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Abstract

Colorectal cancer is among the major cancers and one of the leading causes of cancer-related deaths in
Western societies. Its occurrence is strongly affected by environmental factors such as diet. Thus, for
preventative strategies it is vitally important to understand the mechanisms that stimulate adenoma
growth and development towards acce erated malignancy or, in contrast, attenuate them to remain in
quiescence for periods as long as decades.

The main objective of this study was to investigate whether diet is able to modulate 3-catenin
signalling related to the promotion or prevention of intestinal tumourigenesis in an animal model of
colon cancer, the Min/+ mouse. A series of dietary experiments with Min/+ mice were performed
where fructo-oligosaccharide inulin was used for tumour promotion and four berries, bilberry
(Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), cloudberry (Rubus chamaemorus) and
white currant (Ribes x pallidum), were used for tumour prevention. The adenomas (Apc’) and
surrounding normal-appearing mucosa (Apc”) were investigated separately due to their mutational
and functional differences.

Tumour promotive and preventive diets had opposite effects on p-catenin signalling in the
adenomas that was related to the different adenoma growth effects of dietary inulin and berries. The
levels of nuclear B-catenin and cyclin D1 combined with size of the adenomas in the treatment groups
suggests that diets induced differences in the cancerous process. Adenomas progressing to malignant
carcinomas are most likely found in the sub-groups having the highest levels of p-catenin. On the
other hand, adenomas staying quiescent for a long period of time are most probably found in the
cloudberry or white currant diet groups. The levels of membranous E-cadherin and [-catenin
increased as the adenomas in the inulin group grew, which could be a result of the overall increasein
the protein levels of the cell. Therefore, the increasing levels of membranous B-catenin in Min/+ mice
adenomas would be undesirable, due to the simultaneous increase in oncogenic nuclear p-catenin. We
propose that the decreased amount of membranous (3-catenin in benign adenomas of berry groups also
means a decrease in the nuclear pool of B-catenin.

Tumour promotion, but not the tumour prevention, influenced p-catenin signalling already in the
normal appearing mucosa. Inulin-induced tumour promotion was related to B-catenin signalling in
Min/+ mice, and in WT mice changes were aso visible. The preventative effects of berries in the
initiation phase were not mediated by p-catenin signalling. Our results suggest that, in addition to the
number, size, and growth rate of adenomatous polyps, the signalling pattern of the adenomas should

be considered when evaluating preventative dietary strategies.
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| ntroduction

Colorectal cancer is the second most common cancer in both incidence and mortality among men and
women in more developed countries (Stewart & Kleinhues 2003). It is estimated that 5% of the
Western population will develop colorectal malignancy during their lifetime. Nearly 945000 new
colorectal cancer cases are diagnosed worldwide each year and colorectal cancer is responsible for
some 492 000 desths. The highest incidence rates occur in Europe, North America, Australia and
Japan. The American Cancer Society estimates that in 2007 around 153 760 people will be diagnosed
with colorectal cancer and around 52 180 people will die of the disease (Jemal et al. 2007). In Finland,
colorectal cancer is among the three most common cancers in both men and women, with incidences
in 2005 of 28 and 21 per 100 000, respectively (Finnish Cancer Registry 2007).

Colon cancer most commonly occurs sporadically and is inherited in only 5% of cases (Stewart &
Kleinhues 2003). Interactions between genetic and environmental factors play a critical role in its
aetiology. Diet is a major environmental factor that affects colon carcinogenesis — it has been
estimated that 70% of cases could be prevented by nutritional and life-style interventions (Platz et al.
2000). Risk factors and protective factors have been studied extensively (Potter 1999, Donaldson
2004) but the relation between diet and colon cancer as well as the role of specific foods and cellular

mechanisms are still not clear.

Interventions that decrease the growth rate of adenomatous polyps have been estimated to be much
more effective in reducing therisk of colon cancer than those that decrease the rate of mutations at the
APC locus (Adenomatous Polyposis Coli), found in 80% of cases (Luebeck & Moolgavkar 2002).
This emphasises the role of diet in lifelong cancer prevention and the importance of understanding
how diet modulates adenoma growth, especially the progression of adenomatous polyps to
malignancy. It is estimated that one in two people will have a benign colonic tumour during their
lifetime and, furthermore, that 10% of those tumours progress to malignancy (Kinzler & Vogelstein
1996). It is therefore important to understand what makes some adenomas grow and develop toward

malignancy while the others stay quiescent for decades.

