half of the nodes to the new group. As a consequence of allocating memory for a whole
node group at a time, the memory overhead increases notably. When a node group splits,
both the split and the new group are half empty. The nodes in the split node group and
in the new node group may also be half empty. Thus, the space overhead for those two
node groups may be 75%. In other words, the worst case space requirement for the leaf
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level is nearly 3 times the minimum space needed for storing the keys. This is too much
in an environment with limited amount of main memory. As we shall see in Section 5.6,
the memory overhead problem can be alleviated by delaying a node group split until the
nodes of the splitting group become full.

Given a full CSB
�

-tree, there are many parameters such as key length and node size,
which have an impact on its search and insert performance. The node size is probably the
most important, since it also determines the node group size. A small node size, equal
to the cache line, for instance, guarantees fast search within a node since the node fits
entirely into a cache line. Using a small node size leads, however, to a higher structure
than if the node were bigger. A very large node size, 10–100 times the cache line, leads to
slow search within a node but the overall search operation becomes faster since the height
of the structure is lower. The optimal node size for the search operation of the CSB

�
-tree

has been investigated by an analytical model and by experiments. Both methods show
that the best search performance is achieved by using a node size larger than 160 bytes.
The best results are received when the node size is up to 3072 bytes [Han03]. For an insert
operation the effect of node size is the opposite. The smaller is the chosen node size, the
faster is the insert operation.

4.2.3 Definition of the full CSB
�

-tree

The formal definition of the full CSB
�

-tree (CSB
�

-tree, henceforth) is based on that of
the B-tree [Cor01, pp. 438–441]. As in a B

�
-tree, nodes of a CSB

�
-tree are either leaf

nodes (nodes with no child nodes) or internal nodes (nodes with child nodes). For sim-
plicity, the structure of leaf nodes is kept similar to the structure of internal nodes. Child
pointers in leaf nodes are considered as null pointers.

Let
F

be an integer such that
F a¸	 . A CSB

�
-tree is a rooted tree with the following

properties:

1. The nodes of the tree are stored in contiguous memory areas with a fixed length.
These memory areas are referred to as node groups.

2. The node group containing the root of the tree contains exactly one node. If the
total number of leaf nodes is at least

F
, then all leaf-node groups contain at least

F
and at most 	 F nodes.

3. Any node group other than the one containing the root, contains all the children of
one parent node. The nodes in any node group must be the children of the same
parent node.

4. Every internal node ¡ containing currently : � ¡ � keys has the following fields:

a. key values denoted by
� Ã � ¡ � , ( ` I `§: � ¡ � , stored in ascending order.

b. a pointer K � ¡ � to child-node group containing : � ¡ �,T¦( child nodes.
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5. The keys
� Ã � ¡ � , ( ` I `�: � ¡ � , separate the ranges of keys stored in each subtree: if� Ã is any key stored in the subtree rooted by

� Ã � ¡ � , then� u ` � >+� u � ¡ � ` � � ` � >+� � � ¡ � `[^+^G^Õ` � >+� b�Ö ¤¼× � ¡ � ` � b�Ö ¤¼× � u ^
6. Every leaf node

�
containing currently : � �4� keys has the following fields:

a. key values denoted by
�2Ø�� �4�

,
( `¢ÙD`§: � �4� , stored in ascending order.

b. : � �4� row identifiers denoted by
@�Ie1 Ø2� �4�

,
( `¢ÙD`§: � �R� .

7. All leaves have the same depth, which is the height of the tree.

8. Every node other than the root includes at least
F

and at most 	 FUo�( keys, whereF a�	 is a fixed constant. Every internal node other than root thus has at least
F

and
at most 	 F children.

As a result of a leaf node split, both the new and the old node contains
F

keys. Thus, in
addition to [8], every leaf node other than the root must have at least

F
keys. As a conse-

quence of that and [2] any leaf-node group contains at least
F �

and at most
l 	 FPo ( q W 	 F keys.

In general, every key stored into an internal node (internal key, henceforth), in a B-tree
has a child node. The biggest difference between the B-tree and the CSB

�
-tree is how the

child node is determined for any given internal key. In a B-tree, keys of internal nodes are
attached with child pointers which point to child nodes. In a CSB

�
-tree, only one child

pointer is attached to each internal node, so additional information about the location of
the (parent) key is needed in order to determine the target child. Let the node ¡ have
currently : � ¡ � keys. Let

� >+� Ã � ¡ � , ( ` I `¹: � ¡ � , be the key value whose child node is
to be determined and K � ¡ � the child pointer of the node ¡ . The node group

�
which is

pointed to by K � ¡ � has thus : � ¡ �ETÚ( nodes. The nodes of group
�

are denoted by : /E1,> Ø�� �4� ,( `¢Ù©`§: � ¡ �,T¦( . The child node of
� >+� Ã � ¡ � is : /E1R> Ã � �R� .

4.2.4 Height of a full CSB
�

-tree

The number of memory accesses caused by a read operation in a CSB
�

-tree is propor-
tional to the height of the CSB

�
-tree. Initially the height of the tree is 1. The height

depends on the minimum number of keys,
F
, a node must at least have, the number of leaf

nodes needed to store the keys of the tree, and the number of node groups needed to store
the leaf nodes. As defined in Subsection 4.2.3, the node group including the root node
(root-node group, henceforth) must have at least one node while the other node groups
must have at least

F
nodes. Therefore:

number of leaf-node groups 'º° total number of keysF � ²
Let O denote the height of the tree. In the worst case the number of nodes is multiplied by
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while descending from a level to the next lower level. Every internal node has exactly

one child-node group. Thus, we haveOÛ` (ÜT ° 57/*��Ýnl number of leaf-node groups q ²
Assume that the total number of keys is

(*�����������
and that

F ' ( Z . Then the number of
leaf-node groups is Þ uswiwiwiwiwiwusÊyß±à '�]�� � � . The height of such a tree is:OÛ` (ÜT ° 57/*� usÊ ]�� � � ²Yá É OL' (UT ] á É OD'¦�Õ^
4.2.5 Cost of search and insert operations

Assume a search operation with no concurrent insertions. In the original CSB
�

-tree
[RR00] the node size is equal to the cache line. Therefore, exactly one node is searched
on every level during a search operation. In other words, the cost (in terms of accessed
cache lines) is related to the height of the tree. Let 	 F;oª( denote the maximum number of
keys in an internal node and K the cost of a search operation in terms of cache lines. The
maximum number of cache misses caused by a search operation is related to its height:KÇ' (UT ° 57/E�2Ý (number of leaf node groups)²
If no concurrent operations exist, the worst-case cost of an insert operation consists of the
following:

1. Finding the key with the smallest value equal to or bigger than the value of the key
to be inserted; this is equal to the cost of a search operation, called the search cost.

2. Splitting a node group requires allocating memory for a new node group, reading
and overwriting

F
nodes from the splitting group and writing D nodes to the new

node group.

3. Splitting a node and inserting a key may require reading
F

nodes and writing
F{T�(

nodes.

4. The same sequence of operations may have to be repeated on every upper level
except for the root group. A new root-node group may have to be created on above
a previous root group.

5. Splitting an old root requires reading one node and writing two nodes. Creating a
new root requires writing one node.

Denote the cost of finding the right node in terms of read cache lines by search cost and
the number of cache lines per node by cache lines per node. We have:

read cache lines '�K T�l cache lines per node q lHl7F�T¢F q l O oV( q T¦( q á É
read cache lines '¦K T 	 F?l cache lines per node q l O oV( q T�l cache lines per node q
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Let O denote the height of a tree. The maximum number of cache lines written is:

written cache lines '�K T¦l cache lines per node q lml 	 F´TÚF´Tâ( q l O o§( q T ]Rq
If the node size is a multiple of the cache line, the cost depends on the node size and on
the method used while searching within the node.

4.3 Concurrency control over a CSB Ó -tree

If a MMDB runs on a uniprocessor system concurrent operations do not always improve
the overall performance. If the majority of transactions to be run are short and simple, con-
currency control mechanisms may be more costful than if the transactions were executed
serially, one at a time. In a multiprocessor system an index must support concurrent op-
erations in order to avoid unnecessary overhead originating from coherency cache misses.

OLFIT is an optimistic, latch-free index traversal concurrency control mechanism, which
may be applied both to a B

�
-tree and CSB

�
-tree [CHKK01]. It modifies the CSB

�
-tree

slightly by adding an exclusive lock and a version number to each node. Additionally a
link pointer is added to each internal node group. An updater does not acquire locks until
it has reached the leaf node to be updated. The lock is granted if the node is not already
locked, otherwise the updater waits for the lock in a loop. When the lock is granted the
update takes place. If an insertion causes the node to split, the siblings on its right side in
the same group are also locked.

When an insert splits the whole node group, a new group is created, half of the nodes of
the splitting group are copied to the new group and a parent node is inserted to the upper
level. The moment after the new group has been created but the parent has not yet been
inserted is problematic, because the new group is not available and the split group does
not contain the shifted nodes any longer. To keep the shifted nodes available immediately
after the shifting, a link pointer similar to those in a B h Ã b Í -tree [LY81, Sag86], exist be-
tween each node group. In other words, there is a linked list of node groups on every level
of the tree.

Locking, as in a B h Ã b Í -tree [Sag86], does prevent only writers from writing inconsistent
nodes. In order to ensure that the node being read is in a consistent state, each read starts
by checking the version number of the node. Then the key value of the node is read and
the version number is checked again and compared to the former version number. The
read is consistent if the version numbers match. If the versions differ, the whole read
operation is repeated until the described sequence of reads produces two equal version
numbers.

OLFIT introduces, in addition to the concurrency control mechanism, a viable and en-
riched variant of the CSB

�
-tree. The link pointer is added to a node group and the node

structure is refined. The purpose of the link pointer in internal node groups, however, is
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not explained. If the traversal advances from an upper-level node to a lower-level node,
there is no need for moving along link pointers. One possible situation may arise when
two climbing updaters overlap: Assume that an updater

3»(
splits a node : and a node

group
�
, creates a new group

�.T�(
, writes both groups and terminates. Another updater3 	 has, during its traversal, found a value

�
from the group

�
and the node : , which has

now moved to the group
�ATµ(

. When
3 	 climbs up and revisits the node : in the group

�
it finds a different (smaller in this case) key value.

3 	 compares the smaller value to the
previously read value, notices the difference and infers that

�
has been moved or deleted.

As a consequence,
3 	 performs a new search in the group

�.Tâ(
by following the pointer

attached to the group
�
.

The right-to-left link pointers between the node groups are needed because of the inser-
tions described above. Concurrent deletions would also need left-to-right pointers be-
tween the groups. Assume that

3{(
deletes a node : oÐ( and merges groups

�ãoÐ(
and

�
by

moving the nodes of
�

to
�\oÚ(

. After merging,
3»(

terminates. When
3 	 finds out that the

value
�

has been moved, it should have means to reach
�

from its current location. This
is not possible without an additional back-link pointer. Another possibility is to hold the
current and restart searching value from the root.

Figure 16: The performance of OLFIT with varying node size and using eight threads
[CHKK01].

Search and insert operations have been tested with and without OLFIT on the B
�

-tree
and on the CSB

�
-tree [CHKK01] (see Figure 16). By using a node size less than or

equal to 256 bytes, the search performance of the CSB
�

-tree outperforms the B
�

-tree
approximately by 10-15%. Insertions are more efficient in a B

�
-tree. That is likely due

to the fact that in a CSB
�

-tree some node splits cause node-group splits which requires
additional data shifting in the memory.
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5 Search-Intensive B
T

-tree

In this chapter we introduce a new variation of the CSB
�

-tree, called the search-intensive
B
�

-tree (SIB
�

-tree). The SIB
�

-tree is designed to satisfy the needs of a search-intensive
environment where the amount of memory is possibly restricted, such as a handheld com-
puter or a database in a telecommunication system. In this kinds of systems search per-
formance is emphasized. Moderately slow updates are accepted if they do not interfere
with read operations. The SIB

�
-tree differs from the CSB

�
-tree in the way in which the

insertion handles node splits. The structure of the SIB
�

-tree is presented in more detail
than that of the CSB

�
-tree. Most of the things said about the CSB

�
-tree also apply to the

SIB
�

-tree, but a few differences exist.

5.1 Definition of the SIB Ó -tree

In addition to defined for the CSB
�

-tree, it is possible to define different policies to node
group splitting for the SIB

�
-tree. In the SIB

�
-tree, splitting a node group may be delayed

until all the nodes of the splitting group are full. As a consequence, while in the CSB
�

-
tree every node is guaranteed to have at least

F
keys, in the SIB

�
-tree this can nearly be

doubled. Delaying group splitting means that if there are no space in the target node,
say : � ¡ � , the closest node ( : � M � ) having space for an additional key in the same group
is looked for. The keys of nodes ( : � ¡ �e� ^¨^�^ � : � M � if ¡µÁäM and : � M �s� ^�^�^ � : � ¡ � if MÚÁ£¡ ) are
redistributed. As a consequence, the group split is delayed until all the nodes in the group
are full. Naturally, redistributing keys within a node group causes some extra overhead,
which makes insertions slower. On the other hand, delaying group splits compacts the
structure on the leaf level, saves memory, and hence makes searches faster.

When a leaf-node group splits, it contains 	 F�Wãl 	 F´o¢( q keys plus the new key. As a result
of a group split, both the new and the old group contain at least

� Ý �Ht � Ý z)u�~ � u� ³ÌFÀWYl 	 F½oV( q
keys. As a consequence, in addition to the definition of the CSB

�
-tree, we state:

9. If there are at least
FUWÈl 	 FpoX( q keys in the tree, every non-root leaf-node group

includes at least
F»WYl 	 FÀo§( q keys.

As a consequence, since deletions are not considered, at least half of the nodes of each
node group are full. Furthermore, the leaf level is always 50% full. In the worst case
the leaf level of the SIB

�
-tree consumes half the amount of memory than the CSB

�
-tree

does.

5.2 Height of a SIB Ó -tree

As with the CSB
�

-tree, the number of memory accesses caused by a search operation is
related to the height of structure. The minimum number of keys a node must at least have
is
F
. However, when a node group splits into two, one of the resulting groups has

F·o�(
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full nodes and 2 half-full nodes while the other has
F

full nodes. Since deletions are not
considered every leaf-node group includes at least

F,W¯l 	 FÕo�( q keys. Therefore the number
of node groups on the leaf level is:

number of leaf-node groups '±° total number of keysF{W\l 	 FÀoV( q ² ^
In the worst case the number of nodes is multiplied by

F
while descending from upper to

lower level. Every internal node has exactly one child node group. The height, O , of a
SIB

�
-tree is: OÛ` (ÜT ° 57/*��Ý (number of leaf-node groups)²

Assume that the total number of keys is ' (+�����������
and that 	 FÇo�( 'å] ( . Then the

number of leaf-node groups is:

number of leaf-node groups 'ºÞ (*�����������] (JWæ( Z à '�	 �)( Z,^
The height of such a tree is:OÛ` (ÜT ° 57/*� usÊ 	 �)( Z ²Yá É OL' (UT ] á É OD'¦�Õ^
The compact internal node structure of CSB

�
-tree offers a higher branching factor than

the conventional B-tree. The higher is the branching factor, the lower is the structure.

Figure 17 shows the heights of a SIB
�

-tree, a CSB
�

-tree, a B
�

-tree and a B-tree. The
number of keys is initially

�����.�����
and with every step the number of keys is multiplied

by 1.5. Recall that the minimum number of keys in a node group of the CSB
�

-tree isF �
and of the SIB

�
-tree

F¯W�l 	 F·o�( q . The node size is 128B, key and pointer size is 4B.
Therefore

F ' u � �� W u� ' ( Z . The chart shows that, depending on the number of keys,
a B

�
-tree is from 1.6 to 2 times higher than a SIB

�
-tree. This means that every single

search operation must fetch the data of one or two additional nodes from the memory and
read them to reach the leaf node. It is likely that reading leaf nodes scause cache misses,
which increases further the time it takes to find the correct leaf.

Since the height increment for each structure is logarithmic to the number of nodes, the
relative difference in height between the structures decreases while the number of keys
increases. However, the absolute difference grows as the number of keys increases. It
is likely that benefits from the more compact node structure will grow as the number of
nodes gets higher. This assumption is discussed in Section 7.2, where two structures using
node structures similar to the B

�
-tree and the CSB

�
-tree (and the SIB

�
-tree as well) are

tested.

5.3 Cache look-ups caused by a tree traversal

The following calculations apply to both the CSB
�

-tree and the SIB
�

-tree. The worst-
case scenario assumes that the cache is empty at the beginning. A tree traversal causes
two kinds of cache look-ups, vertical and horizontal look-ups.
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Figure 17: Comparing the height of a SIB
�

-tree to that of a CSB
�

-tree, a B
�

-tree and a
B-tree all using 128B nodes. The relative difference decreases but the absolute difference
increases as the number of keys increases.

1. Vertical look-ups occur when the search descends from an upper level to a lower
level of the tree and the first cache line of the node is read.

2. Horizontal look-ups occur when multiple cache lines must be read in order to in-
vestigate the node being read.

The number of cache lines read depends on the node size and the search method when
searching within a node. Two methods are assumed here: sequential scan and binary
search. If sequential scan is used, the upper bound for the number of cache lines read per
node is calculated as follows:

cache accesses per node ' node size
cache-line size

�
and if binary search is used:

cache accesses per node ' 57/E� � l node size
cache-line size

q¼^
In general, both types of look-ups are followed by an equally expensive memory access,
but since horizontal look-ups are easily predictable, they can be prefetched either by soft-
ware prefetch or a CPU’s branch prediction. In practice, the latency of the cache miss
resulting from a horizontal look-up is much shorter than that resulting from a vertical
look-up. Let O be the height of the structure. An upper bound for the number of data-
cache look-ups caused by a search operation can be calculated as follows:

total number of cache look-ups '�O WYl cache accesses per node q �
total number of vertical look-ups '�O �
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total number of horizontal look-ups ' l
total number of cache look-ups q o O�^

The equations show that a bigger node size results in a smaller number of (expensive)
vertical look-ups since the height of a tree is inversely proportional to the size of a node.
Using bigger nodes causes more (cheaper) horizontal look-ups. That is true as long as the
node size is smaller than (cache size/cache associativity), that is, as long as the node fits
into the cache. Another thing that limits the node size is the memory page size. If the
node do not fit into one memory page, reading a node may result in a TLB miss in spite
of how sensitive data placement is used.

If the emphasis were on the performance of update operations, the situation were the
opposite: the performance would be bounded by write and copy operations. Since smaller
a node size requires less nodes to be rewritten during a node split, the smaller node size
is more efficient in the point of view of updater. Thus, choosing the node size depends
on the planned use of the index. If only the search performance is considered, a structure
based on arrays and binary search would probably be the most efficient solution.

5.4 Basic bulk-load algorithm

The following algorithm gives an outline of how to bulk-load a SIB
�

-tree, that is, how to
build a SIB

�
-tree in one run from scratch with an ordered set of keys.

1. Allocate memory for a set of nodes, leaves and inner nodes, which are equal in size
to the cache-line (or its multiple) and which are grouped physically to node groups,
constituting a one-way linked list for each level.

2. Fill the leaf nodes (on level 0) created in the previous step with the keys retaining
the order.

3. Copy the biggest key values, high values, of the leaf nodes leaf nodes’ — except
the last node to a separate high-values list (see Figure 18).

4. Start writing the keys from the beginning of the high-values list to the nodes on the
first level (level 1).

5. Write values to the inner nodes one after another, maintaining the order. When a
node gets full, write the next value to the first parent on some upper level (level 2
or higher) which has space for a key. If the parent does not exist, create one (see
Figure 19).

141 178 21530 60 110 120 130 135

High−values −list = {60, 120, 135, 178, 215}

Leaf nodes and tuple pointers

(level 0)

Figure 18: Bulk-load: leaf nodes and their high values.
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6. Continue writing from the next node (on level 1). If the group became full, create a
new group and continue from its first node.

141 178 21530 60 110 120 130 135

60 120

135

high−values −list = {178, 215}

next value is to
be copied here

p

pp

p’

(level 0)

(level 1)

(level 2)

Figure 19: Bulk-loading of a SIB
�

-tree. The inner node
�

became full and the next value
was written to its parent node

���
. The next value from the list will be written to node

� Ô
.

141 178 21530 60 110 120 130 135

60 120

135

p p’

pp

178

(level 0)

(level 1)

(level 2)

Figure 20: The bulk-loading of the SIB
�

-tree of Figure 19 completed.

5.5 Search

Traversing a SIB
�

-tree corresponds to that of a CSB
�

-tree, but the method used while
searching within the node is different. In a CSB

�
-tree either sequential scan or a hard-

coded, unfolded, binary search is used. In a SIB
�

-tree, a composition of those methods is
used. A search operation in a SIB

�
-tree that includes more than one leaf node is divided

into two parts:

1. Traversing the tree through inner levels towards the target leaf node.

2. Searching the leaf key having a value equal to or bigger than the search key.

In Section 5.3 the number of cache accesses caused by a tree traversal was calculated. If
there are no simultaneous insert operations, the length of the search path is the height of
the tree O . Therefore, the cost K , in terms of cache lines read, equals to the cost of a tree
traversal presented in Section 5.3.