Colon cancer tumourigenesis progresses through epigenetic alterations in colon cancer stem cells that
lead to genetic changes (Feinberg et al. 2006). One of the earliest mutations is in the APC gene, which
is also the earliest mutation found in the adenoma-carcinoma sequence of colon cancer (Vogelstein et
al. 1988). Loss of APC function results in the activation of the Wnt/B-catenin signalling pathway
(Morin et al. 1997) that is widely studied as atarget for cancer drugs (Kundu et al. 2006). The aim of
this work was to find out whether diet is able to modulate intestinal B-catenin signalling that is related

to promotion or prevention of intestinal tumourigenesisin an animal model of colon cancer.
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p-catenin signalling and intestinal tumourigenesis

Role of APC in the adenoma-car cinoma sequence

Both the small intestine and colon have specialised epithelial functions. The structure of the
epithelium is very similar in the small intestine and colon, even though the overall architecture is
different. The small intestine consists of finger-like villi surrounded by the openings of glandular
structures, crypts of Liberkithn (Figure 1). This ensures a large absorptive area that is covered by

columnar epithelial cells. The colon does not have villi but the invaginations are deeper.

The intestinal mucosa is a place of continuous cell proliferation and migration. Near the base of the
crypts are stem cells that give rise to daughter cells in the proliferating zone. As the cells migrate
upward the cell cycleis arrested and cells start to express differentiation markers when they reach the
top one-third of colonic crypts or the crypt-villus junction in the small intestine. Differentiated
enterocytes (or colonocytes in the colon) are the absorptive epithelial cells that constitute the majority
of cells and transport nutrients across the epithelial wall. Highly polarized enterocytes have functional
cdl-cell junctions that enable their migration in coherent bands stretching along the crypt-villus axis.
At the top of small intestinal villi or the collar of colonic crypts cells undergo apoptosis and are
exfoliated. Other functional cell types in the intestine are mucin-secreting Goblet cells and hormonally
active enteroendocrine cells. Paneth cells that secrete antimicrobial molecules are predominantly
found at the bottom of the small intestinal crypts. These epithelial cells are known to interact with
mesenchymal cells and immunologically active cells and, furthermore, the intestinal microflora affects

epithelial cell properties.

The intestinal epithelium constitutes the definitive barrier between the outside world and the body. In
this extremely hostile and stressful environment the integrity of the epithelium is ensured by rapid
turnover, which usually ensures that oncogenic mutations do not cause much harm. The life cycle of
an individual epithelial cell spans less than a week and encompasses the initiation of cell proliferation

to sloughing.
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Figure 1. Structure of the small intestine. Stem cells give rise to proliferating progenitor cells that
migrate upward. Paneth cells migrate downward and localise at the bottom of the crypt. At the crypt-
villus junction progenitors stop proliferating and differentiate to enterocytes, Goplet cells or
enteroendocrine cells. At the top of the villus cells undergo apoptosis and are relased to the intestinal
lumen (modified from Gregorieff & Clevers 2005).

Vogelstein et al. (1988) were the first ones to provide evidence that different pathological stages of
colon cancer could be identified by specific successive genetic changes in oncogenes and tumour-
suppressor genes. It is now widely accepted that colon cancer proceeds through an adenoma-
carcinoma sequence (for example see Fodde et al. 2001) (Figure 2).

SMAD2/4
APC K-RAS _BglLOH gy
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Nuclear B-catenin

Figure 2. The adenoma-carcinoma sequence for colon cancer. Loss of APC function is one of the
earliest events in colon tumourigenesis and it results in the activation of the Wnt/p-catenin signalling
pathway. Sequential mutations in K-RAS, SMAD2/4 and p53 lead to progression toward malignancy.
Nuclear B-catenin is observed late in de-differentiated tumours, mainly at the invasive front. It
increases as tumours progress (modified from Fodde et al. 2001, Giles et al. 2003, Brembeck et al.
2006).
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The earliest identified precursors of colon cancer are aberrant crypt foci (ACF) (Takayama et al.
1998a). These lesions consist of large, thick crypts that are only visible by methylene blue staining or
by microscopy (Bird 1987). A wide range of histologies and biological properties of ACFs causes
debate about their role in colon tumourigenesis (Pretlow & Pretlow 2005) and the mechanisms by
which polyps or adenomas are formed. Two types of ACFs have been distinguished (Nucci et al.
1997). The most common type arising from activating mutations in K-RAS is associated with
hypercellular or hyperplastic crypts that seldom develop into malignant carcinomas. The second type,
dysplastic or unicryptal adenoma ACFs, bear APC mutations and occur frequently in carcinoma-
associated colon mucosa (Nucci e al. 1997). The benign tumour mass that protrudes into the lumen of
intestinal epithelium forms polyps that can be of two types hyperplastic (nondysplastic) polyps that
preserve their normal architecture and cellular morphology or adenomatous (dysplastic) polyps that
have abnormalities both in inter- and intracellular organization (Fodde et al. 2001).