A B h Ã b Í -tree [LY81, Sag86] stores a special link pointer and a high value a to each internal
node. The high value acts as an upper bound for the subtree rooted by the node. If — dur-
ing the search — the search key is bigger than the high value, the search proceeds to the
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next node on the right along with the link pointer. Unlike in a B h Ã b Í -tree, link pointers or
high values are not stored to nodes of a SIB

�
-tree. That restricts the scope of the search to

only one node for each level above the leaf level. On the leaf level node groups are linked
to each other from left to right, which enables traversing through the whole leaf level.

The maximum number of cache accesses caused by a node search is calculated for se-
quential scan and binary search in Section 5.3. If simultaneous insertions exist, the costKPç of a search operation is at most:K?ç¯'�K T¦l number of leaf nodes q W\l cache accesses per node q¼^
In the worst case, all the leaf nodes must be read. Leaf nodes are read sequentially, but
the search within a node is done by a modified binary search. The binary search used is
described in detail in Section 6.4. The search algorithm is presented as a pseudocode in
Appendix 3.

5.6 Split-Delay insert algorithm of the SIB Ó -tree

The space overhead caused by the insert algorithm of the CSB
�

-tree is remarkable. Since
the amount of main memory is limited, the overhead is worth decreasing. With the SIB

�
-

tree, an insert algorithm different from that of the CSB
�

-tree is used. It is called a Split-
Delay insert algorithm (SD, for short) since it delays the splitting of a node group until all
the nodes in the group are full. The group split is similar to that in the CSB

�
-tree. The

algorithm may easily be extended to work with multiple concurrent readers and writers.
However, for simplicity, only sequential search and insert operations are considered here.
The main idea is described in the next subsection, and the upper limit for the cost of the
algorithm is estimated.

5.6.1 Description of the Split-Delay algorithm

The space overhead of the CSB
�

-tree can be decreased nearly by
�| by delaying a leaf-

node group split until all the nodes of a node group are full. When a leaf-node group
finally splits, the split results, as in a CSB

�
-tree, in two half-full groups, but there are

nearly twice as many keys in those groups as in a CSB
�

-tree. The nodes in the split node
group and the new node group are full and likely to be split immediately when the next
key is inserted. If the keys of both the old and the new node group were distributed evenly
to the nodes of that particular group, the average number of node splits in that node group
would decrease.

The SD algorithm works as an ordinary insertion in most cases. There is one difference
between the ordinary and the SD algorithm. When the node, to which a new key is to be
inserted, is already full:
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�

-tree creates a new node and distributes
keys between the two nodes, as shown in Figure 21, whereas_ the SD algorithm tries to redistribute the keys of the overflown node among other
nodes of the same group, as shown in Figure 22.

10 29201513

g g’

Splitting node

10 15 20 29

g

insert key=13
Node group g splits to g & g’

Figure 21: The ordinary insert algorithm used in the CSB
�

-tree creates a new node when
one gets full.

Redistributing the keys of a splitting node delays the node split until all the nodes in the
same group are full. This guarantees that when a node group splits and memory is allo-
cated for a new group, both the split group and the new group are half full.

10 1513

g

20 29

Splitting node

10 15 20 29

g

insert key=13 Redistributing keys between g[0] and g[1]

Figure 22: The SD algorithm used in the SIB
�

-tree redistributes keys if possible when a
node gets full.

Redistributing keys between nodes may change the high values of multiple leaf nodes.
The definition of the CSB

�
-tree (Section 5.1, rule 3) says that if

� Ã , ( ` I `�: � ¡ � , is any
key stored in the subtree rooted by

� Ã � ¡ � , then� u ` � >+� u � ¡ � ` � � ` � >+� � � ¡ � `[^+^+^Õ` � >+� b�Ö ¤¼× � ¡ � ` � b�Ö ¤¼× � u ^Usually a change to the high value of a leaf node breaks this rule and the structure becomes
inconsistent. The SD algorithm retains the consistency of the tree by copying the changed
high values to the parents of the updated nodes. Moving keys from a node to another also
changes the high values of the nodes. In order to retain the consistency of the index, the
parent of each node whose high value was changed must also be updated. The value of the
key to be inserted is always smaller than the high value of the leaf-node group where the
insert key belongs to unless it is the biggest value of the whole tree. Therefore, moving
keys around inside a leaf-node group will not change the high value of the rightmost node
in that node group. When only the high value of the rightmost node may be on a level
upper than 1, all the changed high values must be updated only upto the parent node
immediately above the leaf level, as shown in Figure 23.
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Redistributing the keys of the nodes
n[1] and n[2].
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Figure 23: Redistributing the keys of two full nodes, : � (P� and : � 	 � , between all three
nodes of the group. The high values of : � ��� and : � (G� were changed. Their parents must
thus be updated. Update is achieved as : � �2� and : � (G� were split. The routing keys are
copied to the parent node. Since

�
does not split the update terminates.

5.6.2 Cost of the SD algorithm

The worst-case cost of an insertion is the same as in the CSB
�

-tree. The worst case occurs
when a node group is full and the update operation requires splitting nodes on every level,
resulting in the creation of a new root. When the leaf group is not full, redistributing the
keys causes some extra cost as compared to the ordinary insert algorithm. Assume that no
concurrent operations are present during an insertion and that all the nodes of the group
are not full. In such a case, the cost of an insertion in the worst case, when node-group
splits are delayed, is calculated as follows:

1. Traversing the tree and finding the key on the leaf level with the smallest value equal
to or bigger than the value of the key to be inserted. This is equal to the maximum
cost of a search operation.

2. Finding a non-full node from the node group may require reading 	 F´oÌ( additional
nodes.

3. Redistributing the keys of subsequent full nodes and the first non-full node requires
writing all the 	 F nodes of the group.
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4. Updating the high values of the updated nodes in the parent node requires writing
one more node.

Denote the cost of a search operation by K . In terms of cache lines read, the cost of
redistributing the keys using the SD algorithm is calculated as follows:

number of cache lines read '�K T�l cache lines per node q l 	 F½o§( q �
number of cache lines written ' l

cache lines per node q l 	 F�T¦( qè^
Consider a node group including nodes : � Ie� , � ` I `¹� . The node : � ��� has space for
at least one key while other nodes are full. Assume that the occupation of the nodes is
known before. When a key is to be inserted to node : � � � , nodes : � ��� ,..., : � Z � also must
be read so that the keys can be redistributed. In this case, the redistribution also requires
writing all the nodes of the group.

Redistribution takes place only when:

1. a new key is inserted to a node which is full already, and

2. among the nodes in the group, there is at least one node which is not full.

In other words, the SD algorithm is worth using when a node group is filled with nodes
but the nodes are not full. In all other cases traditional methods are used.

5.6.3 Leaf-node-group utilization

For both the CSB
�

-tree and the SIB
�

-tree the following steps are taken in the case
of a leaf-node-group split. When a leaf-node group

�
splits into

�
and

�ÕÔ
, the nodes: � Ie�e�è� ` I `�	 F¯o¦( originally stored in

�
are distributed between the groups so that the

nodes : � ���e� ^�^¨^ � : � F­oâ(G� stay in
�

and the nodes : � Fi�s� ^�^�^ � : � 	 F­o�(P� are moved to
� Ô

. In one
of the two groups, say

� Ô
, a node is then split so that key can be inserted into it. Finally,

the other group (
�
) includes

F
nodes while

� Ô
includes

F{T�(
nodes. In the worst case, the

next node-group split always occurs in the node group in which the new key was inserted
during the previous node-group split. In the previous example,

�ÕÔ
would be the next group

to split. As a result, the leaf level consist of
@

node groups, of which
@poÚ(

groups includeF
nodes while one includes

F´T¦(
nodes.

In the CSB
�

-tree, both the groups
�

and
� Ô

include nodes : � �2�s� ^�^�^ � : � F�o¦(P� with
F

keys in
each. The group

�,Ô
also includes an additional node : � Fi� which contains

F,TÚ(
keys. Given

a leaf level with
@

groups, there are
@Yo§(

groups including at least
F

nodes with
F

keys in
each. One group includes

F¬Tâ(
nodes, of which

F
includes

F
keys and one which includesF�T�(

keys. As stated in the definition in Subsection 4.2.3 the condition
F a¦	 must be true.

Therefore, the minimum for the utilization of
@

leaf-level node groups in the CSB
�

-tree
is: le@Yo§( q WUF � T¢F{W\lSF´Tâ( q@AW 	 F?l 	 F½o§( q ' @2F � T¢F� @EF � o 	 @EF ' @2F�T¦(� @2F{o 	 @



46' @EF	 @)l 	 FÀoV( q T (	 @)l 	 F½oµ( q ' F� FÀo 	 T (	 @,l 	 F{o§( q ' (� o � Ý T (	 @)l 	 FÀo§( q
When the number of node groups approaches the infinity, the utilization of leaf-node
groups in the CSB

�
-tree is:éëêëìíiîãï � (� o � Ý T (	 @,l 	 F{o§( q � ' (� o � Ý

With the smallest allowed value
F '�	 , the leaf level utilization for the CSB

�
-tree is 33%.

However, when the value of
F

starts to approach the infinity the utilization of leaf-node
groups in the CSB

�
-tree is:

é¨êëìÝ îÇï � (� o � Ý � ' (�
In the worst case only 25% of the memory allocated for leaf-node groups is used while
75% is unused. Even if the structure exposes good data locality in general, the leaf level
may be extremely sparse.

In the SIB
�

-tree, the group
�

includes
F

nodes with 	 Fpo�(
keys. The other group,

�ÕÔ
,

includes
F½o§(

nodes with 	 F½o§( keys, one node including
F

keys and one node includingF­TX(
keys. Given a leaf level with

@
groups there are

@Æo[(
groups including at least

F
nodes with 	 FUo�( keys each. One group includes

F­T�(
nodes of which

FÜo[(
includes	 FUo[( keys, one including

F
and one, which includes

F­T�(
keys. Again, the conditionF a¦	 must be true. Therefore, the minimum for the utilization of

@
leaf level node groups

in the SIB
�

-tree is:le@YoV( q WUF{WYl 	 F�oµ( q T�lSF½o§( q WYl 	 F½oV( q T¢F»TÚF´Tâ(@AW 	 F»W\l 	 FÀoV( q' @EF?l 	 F½o§( q T 		 @2F?l 	 F½o§( q ' (	 T (@,l 	 F � oªF q
When the number of groups approaches the infinity, the utilization of leaf node groups in
the SIB

�
-tree is:

éëê¨ìíyîÇï � (	 T (@)l 	 F � oðF q � ' (	
As a consequence, the utilization in the leaf level node groups of the SIB

�
-tree is at least

50%, which is close to 100% higher than that of the CSB
�

-tree.

5.6.4 Memory usage analysis

The amount of memory an index consumes depends mainly on the size of a node group
and the number of node groups needed to hold the nodes of the index. In addition to the
nodes a node group includes, some additional data, such as link pointers to the previous
and to the next groups is attached to every node group. The amount of memory consumed
by this additional data is referred as info henceforth. The number of leaf-node groups
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dominates the overall memory usage: the number of node groups in the upper levels is
only a small fraction to the number of leaf-node groups.

Here the memory consumption of a leaf-node groups for the CSB
�

-tree and for the SIB
�

-
tree is considered. The upper bound for the leaf-level memory usage of both the CSB

�
-

tree and the SIB
�

-tree is calculated as follows:

memory usage ' number of leaf groups
W

size of a node group

The size of a node group depends on the number of bytes needed to express a key value
and a memory address. It also depends on the maximum number of nodes, 	 F´o¶( , a node
group can hold. Therefore the size of a node group is calculated as follows:

size of a node group '�	 F¬l size of a memory address
T�l 	 F½oV( q l size of a key value qHq T info

The number of leaf-node groups for both the CSB
�

-tree and the SIB
�

-tree is:

number of leaf node groups ' total number of keys
minimum number of keys per node group

^
The lower bound for the number of keys in a leaf node group of the CSB

�
-tree is:

minimum number of keys per node group ' F � ^
The lower bound for the number of keys in a leaf node group of the SIB

�
-tree:

minimum number of keys per node group ' FÀWYl 	 FÀoV( q¼^
If deletions do not exist, the leaf level of the SIB

�
-tree is always at least 50% full. Al-

though the height of the SIB
�

-tree may be the same as that of the CSB
�

-tree, the SIB
�

-
tree consumes less memory than the CSB

�
-tree. The impact of deletions depends on the

selected deletion method. It is, however, possible that the leaf level of the SIB
�

-tree be-
comes sparse due to deletions.

Figure 24 shows the memory usage of the leaf level of CSB
�

-trees and SIB
�

-trees. Key
values and memory addresses are both expressed by 4 bytes. The minimum number of
keys a node must have,

F
, is 16. Recall that every leaf-node group in a CSB

�
-tree contains

at least
F �

, 256, keys while leaf groups in a SIB
�

-tree contain at least
F­WÆl 	 F·o�( q , 496,

keys. The number of keys on the x-axis starts from
�����Y�����

. In every step the number of
keys is multiplied by 1.5. The size of a leaf node group is:]�	 WYl � B T ] (JW � B q½'�� � ��Z B
Since the SIB

�
-tree uses the SD algorithm, it has less node groups on the leaf level. The

number of parent nodes needed for the leaf-node groups is therefore smaller and thus the
number of grandparents needed is smaller, and so on. We conclude that the total memory
usage of the SIB

�
-tree is remarkably smaller than that of the CSB

�
-tree.
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Figure 24: The worst-case memory usage of the leaf level of CSB
�

-trees and SIB
�

-trees.

6 SIB
T

-tree Implementation

The main focus of this thesis is on evaluating the benefits of cache-aware design and im-
plementation. In order to do that, the search performance of the structure was tested and
the results were documented. The search performance was emphasized because it is —
instead of update performance — a dominant operation in many application areas. The
SD algorithm was also partly implemented but the performance measurements were not
done and thus the performance of the SD algorithm is not discussed further. Therefore,
the code of the search operation was optimized but the insertion part was not.

Functions necessary to build and query a SIB
�

-tree instance were implemented. The
implemented parts conform to the definition presented in Section 5.1. In the next sections
the implementation of the SIB+-tree is described, a shallow code analysis is given and
noteworthy code optimizations are discussed.

6.1 Structure

Here the basic structure of the CSB
�

-tree [RR00] is reviewed and the main differences
between the implementations of CSB

�
-tree and the SIB

�
-tree are pointed out.

A node group in a CSB
�

-tree is nothing more than a set of nodes stored side by side
into memory. No additional space overhead is entailed. On the other hand, it does not
include any information about the degree of the space utilization of the node group, which
is useful in real use. In a SIB

�
-tree, a node group includes statistical information about

the nodes. A node group is a structure which holds, in addition to the nodes, information
about the space utilization and emptiness of the nodes. This information is useful, for
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instance, during insertions when keys are redistributed to the nodes of the node group.

The leaves of the tree are on level 0, internal nodes immediately above them are on level 1
and so on. When a node group is created, it is placed to a certain level of the tree, and on
that level it will stay until it is removed. Therefore, the number of the level is also stored
into the node group. The fields ”empty bits" and ”space bits", the empty and full nodes,
are both bit maps in which one bit represents one node. The node group structures of a
CSB

�
-tree and of a SIB

�
-tree are presented in Figure 25.

node[NODECOUNT]

Node

node[NODECOUNT]

Node

empty_bits
*right_sibling

level

space_bits

SIB+−treeCSB+−tree

*next*prev

Figure 25: Node group structures of a CSB+-tree and of a SIB+-tree.

The node groups on the leaf level are linked from left to right so that they constitute a
linked list. In a CSB

�
-tree, leaf-node groups are linked to both directions; this allows

efficient scan operations to both directions. Another pointer could be easily added to the
node groups of a SIB

�
-tree too, but it was not necessary for our tests. Adding a pointer

to a previous node group would not affect to the overall performance since the size of a
pointer, 4 bytes in general, is so small as compared with the size of a typical node group
(4096B, for example). Linking the internal groups as in OLFIT [CHKK01] is necessary
in order to manage concurrent updaters. Concurrent operations, however, are not consid-
ered here; therefore internal groups are not interconnected in a SIB

�
-tree.

v0 v1 v2 v3 v4 v5 v6

k0 k1 k2 k3

Figure 26: The structure of an internal node and a leaf node.
�R�)� ^�^�^ �¼� Z represent the

routing keys and
� �)� ^�^¨^ � � ] are the key values of the leaf node. Here

�R� ' � ] .
The structure of nodes in our implementation is simple (see Figure 26). An internal node
includes at most 	 Fão£(

key values and a child pointer. A leaf node differs from that
presented in the definition of SIB

�
-tree (Section 5.1) by including at most

F
key values

and
F

data pointers. The node size can be selected among 32, 64, 128 and 256 bytes.
Increasing the node size above 256 bytes is also possible but, as the tests in Section 7.3
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show, since 128-byte node size gives the best search performance, increasing the node
size is not necessarily needed.

6.2 Group-splitting policy

The insert function differs from that of the CSB
�

-tree, since a node-group split can be
handled in various ways. In a CSB

�
-tree a half of the nodes in a full group are moved to

a new node group. In a SIB
�

-tree, when a node is splitting and there is no space for an
additional node in the node group, there are two methods from which to choose:

1. If any of the nodes to the right of the full node is not full, the keys of the nodes
between the splitting node and the first node which is not full are redistributed.

2. If any of the nodes either to the left or to the right is not full, the keys of the
nodes between the first node to the left which is not full and the splitting node are
redistributed.

The first option does not fully conform to the specification of the SD algorithm (Section
5.6), since only the non-full nodes on the right are looked for whereas the second option
does conform to the specification of the algorithm. In both cases, the changed high values
of the nodes are stored to a specific high-values list from where they are updated to the
parent node. The difference between the two options is that the first one does not require
informing simultaneous readers about the update. Since the node group extends to the
right, moving keys will not prevent readers from finding them. The second option extends
the node group to the left, and if simultaneous readers exist, they must be forced to start
reading from the first node of the group. Otherwise the keys being moved to the left may
not be found. The first policy was implemented and it was used to build the indices used
in the search tests.

6.3 Profiling and analyzing the code

The purpose of using profilers was to both estimate the cache-consciousness of the imple-
mented SIB

�
-tree and to search for weak points in the code. Before profiling we found

the unoptimized version of the search function moderately efficient. It also seemed to
work correctly. We executed the Cachegrind [SN03] profiler with an 8-way width- and
level-compressed trie [INT99], a B-tree and with both an unoptimized and an optimized
binary of the SIB

�
-tree.

All the binaries profiled first initialized an empty index. Then one million random keys
were inserted and searched for. Both L1 and L2 cache-miss rates were calculated by com-
paring the number of misses of a particular cache level to the number of requests. The
percentage of L2 data misses, for example, is calculated as follows:

the number of L2 data misses/the number of data reads
WR(*�����
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All the indices used 32-bit keys. The node size that offered the best search performance
was chosen separately for each index. Table 2 concludes the outcome of the Cachegrind
profiler. The results show that the unoptimized version of the SIB

�
-tree executes both

instruction and data read operations many times more than the others do. On the other
hand, it seems to be the most cache-conscious structure, as regards both the miss rate and
the accurate number of cache misses. The unoptimized version of the SIB

�
-tree seems

to be more cache-sensitive than the optimized version. Since the structure to search from
is the same in both versions, that property is only due to the inefficient implementation
resulting in larger number of data read references. Generally, trees having only key values
in internal nodes have a higher branching factor. This leads to better data locality in the
internal nodes. However, in order to find a target data item from a SIB

�
-tree, the whole

search path, from root to the leaf, must be traversed unlike with the B-tree, for example.
That increases the number of data references in the SIB

�
-tree as compared to the others.

Instructions Data references L1 data misses L2 data misses
Index name read (

WR(*� Ê ) (
WR(*� Ê ) WR(*� Ê (%)

WR(+� Ê (%)
SIB

�
755 180 11 (6.1%) 4 (2.2%)

SIB
�

optimized 374 96 8 (8.3%) 3 (3.1%)
trie 188 62 9 (14.5%) 6 (9.7%)
B-tree 300 80 11 (13.8%) 5 (6.3%)

Table 2: Profiling the search functions of two SIB
�

-trees, a compressed trie and a B-tree:
the number of instruction and data read operations and cache misses caused by the data
reads. One million keys were inserted and searched for in random order.

The differences in the cache-miss rates between the indices in Table 2 are noteworthy.
The difference in L1 misses is not that big in absolute numbers — and that is what mat-
ters when speaking about the performance. The gap between the SIB

�
-trees and the

others widens abruptly when L2 misses are considered. While the total cache-miss rate
for the SIB

�
-trees varies from 1.5% to 3.1%, the L2 miss rates of the B-tree and the trie

are clearly higher. The difference can be illustrated by calculating the L2 cache-hit rate
for each structure. The L1 and L2 miss rates for data references are presented in Table
3. We see that the indices having only key values in internal nodes have generally higher
cache-hit rates. It also looks that the higher is the number of data references, the better
is the L1 hit rate. Therefore, no direct conclusions can be drawn from the results, but it
is likely that the trie will suffer from its poor cache-consciousness when the gap between
main memory and the CPU keeps widening. The small number of instruction and data
references of the trie will most likely lose its significance because of two reasons:

1. The cache-hit rate for instruction references is practically 100%, so the penalty
caused by instruction references is relatively low.