Mutations in the tumour suppressor gene APC are one of the earliest genetic alterations as normal
intestinal epithelium becomes dysplastic. APC is also said to be a gatekeeper gene in the devel opment
of colon cancer. Inactivation of both alleles of the APC gene triggers the adenomatous process but
additional mutations, such as in the oncogene KRAS and the tumour suppressor gene p53, result in a
further growth advantage and lead to the progression to carcinomas. The role of APC mutations as
initiators of colon tumourigenesis has been, however, challenged as the importance of KRASin ACFs
has been revealed (Pretlow & Pretlow 2005). It appears increasingly likely that there are multiple

starting points for colon cancer.

Truncation mutations in the gene encoding the APC protein are found in the mgority of sporadic
colonic tumours. APC was originaly identified as the gene mutated in Familial Adenomatous
Polyposis (FAP) (Grode et al. 1991, Kinzler et al. 1991) and it is responsible for thisinherited form of
colon cancer (Su et al. 1992, Fodde et al. 2002). FAP patients develop large numbers of colonic
adenomas early in life, some of which progress to malignancy by about the fourth decade of their life.
Loss of APC is an early event in colonic tumourigenesis and precedes the formation of polyps,
precursors to adenomas (Néthke 2004). APC controls cellular proliferation, adhesion, migration and
differentiation in the self-renewing intestinal crypts and villi. As cancer is often the result of
abnormalities in multiple and distinct cellular functions, inactivation of this multi-functional gene may

efficiently trigger tumour formation and promote progression towards malignancy (Fodde et al. 2003).

In humans, APC is located on chromasome five and encodes a large, ubiquitously expressed protein
(312 kDa, 2843 amino acids). The structural organisation of the APC protein is well described by
Fearnhead et al. (2001) and Néathke (2004). The N-terminus contains an oligomerization domain,
nuclear localization signals (NLS), and nuclear export signals (NES). The middle of the APC protein
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contains the domains important for interactions with proteins in the Wnt signalling pathway, 3-catenin,
axin, and glycogen synthase kinase 33 (GSK3p). The C-terminal region of APC contains motifs that

mediate interactions with a number of structural proteins, microtubules among others.

Both alldes of the tumour suppressor APC must become dysfunctional for total loss of growth
suppressing activity. Hundreds of different disease-associated mutations of the APC gene have been
reported in colon cancer (Laurent-Puig et al. 1998). The majority of germline and somatic mutations
in APC occur in thefirst half of the coding region within the mutation cluster region (MCR) (Nagase
& Nakamura 1993). These changes are insertions, deletions, and nonsense mutations that lead to
truncation of the central region of the protein containing the B-catenin binding site. The site of the
initial truncation mutation in the APC gene may predict whether the * second hit’ is another mutation or
whether the remaining wild-type APC allele is simply lost asin FAP (Lamlum et al. 1999, Rowan et
al. 2000). In sporadic colon cancers, the majority of second mutations result in loss of the wild-type
APC allele (Miyoshi et al. 1992, Fearnhead et al. 2001).