2. CPUs get faster and the relative speed of main memory gets slower.
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L1 data refs L1 hits L2 data refs L2 hits L1+L2 cache
Index name (

WR(+� Ê ) WR(*� Ê (%) (
WR(*� Ê ) WR(*� Ê (%) hit rate

SIB
�

180 169 (93.9%) 11 7 (63.6%) 97.8%
SIB

�
optimized 96 88 (91.7%) 8 5 (62.5%) 96.9%

trie 62 53 (85.5%) 9 3 (33.3%) 90.3%
B-tree 80 69 (86.3%) 11 6 (54.5%) 93.8%

Table 3: Profiling the search functions of the B-tree, the LPC-trie and two SIB
�

-trees: the
number of data references and the cache-hit rates for both L1 and L2 caches. One million
keys were inserted and searched in random order.

As a conclusion, the search functions of the B-tree and the trie use less instructions and
more cache lines than the SIB

�
-trees. Recall that the performance bottleneck in modern

computers is memory access, which takes place every time an L2 cache miss occurs.
As long as the hardware trends remains the same, the performance of cache-efficient
programs keeps increasing. Similarly, programs stressing more memory than the CPU
will get more inefficient.

6.4 Achieved code optimizations

The outcome of the Cachegrind profiler shows that a search operation in a SIB
�

-tree
caused over four times more instruction references and over three times more data refer-
ences than in a trie. At the same time, the SIB

�
-tree shows still a notably better cache-

consciousness, that is, the cache-miss rates were about 50% of those of the trie showed. In
memory resident programs memory access is the main bottleneck. Therefore, it appeared
that the most efficient way to improve the performance of the SIB

�
-tree was to decrease

the number of data references the program does during execution.

Searching a key from a SIB
�

-tree is a short sequence of simple operations. On each level
exactly one node is inspected in order to find the correct branch. This is repeated until the
leaf has been reached. Assume a SIB

�
-tree having a node size of 256 bytes each node

being about 60% full. The height of such a tree including million keys is:OL' (ÜT ° 5e/*� | � Þ (*�����������Z�] W Z ���[W Z�] à ² ' (ÜT 	Ë'�]
When searching a key from such a tree takes place, most of the time is spent on searching
the correct branch in internal nodes and the search key in leaves. All the data a func-
tion reads or writes during a certain operation is often called a footprint of the function.
Making the footprint of the search function smaller would result in a smaller number of
accessed memory addresses, that is, a lesser amount of data references would be caused.

Searching an item from an array with : items using binary search causes at most
5e/*� � :

data accesses. This means that the CPU reads at most that many values to registers. Load-



53

ing the data to the CPU registers, however, is not the performance bottleneck. Decreasing
the number of cache lines accessed is more important. The traditional binary search is
not cache-efficient because two or three first comparisons may cause the same number,5e/*� � : , of cache lines to be read and, if all cause a cache miss, two or three memory ac-
cesses would take place. In the unoptimized version, a search within a node is done by
sequential scan. With 64-byte cache lines each node uses 4 cache lines. Thus, if the node
is full, finding a key causes at most 4 cache misses per level. Since the nodes in our im-
plementation are approximately 60% filled, the worst case causes 2.4 cache misses on the
average.

In both the CSS-tree and the CSB
�

-tree a hard-coded binary search is used, with nodes
equal in size to a cache line. The solution is argued to be faster than sequential scan if the
number of keys in a node is bigger than 5 [RR99]. In addition to the sequential scan, we
implemented three different binary search functions:

1. A function that uses integer variables as offsets to array elements. The middle key
of the array is chosen by dividing the sum of the first and the last key locations by
two. The middle key is then compared to the search key. The function is recursive.

2. A function, which also uses an array, but the variables are replaced by predefined
integer values. The elements of the array are addressed by using these static vari-
ables. All possible branches are unfolded and hard-coded.

3. A function, which does not access the values of the array by using expressions such
as, “

� � Ie�
”. Instead, values are accessed by a pointer such as, “ � le�ËT¶I q ”, whose ad-

dress is either incremented of decremented depending on the result of the previous
comparison. All branches of the binary search are unfolded. We also extended this
method by adding separate pointers pointing to 1st, 2nd, and 3rd quarter of a node.
We found that minimizing the pointer updates made the search faster.

No significant performance benefit was found by using these versions when compared
to sequential scan. The first variant of the binary search was also tested with node sizes
varying from 32 to 256 bytes. It was observed that the smaller is the node, the faster is
the sequential scan when compared to binary search. However, the third variant offered
a slight speed-up to sequential scan. Thus, it was chosen to a basis from which yet one
variant was developed.

4. The fourth binary search variant works as a binary search as long as the area to be
searched is large enough to justify the use of binary search. When the area gets
small enough, the search method is changed to sequential scan.

In practice, search areas larger than a cache line were searched by binary search. When the
search area becomes smaller than a cache line the search method is switched to sequen-
tial scan. A speed-up of 10–15% was achieved by using the fourth variant with 256-byte
nodes. The reason for such a conservative result — when compared to the previously



54

presented results [RR99, RR00] — may be the differences in the test environments. The
CSB

�
-tree was tested with machines having 296 MHz SUN UltraSPARC and 333 MHz

Pentium processors [RR00]. Our tests were run mainly on a machine having Intel’s 2666
MHz P4 processor. In addition to the clock-rate difference, new processors support many
features, such as SIMD operations [ZR02] or branch prediction, which affect the perfor-
mance. Another possible reason is that our binary search starts from the middle slot of
the node. The binary search implemented into the CSS-tree and the CSB

�
-tree takes into

account the degree of space utilization in the nodes [RR00]. In other words, if a node of
a CSB

�
-tree is half full, the binary search starts from the first quarter of the node.

The final step in optimizing the search within a node was to find an optimal division of the
search area for the binary and sequential method. Tests with a 2666 MHz P4 including
64B cache line showed that using binary search for areas bigger than the cache line is
more efficient than using sequential scan. Searching within a cache line was fastest when
sequential scan was used.

Although key compression, such as the one presented in Subsection 3.2.2, would probably
result in various benefits, it was not implemented. Implementing compression would have
resulted in more complex code. However, the effect of compression is tested and the
results were shown in Subsection 3.2.3.
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7 Experimental Evaluation

The experimental tests were divided in three phases. Firstly, the effects of pointer elimi-
nation in nodes were investigated. For the test, two specialized data structures, CC-chain
and B

�
-chain, were implemented. The test was organized so that only the differences in

memory usage and in costs of a node search were measured. The usage of the CC-chain
and the B

�
-chain ensured that the cache-consciousness of either structure did not make

any difference. Similarly, the prefetching functionality offered by modern CPUs was dis-
abled. A set of search operations was executed on both structures; the results of those
tests are presented in Section 7.2.

Secondly, the node size offering the fastest search operation for the SIB
�

-tree implemen-
tation was selected. The selection was based on the results of a search test. The results
for all supported node sizes are reported in Subsection 7.3.2.

Finally, the search performance of the SIB
�

-tree was experimented and compared with
that of the B-tree and of the trie. The results and analysis based on tests are presented in
Section 7.3.

7.1 Hardware settings

The tests were achieved using machines whose basic properties are listed in Tables 4 and
5. The properties of the machines 1–3 vary widely. Our intention is to show how the cur-
rent trend in hardware development impacts on the performance of indices. Machines 4
and 5 differ only in the clock rate of their CPUs; they are used to show how the enhanced
calculation power impacts on the performance. Machines 6 and 7 differ only in the speed
of their memory buses, thus making it possible to estimate the impact of wider memory
bus on the search speed of indices.

The cost of a memory access depends on the speed of memory and the speed of the mem-
ory bus. The speed of the memory bus can remarkably influence the search performance
of indices, depending on whether or not the index maintains a good data locality. If the
data locality is poor as it may be in the trie, a fast memory bus does not make any dif-
ference, because most of the time is spent in finding the data from the memory. Indices
that maintain a good data locality, such as the SIB

�
-tree, may benefit remarkably from a

faster bus. The data which is located sequentially into memory can be found and sent back
faster to the memory bus than if the data were spread all around the memory. Information
about the memory buses of the machines is presented in Table 5.

At the time the tests were achieved, the machines 5 and 6 were available for other users
and their processes. Thus, tests on those machines were run with special care. Tests were
ran when no other active users were present. Tests for all indices were interleaved and all
exceptional (i.e., exceptionally bad) results were ignored. Each test included 15 similar
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Processor type (Intel) L1 instruction L1 data cache L2 cache size
num. clock (MHz) and family cache/line size /line size /line size
1. Pentium II 400, 686 16KB/32B 16KB/32B 512KB/32B
2. Celeron II 850, 686 16KB/32B 16KB/32B 128KB/32B
3. Pentium III 733, 686 16KB/32B 16KB/32B 256KB/32B
4. Pentium 4 1600, 786 12 000 micro-ops* 8KB/64B 512KB/64B
5. Pentium 4 2400, 786 12 000 micro-ops* 8KB/64B 512KB/64B
6. Pentium 4 2666, 786 12 000 micro-ops* 8KB/64B 512KB/64B
7. Pentium 4 2666, 786 12 000 micro-ops* 8KB/64B 512KB/64B

*Before processing, x86 instructions are decoded into smaller, byte-sized operations
(Intel calls them micro-ops). P4 caches micro-ops into L1, instead of x86 instructions.
That cache, called the “trace cache”, has a capacity of 12 000 micro-ops.

Table 4: The information about the tested processors and the caches they utilize.

operations and among the obtained results the best was always chosen. The main differ-
ence between a B-tree (especially a B

�
-tree) and a CSB

�
-tree (as well as a SIB

�
-tree)

is the structure of internal nodes. The number of keys a CSB
�

-tree node can include is
nearly double the number of that of a B

�
-tree node. This enhances data locality and de-

creases the overall size of the structure. On the other hand, the more does a node include
keys, the longer it takes to inspect every key in the node. The goal of this test is to show,
when caching and prefetching are not in effect, what dominates the search speed: the
smaller number of nodes or the faster search winthin a single node.

Assume a B
�

-tree node including 8 values and 8 pointers each being 4 bytes wide. A
CSB

�
-tree node of the same size includes 15 values and one pointer. The structure stor-

ing the values into B
�

-nodes needs 1.88 times more nodes than the structure that uses
CSB

�
-tree nodes. In other words, storing a constant number of key values (and the nec-

essary pointers) requires 1.88 times more B
�

-tree nodes than CSB
�

-tree nodes. On the
other hand, a search within a CSB

�
-tree node requires approximately 1.88 times more key

comparisons than in a B
�

-tree node. This test tries to show that, for the sake of search
speed, it is better to stress the CPU (more comparisons) than the memory (more nodes to
read).

7.2 Testing the traversal speed of cache-conscious and B Ó -node struc-
tures

A B
�

-chain (see Figure 27) with B
�

-tree-like nodes and a CC-chain (see Figure 28) with
CSB

�
-tree-like nodes (and a SIB

�
-tree as well) were implemented. All nodes of both

structures were filled up with key values and pointers. The performance of a chain traver-
sal is affected by two things:
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Processor type (Intel) Motherboard Speed of the CPU speed
num. and clock (MHz) name memory bus (MHz) /bus speed
1. Pentium II 400 Abit i440BX 100 4
2. Celeron II 850 Abit i440BX 100 8.5
3. Pentium III 733 Intel D815EEA 133 5.5
4. Pentium 4 1600 Intel D845WN 200* 8
5. Pentium 4 2400 Intel D845EBG2 200* 12
6. Pentium 4 2666 Intel D845EBG2 266* 10
7. Pentium 4 2666 Intel D845PESV 333* 8

*The memory bus of Pentium 4 is actually 100/133/166 MHz, but machines 4-7 use
DDR-memory (Double Data Rate) which, in theory, doubles the speed of the memory bus.

Table 5: The speed of the memory buses and the bus speed divided by the CPU’s clock
rate.

1. The longer is the chain, the more nodes are read and more cache misses are likely
to be caused.

2. The more keys does a node include, the more comparisons must be made during a
structure traversal.

The difference in traversal times is presented in many cases with a speed-up factor of a.
For example, if the speed-up factor of M is 1.25 (compared with

<
) it means that M is 1.25

times faster than
<
. The speed-up factor for a is calculated as follows:

speed-up factor for a ' <M
Two traversal tests were run. Firstly, both structures with various sizes were traversed
and the time spent was measured. The structures included 0.8 million (M), 2.4M, 8M
and 24M keys in all. Secondly, the traversal test was run on a B

�
-chain and on a CC-

chain, both of which included 8M keys. The second test was executed with two groups of

1.

2.
3.

4.
5.

Figure 27: A B
�

-chain. The labeled arcs represent the order in which the search advances
from node to another.
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* *
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*

***

9.

1.

10.
3.

4.

5.
7.

6.

2.

11.

8.

Figure 28: A CC-chain. A star in a node denotes a key value which is to be searched for.
The dotted boxes represent node groups and the labeled arcs represent the order of the
search process.

machines, machines 4–7 and machines 1, 2 and 6 (see Table 4). Test results and analysis
are presented in Subsections 7.2.2 to 7.2.4.

7.2.1 Test settings

The node size for both chains was chosen to be 64 bytes, that is equal to the cache-line size
of the P4 machines. Each B

�
-chain node had space for 8 values and 8 pointers (

ls8{Tf8 q W �
bytes 'ñZ�� bytes). To start with, every B

�
-chain node was filled up with very large ran-

dom values and dummy pointers. After that, to each node one distinguished value, a hit
value, was added, as well as a pointer to the next node where the traversal was ment to
proceed. The location of the hit value and the pointer were chosen randomly in order to
effectively disable the CPU’s branch prediction functionality. Finally, all the allocated
nodes formed a chain with a known starting point, as shown in Figure 27.

A CC-chain node had space for 15 key values and one pointer (
lH(E�\T[( q W � bytes 'òZ��

bytes). As in a B
�

-chain, node groups were first filled with large random values and
dummy pointers. After that, one distinguished value and a pointer to the next node group
was inserted to every node. The pointer in a CC-chain node points to the next node group,
unlike the (non-dummy) pointers in the B

�
-chain which point to child nodes. When every

node includes one key which is to be searched for and one real pointer, the nodes form a
chain, as shown in Figure 28.

As mentioned above, the node size was chosen to be equal to that of the cache line used in
P4 machines (4–7 in Table 4). However, in Subsection 7.3.2 it will be shown that the op-
timal node size for the implemented SIB

�
-tree is bigger than 64 bytes. The optimal node

size for a B
�

-tree is also likely to be bigger than the chosen 64 bytes. This tests simplifies
the reality by effectively disabling the branch prediction and the hardware caching. Thus,
the performance differences are due to two factors: reading a node from the memory and
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finding the target key from the node. In the B
�

-chain the former is emphasized and in the
CC-chain the latter dominates.

7.2.2 Traverse test with variable-size structures

In this test the number of keys the structures included varied from 800 000 to 24 million
keys. The structures were traversed through, and the time spent was measured. The test
was executed on a 2666 MHz P4 with a 266 MHz memory bus (machine 6 in Table 4
and 5, on page 56). The value 1.88 in Figure 29(b) equals to the size difference between
chains.

(a) (b)

Figure 29: Traversing through a B
�

-chain and a CC-chain. Exact times are presented in
(a). In (b) the speed-up factors for the CC-chain are presented. The test was run on a 2666
MHz P4 with a 266 MHz memory bus (machine 6 in Table 4 on page 56).

The x-axis in Figure 29 starts from
8���� �����

. The execution times for less than
8���� �����

keys are very short (1–2 milliseconds for 	�� �ã����� keys) thus they are not reliably measur-
able. The number of keys was increased by a factor of three after every round, up to 24
million keys. The execution times for both structures are presented in Figure 29(a). The
curve representing the B

�
-chain deviates from the curve of the CC-chain from the begin-

ning. The difference keeps growing as the number of keys increases, and with 24 million
keys the execution time of the B

�
-chain is more than twice of that of the CC-chain, as can

be seen from Figure 29(a).

The relative differences in execution times are presented in Figure 29(b). The bars present
how many times faster the traversal of the CC-chain is compared to the B

�
-chain. The
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line (on 1.88) represents how many times more nodes the B
�

-chain needs in order to store
the same number of keys when compared to the CC-chain. With 64-byte node size the
factor is 1.88. In other words, if a search within a B

�
-chain node and within a CC-chain

node were an equally expensive operation and cache misses and TLB-misses were not
considered, traversing the CC-chain would be 1.88 times faster than traversing the B

�
-

chain.

Up to 2.4 million keys, traversing the CC-chain is slower than would be expected. Travers-
ing the B

�
-chain requires reading 1.88 times more nodes than in traversing the CC-chain.

Regardless of that, the speed-up factor of the CC-chain is below 1.88. The main reason
is that the overall time required to do a search within the CC-chain node is longer than
the sum of the latencies caused by a higher number of cache misses aroused by traversing
the B

�
-chain. The number of cache misses increases as the number of keys grows and

the speed-up factor of the CC-chain seems to follow the process. Thus, when the number
of keys exceeds the limit of 8 million, the number of cache misses caused by traversing
the B

�
-chain is large enough to slow down the operation in spite of the faster node search.

Although TLB-misses were not considered, it is necessary to realize that with large struc-
tures TLB-misses do occur and slow down the traversal speed. However, it is likely that
the bigger structure, the B

�
-chain in this case, suffers more from TLB-misses than the

CC-chain, which is remarkably smaller. With 2.4M keys, this is one reason to the slower
traversal of the B

�
-chain.

7.2.3 Traverse test with four computers equipped with P4 processors

This test was run on one 1600 MHz, one 2400 MHz and on two 2666 MHz Pentium 4
machines (machines 4–7, respectively, in Table 4). The machines are rather similar to
each other. The main differences are the CPU clock rate and the speed of the memory
bus. The structures were traversed through and the traversal times were measured. The
number of keys used in the test was 24 million.

The execution times of the different machines are presented in Figure 30(a). The results
are expectable in the sense that both structures clearly benefit from a higher CPU clock
rate. It is slightly surprising that the time spent on traversing the B

�
-chain is practically

the same no matter if the machine has a 2400 MHz or a 2666 MHz CPU. The B
�

-chain
is memory-bound. Increasing the clock rate of the CPU by 11% makes traversing the
CC-chain 19% faster. Thus, unlike the B

�
-chain, the CC-chain is CPU-bound.

The results presented in Figure 30(b) show how many times faster it is to traverse the CC-
chain than the B

�
-chain. The two leftmost bars show that the CC-chain gets a notable

benefit from the higher clock rate of the CPU. The difference between chains grows fur-
ther when the 2666 MHz processor with a 266 MHz memory bus is used. The growth is
not big however; this can be due to the small increment of the CPU speed or the 25% faster
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(a) (b)

Figure 30: Traversing through the B
�

-chain and the CC-chain. Exact times are presented
in (a). In (b), the speed-up factors for the CC-chain are presented. The value 1.88 in (b)
equals to the size difference between the chains.

memory bus (200 MHz ó 266 MHz). Fastening the memory bus further (233 MHz ó 333
MHz) decreases the difference. Since the traversal speed of the B

�
-chain depends highly

on the memory performance, it benefits from the lower memory latency, resulting from
the faster memory bus. As a consequence the difference in traversal speeds reduces.

7.2.4 Traverse test on clearly different platforms

In this test, both structures included 8 million keys. The number of keys was chosen so
that test could be run on machines including only 256 megabytes of main memory. The
purpose of this test is to show that in general, even though the traversal time gets shorter
while the machines get faster, the CPU’s clock rate is not the only or even the biggest
factor which effects the traversal speed.

The traversal times are showed in Figure 31(a). Although Figure 31(a) is not very in-
formative, it shows that the traversal time decreases while the machine gets faster. The
speed-up achieved by using the CC-chain is presented in Figure 31(b). The leftmost bar
shows that a low CPU clock rate (400 MHz) combined with relatively fast memory bus
(100 MHz) makes the CC-chain relatively slow. The reason is that the slower search of
the CC-chain within a node becomes a bottleneck due to the low CPU clock rate. A
memory-bound structure such as the B

�
-chain benefits from the memory enhancement.

The seconds bar shows that the relative speed of the CC-chain is highest on the Celeron
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(a) (b)

Figure 31: Traverse test using three very different machines. Exact times are presented
in (a). In (b) the speed-up factors for the CC-chain are presented. The value 1.88 in (b)
equals to the size difference between chains.

machine. There are two reasons for that. First, the Celeron and the P2 are similar, except
for their caches and the CPU clock rates. With regard to the memory bus, the CPU is
much faster in the Celeron than in the P2. Thus, in terms of CPU clock cycles, a memory
access is more expensive in the Celeron. It is likely that when the number of memory
accesses exceeds some limit, the bus cannot transport the data to the CPU as fast as the
CPU can process it. The second reason is the different L2 caches of the machines. While
the L2 cache of the P2 is 512 KB, the Celeron has only a 128 KB L2 cache. Therefore, in
the Celeron, a memory access is more expensive and memory is accessed more often due
to a higher number of L2 cache misses.

The rightmost bar shows the results obtained from the machine which includes both the
fastest CPU (2666 MHz) and the fastest memory bus (266 MHz) in this test. The dif-
ference between the B

�
-chain and the CC-chain is smaller than in the Celeron probably

because the speed difference between the memory bus and the CPU clock rate is smaller
than in the Celeron. If the difference between the memory bus and the CPU clock rate
were yet smaller, the difference between chains would also be smaller, as can be seen in
Figure 30(b).

Reading less nodes each including more keys (CC-chain) is faster than reading more
nodes with less keys in each node (B

�
-chain), and the difference is proportional to the

number of keys in the structure (see Figure 29). As shown by the test results in Figures
30 and 31, the B

�
-chain benefits from the enhancements of the memory bus which makes
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its performance dependant on the memory speed. The CC-chain gets faster while the
CPU clock rate increases, thus the CC-chain is CPU-bound. In conclusion, if CPUs keep
evolving faster than main memories, the CC-chain will remain faster than the B

�
-chain

also in the future.

7.3 Search performance of the SIB Ó -tree implementation

The purpose of these tests is to evaluate the search performance of our SIB
�

-tree imple-
mentation. First, for the B-tree and for the SIB

�
-tree, the node size which results in the

fastest search operation was selected from among the supported node sizes. Then a set of
tests were performed on the B-tree, the compressed trie, and on the SIB

�
-tree.

The (8-way width and path) compressed trie is the state-of-art index structure in main-
memory database product [Sol03]. Thus, comparing the test results of the SIB

�
-tree to

those of the trie gives a realistic picture about the search performance of the SIB
�

-tree in
view of a leading technology in the market. The SIB

�
-tree and the B-tree are compared

by informative reasons. With thirty years of history, the B-tree is perhaps the best known
index structure used in databases. It also seems to be a fairly efficient solution for MMDBs
and, unlike the trie, its behavior does not depend on the distribution of the key values it
includes.

7.3.1 Test settings

In search tests a key set of randomly ordered positive integers was used. For each test run
the following sequence was performed:

1. the number of keys to be searched, say : , was selected,

2. ] W : keys were inserted,

3. the timer was started,

4. a search for : separate keys in exact-match manner was performed, and

5. the timer was stopped.

The node size which gave the best result for the B-tree was determined for each machine
separately. In practice, for all the machines a 256-byte node gave the best results. The
node size of the LPC-trie was left untouched. The key length of the trie was decreased
from 64 to 32 bits in order to make it comparable to the key size of the B-tree variants.

The trie used initially a proprietary memory-management library. In order to make the
indices as comparable as possible, the trie was modified so as to use the same memory-
management library as the B-tree and the SIB

�
-tree. The fraction of the total execution
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time used for memory management is assumed to be the same for all the indices. The
performance of some trie implementations, however, is argued to depend heavily on au-
tomatic memory management [NT02]. However, it is assumed that making all the indices
use the same memory management library should not be particularly unfair for any of the
indices.

7.3.2 Determining the node size by calculating cache look-ups

In this test the node size which results in the shortest key look-up time was determined.
In Figure 32 the maximum number of cache look-ups which may occur in a single search
operation, is calculated. Look-ups are divided into two categories: horizontal look-ups,
which occur during the search within a node, and vertical look-ups occurring every time
the search arrives to a new node. Horizontal look-ups are easier to predict; therefore they
are usually prefetched by the CPU before a cache miss occurs. The number of vertical
look-ups is equal to the height of the tree. Vertical look-ups are difficult to prefetch es-
pecially with larger nodes and a higher number of branches. Therefore, vertical look-ups
typically result in a cache miss.

(a) (b)

Figure 32: Calculated maximum of vertical and horizontal cache look-ups caused by a
single search operation. The formulas used in the calculations are presented in Section
5.3 on page 38. The cache line size is 32 bytes in (a) and 64 bytes in (b).

Figure 32(a) shows the number of cache look-ups originating from one search operation.
The cache line is 32 bytes and the tree includes 3 million keys. The number of horizontal
look-ups is zero at the beginning, since only one vertical look-up occurs in every node
read. The number of horizontal look-ups grows as the node size exceeds the cache-line
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size and the number of vertical look-ups decreases as the structure gets lower. If the prob-
ability of a cache miss were equal with either type of look-up, 32 bytes would be the
optimal choice for the node size. However, it is more likely that a vertical look-up results
in a cache miss. Therefore a node size which incurs less vertical look-ups is likely to
result in a faster search operation.

Figure 32(b) shows the number of cache look-ups originating from a search operation
with a 64-byte cache line. The number of keys and the types of cache look-ups corre-
spond to the ones presented in Figure 32(a). The smallest node size is irrelevant, since it
is smaller than the cache size used. As with 32-byte cache lines, the number of horizontal
look-ups increases and the number of vertical look-ups decreases as the node size grows.
The node size which leads to the fastest search operation is more likely the one that in-
curs less vertical look-ups than the one equal to a cache line. Since software prefetching
was not used, the optimal node size depends on the CPU’s prefetching capabilities. As
mentioned above, with no CPU prefetching, a node equal in size to the cache line would
be the best choice.

Figure 33: Random search test. Exact search times for the SIB
�

-tree using different node
sizes. One third out of 3 million keys were searched for in random order.

Since the best node size for read operations depends on hardware properties, search per-
formance was tested on different machines by using different node sizes. The test results
conform to those used with the OLFIT concurrency-control scheme [CHKK01] and they
are shown in Figure 33. For each machine, 128-byte node size results in the fastest search
operation. The results are slightly surprising since it has been argued that the optimal
node size for the CSB

�
-tree would be over 160 bytes, possibly even thousands of bytes

[Han03]. However, the experienced performance benefits with bigger nodes than 256 to
512 bytes are about 2% [Han03]. Taking these arguments into account, the optimal node
size for implemented SIB

�
-tree can be bigger than 256 bytes which is the biggest node
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size supported. The reason for the difference between the presented arguments and the
optimal node size measured here may be that TLB-misses are not considered here. Any-
way, it is likely that the node size chosen by the measurements presented in Figure 33 will
give a realistic picture about the search performance of the SIB

�
-tree.

7.3.3 Random search tests

When searching a million random keys out of 3 million keys, the SIB
�

-tree was slightly
faster than the B-tree or the trie (see Figures 34 and 35). The machines used in the test
correspond (from left to right) to machines 1 and 3–7 (Tables 4 and 5).

Figure 34: Random search test. Exact search times for all indices. One third out of 3
million keys were searched in random order.

For each index, the exact search times are presented in Figure 34. The figure shows that
the trie and the SIB

�
-tree are almost equally fast in the test executed on the P2. The

B-tree is clearly the slowest among the tree indices. In the tests executed on all the other
machines the SIB

�
-tree is clearly faster than the other indices. Similarly, the B-tree is

faster than the trie on all the machines other than the P2. The compressed trie benefits
from the relatively fast memory of the P2, whereas the B-tree and the SIB

�
-tree suffer

from the inefficient CPU.

The search times of the B-tree and the compressed trie are compared to those of the SIB
�

-
tree in Figure 35. The figure shows that in comparison with the SIB

�
-tree the performance

of the trie is decreasing steeply as the hardware evolution advances. The relative perfor-
mance of the B-tree evolves to the opposite direction. The B-tree becomes more efficient
as the CPU clock rate gets higher and the speed-gap between the cache and the main
memory gets wider.
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Figure 35: Random search test. Search times of the B-tree and the compressed trie in
relation to those of the SIB

�
-tree. One third out of 3 million keys were searched in

random order.

The same comparison was made for two machines which differ only by the clock rate of
their CPUs (see Figure 36(a)). The main memories and memory buses of the machines
are equal. The chart in Figure 36(a) shows that when compared to the compressed trie,
the SIB

�
-tree benefits from the higher clock rate of the CPU. The memory is the bottle-

neck of the trie on a slower machine; therefore the higher clock rate does not bring much
enhancement to the performance of the trie. The B-tree benefits from the clock-rate en-
hancement, as can be seen in Figure 36(a). Its data locality is fairly good and the average
search path is shorter than its height since the internal nodes include pointers to all chil-
dren.

In Figure 36(b) the same comparison is made on machines differing only in their memory
buses. When the memory bus is faster, transporting data from main-memory to the CPU
becomes faster. The compressed trie does not benefit much from that because of its poor
data locality. Table 2 (page 51) shows that although the number of data references for
a trie is 2/3 of those of both an optimized and an unoptimized SIB

�
-tree, the number of

resulting L2-cache misses is twice the number of those for SIB
�

-trees. In other words,
although the bus is fast, if fetching the data lasts too long, the faster memory bus does not
make any difference. The SIB

�
-tree benefits from the faster bus a little since its data is

found relatively fast from the memory due to the good data locality. The same also holds
for the B-tree.

The scaled search test (Figures 37 and 38) was run on a computer equipped with a 2666
MHz P4 processor with a 333 MHz memory bus. The number of searched keys varied
from 100 000 to 2.5 million. The results in Figure 37 show that the SIB

�
-tree is the fastest

and the compressed trie the slowest regardless of the number of search keys. Figure 38
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(a) (b)

Figure 36: Random search test. Search times of the B-tree and the compressed trie in
relation with that of the SIB

�
-tree. One third out of 3 million keys were searched in

random order.

shows how much the execution times for the compressed trie and the B-tree are greater
than those for the SIB

�
-tree. For both the compressed trie and the B-tree, the SIB

�
-

tree is faster with a small number of keys. As the number of keys increases, the search
performance of the B-tree gets closer to that of the SIB

�
-tree. The difference between the

measured search times of the trie and the SIB
�

-tree remarkably decreases as the number
of keys increases. There are two reasons for that. First, due to the general property of
any trie, the structure becomes more compact when the key-value space becomes more
populated. This, of course depends on the distribution of the key values in the index.
Generally speaking, a small number of consecutive keys makes a very economic structure;
if the key values differ greatly, the structure is sparse. With a large number of keys, it is
likely that the differences between the key values decrease, thus making the structure
more densely populated. The second reason is that, in reading one million keys, the
SIB

�
-tree makes 50% more data references than the compressed trie (Table 2 on page

51). When the number of keys increases, the number of additional reads made by the
SIB

�
-tree increases. The cache-sensitiveness of the SIB

�
-tree slowly loses its efficiency

as the number of data references grows.

7.3.4 Sequential search test

In the sequential search test each index included a set of strictly consecutive keys. For
the B-tree and SIB

�
-tree it does not matter which values are used, but the compressed

trie benefits from a key set in which any two consecutive keys are close to each other.
The exact search times are presented in Figure 39. The figure shows that the SIB

�
-tree
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Figure 37: Random search test with a scaled number of keys. Exact times for all indices.
For each key set, one third of the keys were searched in random order.

clearly outperforms the B-tree and the compressed trie. This is not surprising since the
SIB

�
-tree is the only index in which the data is stored into the leaves. Sequential search

in SIB
�

-tree is comparable to reading from an array. In the B-tree and the trie each value
is read separately.

A comparison between the search times of the B-tree and the trie and the SIB
�

-tree is
presented in Figure 40. Searching one million consecutive keys from the B-tree takes 4
to 9 times longer, and from the trie 6 to 11 times longer, than scanning same number of
keys from the SIB

�
-tree. The difference is smaller on older machines but increases when

more modern machines are used. This is likely due to the better branch prediction and the
better CPU prefetch properties of the newer machines. Prefetching is very powerful when
reading the arrays.

This test does not tell the whole truth about the sequential search properties of the B-tree.
The sequential scan was achieved in the test as a sequence of separate search operations.
In order to make an efficient sequential scan, a real tree-traversing function would have to
be implemented. The results for the B-tree are presented for the sake of comparison with
the results for the compressed trie.
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Figure 38: Random search test with a scaled number of keys. Relative times for the
compressed trie and the B-tree. Results are compared with those of the SIB

�
-tree. For

each key set, one third of the keys were searched in random order.

8 Conclusions

It has been shown that cache-efficiency is a crucial property for database indices. Cache-
consciousness can be achieved by various means. In general, data locality can be im-
proved by storing physically close to each other sets of data items that are to be referenced
in a short period of time. In many search trees this principle materializes when keys and
pointers are clustered and stored into nodes. Data locality can be improved by eliminating
pointers attached to the keys in order to fit more keys to the internal nodes. The number of
keys a node can hold can further be increased by key compression. In general, the com-
pression makes the structure more compact but searching then requires more processing
from the CPU. As experienced, this is not a problem since modern processors do not lack
the processing power. Another solution is to shorten the cache-miss latency by prefetch-
ing data before the cache miss actually occurs. This feature is integrated with the modern
processors, which efficiently exploit the prefetching property.

The CSB
�

-tree [RR00] is a B-tree variant in which pointers are eliminated from the in-
ternal nodes. The children of an internal node are stored into a contiguous memory area
called a node group. The nodes of a node group share the same parent node. The CSB

�
-

tree stores keys into internal nodes more economically than the B-tree but the leaf nodes
of the B-tree and the CSB

�
-tree are similar. Due to the possibility of half-full node

groups, the leaf level of a CSB
�

-tree may use memory twice as much as a B
�

-tree. In
other words, the worst-case memory utilization on the leaf level for the CSB

�
-tree is 	 ��� .

We have proposed a variant of the CSB
�

-tree, called the SIB
�

-tree, which remarkably en-
hances the memory utilization and thus decreases the memory consumption of the struc-
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Figure 39: Sequential search test. Exact times for all indices. One third out of 3 million
keys were searched in ascending order.

ture. The enhancement is due to the proposed Split-Delaying (SD) algorithm, which de-
lays the splitting of a leaf-node group until all the nodes of the group are full. The formal
definitions for the CSB

�
-tree and for the SIB

�
-tree were presented. An order-preserving

compression method, called the difference method, was presented. The difference method
generally increases the number of keys a node can contain. In some cases, the node uti-
lization may even be multiplied. Finally we explored several methods for searching within
a node, and proposed a method, which is a combination of binary search and sequential
scan.

The SIB
�

-tree was implemented with an SD algorithm and with optimized node search,
and its memory usage and cache behaviour were compared to those of a B-tree and of
a compressed trie. The search performances of the SIB

�
-tree, the B-tree and the com-

pressed trie were thoroughly tested on several machines and the test results of the differ-
ent indices were compared against each other and profoundly analyzed. The difference-
compression method was tested on several machines and the test results were compared to
those of the uncompressed storing method. The results of the comparison were presented
and thoroughly analyzed. Two linked-list-like data structures, called the B

�
-chain and

the cache-conscious chain (CC-chain), were implemented in order to explore the perfor-
mance of the CPU-efficient and memory-efficient data structures. The chains were tested
on several machines and the results of the both chains were compared and analyzed.

The tests showed that the SIB
�

-tree provides the fastest search operations in both random
and sequential search tests. The reason for its success is the good data locality it exhibits.
Sequential search is fast because all the data is stored into the leaves. The data locality
of the B-tree is also fairly good although pointers are stored alongside with data into each
node. The B-tree is deeper than the SIB

�
-tree because of the lower branching factor of
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Figure 40: Sequential search test. Search times for the B-tree and for the compressed
trie compared with those of SIB

�
-tree. One third out of 3 million keys were searched in

ascending order.

the nodes. However, the average search path in the B-tree is shorter than its height, which
compensates the higher structure.

The (8-way width and height) compressed trie is a fast digital search tree but its efficiency
is affected notably by the distribution of key values. Roughly speaking, the compressed
trie is very fast if the key values are strictly consecutive or the distance between two con-
secutive keys is small. The key values used in the tests were selected randomly; therefore
the compressed trie did not show remarkable search performance in the tests.

The ongoing hardware evolution affects remarkably the search performance of indices.
The search performances of the B-tree and the compressed trie were compared with that of
the SIB

�
-tree. The tests showed that the B-tree has become faster with higher CPU clock

rates. The B-tree benefits from the increased processing power and enhanced branch pre-
diction of modern CPUs. However, a closer look at the tests performed on the machines
equipped with P4 processors shows that the B-tree has reached its performance limit in
relation to the SIB

�
-tree. The search speed of the compressed trie, instead, dramati-

cally slowed down as the machines evolved. The compressed trie suffers from its poor
data locality, which prevents it from benefitting from the increasing clock rates of CPUs.
Finding and transporting the data from the memory to the CPU dominates and decreases
the search performance of the trie. If the speed gap between the memory and the CPU
keeps growing further the trie will very likely continue to slow down.

The following topics seem interesting for future research. Applying the node compres-
sion to the SIB

�
-tree would result in a less-memory-consuming index, faster search oper-

ations, and, unfortunately, an increased complexity in implementation. The compressed
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trie already is a very economic indexing method for binary data. Enhancing its cache-
consciousness would most likely result in an index which could better benefit from the
rapidly enhancing CPU processing power. Building an efficient SIB

�
-tree requires adding

various parameters manually to the code, such as cache-line size, node size and fine tun-
ing for the binary search to be used. If, during the initialization, the SIB

�
-tree could

automatically investigate the central properties of the underlying hardware, manual con-
figuration could be avoided. Finally, applying cache-conscious access methods to differ-
ent platforms, hand-helds for example, is an interesting idea. If the hardware evolution
in hand-helds will be similar to that in personal computers it is likely that the solutions
surveyed in this thesis will also give an enhanced performance to the access methods used
in such platforms.
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Appendix 1. Bit operations used while mapping a memory
address to a cache line

Mapping a memory address to a cache line consist of simple arithmetical operations such
as divisions and modulations. Those can be achieved by efficient bit-operations if the
(dividing/modulating) factors are powers of two.

Assume an integer
I

interpreted as a bit-field
<

of length : . Let
1

be a divider such that1 Á < and
-

modulator such that
- Á < . Following arithmetic operations can be trans-

lated to bit-operations if the divider/modulator in turn is a power of 2:IÜ14Ie�L1 ' 57/*� � 1õô <
and I¯-0/21L- ' l : oÚ57/*� � - q ô le<�ö l : oÚ57/E� � - qmq

Start with 85

1Divide 85 by 2

42 modulo 8 0  0  1  0  1

Result  is 2 0  0  0  0  0  0  1  0

24 1163264128 8Decimal number

0  1  0

0  1  0  1  0  1  0  1

0  1  0  1  0  1  0

Figure 41: Bit operations needed in mapping an 8-bit address to a direct-mapped cache.

For example, solving
le8��Æ14Is�4Is1R> 	4q -0/2143657/Æ8 can be achieved by two bit-shifts as pre-

sented in Figure 41.



Appendix 2. Search within a compressed node

Searching a node which is compressed by the Difference-method:

h = the high value of the node
s = the search-key
t = the Difference-value for the search-key s
t = h - s
if t < 0 // the search-key is bigger than the high value

move to the sibling node on the right and restart the search
else if t > 0 // the search-key is smaller than the high value

if number(space(t)) != 0 // keys using equal number of bytes exist
{

search t among keys d[x] for which the condition:
space(t) == space(d[x]) holds.

}
else // keys using equal number of bytes don’t exist
{

if there is a value d[x] greater than t
choose the smallest d[x] greater than t

else if (space(t) == 1)
choose the high value and add one to the offset

else
choose the first d[x] such that space(d[x]) < space(t);

}
else if t == 0 // search-value is equal to the high value

choose the high value
if the inspected node is leaf

return the pointer
else

follow the pointer towards the leaf level



Appendix 3. Search algorithm for the CSB
T

-tree

32B 28B

A node including 15 keys + 1 pointer
64 bytes in total

4B

middle key

Figure 42: A SIB
�

-tre node equal in size with two cache lines (32B each). The search
starts from the middle key.

The search algorithm of the SIB
�

-tree is presented in pseudo code below. The optimized
search within the node requires that the node size is known before. The values of the
parameters can be chosen freely; here the following assumptions about the values are
made (see Figure 42):

1. node size is 64B,

2. cache line is 32B,

3. key size is 4B, and

4. pointer size is 4B.

group = be the node group currently being inspected
offset = the offset from the beginning of the node group’s

node-array to the node which is currently inspected

tuple_address_t *search (*root_group, search_value)
{

group = root_group
offset = 0
while group is not on leaf level
{
offset = search_internal_node(group+offset)
group = (group+offset)->child

}
for each non-empty node n in group
return search_leaf_node(n)

}

int search_internal_node(node)
{

int offset = 0



if middle key >= search_value
{
offset = offset to the middle key
while previous key >= search_value

offset = offset to last inspected key
}
else
{
loop while next key < search_value {}
if last inspected key > search_value

offset = offset to last inspected key
else

offset = offset to last inspected key + 1
}
return offset

}

tuple_address_t search_leaf_node(n)
{

if middle key == search_value
return the pointer attached to the middle key

if middle key > search_value
loop while previous key > search_value

else
loop when next key >= search_value

if last inspected key == search_value
return the pointer attached to the last inspected key

else
return 0

}