The best studied function of APC is in relation to Wnt/p-catenin signalling that regulates growth,
apoptosis and differentiation. This pathway has a key role during norma development of different
tissues but when aberrantly activated is associated with carcinogenesis. To study the role of APC in
the development of intestinal cancer several Apc mutated mouse models have been generated (Fodde
et al. 2001, Kucherlapati et al. 2001, Giles et al. 2003, Taketo 2006). The phenotype of the animals
depends largely on the precise location of the Apc mutation. The best-known and perhaps most widely
used model isthe Min/+ mouse (Maoser et al. 1990, Su et al. 1992, Clarke 2006) that due to a nonsense
mutation in codon 850 produces a truncated Apc polypeptide of approximately 95 kDa. Mice
heterozygous for this mutation (Apc™) develop dozens of intestinal tumours - multiple intestinal
neoplasia. Initiation is caused by loss of heterozygosity (LOH) of the remaining wild-type Apc alee
and leads to the formation of adenomatous polyps (Apc”). The precise mechanism is still unknown
but it could, for instance, be related to the role of Apc in mitotic events as mitotic defects, like
aneuploidy, seem to occur in histologically normal intestinal epithelium before the appearance of
dysplacia or adenomas (Caldwell et al. 2007).

Initiation occurs both in the small instestine and colon of Min/+ mouse although most of the adenomas
are located in the small intestine with only a few in the colon. In the small intestine the Apc mutant
cells with uncontrolled levels of p-catenin expand from dysplastic crypts to larger lesions that will
eventually give rise to an adenoma (Moser et al. 1990, Su et al. 1992, Oshima et al. 1997 Yamada et
al. 2002). Small flat dysplastic lesions denoted ACFy;, or flat ACF are early lesions in the colon of
Min/+ mice that exhibit altered control of B-catenin and proceed from the monocryptal stage to
adenoma with fast crypt multiplication (Paulsen et al. 1997, Paulsen et al. 2000, Paulsen et al. 2001).
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Due to the molecular biological similarity to human colon cancer Min/+ mice are frequently used
when involvement of environmental and genetic factors in tumourigenesis are studied (Shoemaker et

al. 1997, Corpet & Pierre 2003, http://www.inra.fr/reseau-nacre/sci-memb/corpet/indexan.html).

Regulation of p-catenin signalling

The following presentation of the regulation of p-catenin is mainly based on the extensive reviews of
Bienz & Clevers (2000), Bienz (2002), Wong & Pignatelli (2002), Giles et al. (2003), Nathke (2004),
Hanson & Miller (2005) and Reya & Clevers (2005). The intracellular distribution of p-catenin is of
great importance for the functions of B-catenin and the subsequent behaviour of differentiated
epithelial cells or tumour cells (Figure 3). B-catenin exists in three subcellular fractions: in the cellular
membranes as a part of the adhesion complex, in cytosol where the excessive protein is degraded and

in the nucleus where B-catenin can influence transcription.

Most celular B-catenin interacts with E-cadherin in adherens junctions from where it is continuously
released and re-incorporated (Klingelhofer et al. 2003). The adherens junctions are essential for the
main features of epithelial phenotype: cell-cell adhesion, homophilic cell adhesion and cellular
polarity defining basal and apical orientation. It may also modulate the amount of B-catenin available
for signalling (Brabletz et al. 2005a, Gumbiner 2005).

E-cadherin is a single-span transmembrane-domain glycoprotein that is expressed primarily in
epithdial cdls. Its extracellular region has a Ca?*-dependent homophilic adhesion function and the
cytoplasmic domain interacts with catenins (Cavallaro & Christofori 2004, Gumbiner 2005). The
affinity between B-catenin and E-cadherin is high. Binding of p-catenin and E-cadherin takes place
immediately after synthesis and guides the complex to the cell surface (Hinck et al. 1994a, Cox et al.
1996) apparently in an APC-dependent manner (Bienz 1999, Klingelhofer et al. 2003). a-catenin binds
to cytoplasmic p-catenin and promotes selective binding to cadherin (Gottardi & Gumbiner 2004).
Coupled with a-catenin, B-catenin links cadherins at the plasma membrane to the actin cytoskeleton to
mediate cellular adhesion (Figure 3). This E-cadherin—f-catenin—a-catenin complex forms a dynamic,
rather than a stable, link to the cytoskeleton (Drees et al. 2005, Yamada et al. 2005).
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Figure 3. Regulation of B-catenin. In the absence of Wnt signal B-catenin is phosphorylated by an
APC-axin-GSK-3B-CKI complex and targeted for degradation by B-TrCP. Wnt signalling proceeding
through Frizzed-Dishevelled or APC mutation rescues B-catenin from degradation. Translocation of 8-
catenin to the nucleus enables the transcription of B-catenin/TCF responsive genes. As part of
adherens juctions p-catenin with E-cadherin and o-catenin connects actin cytoskeletons of
neighbouring cells. B-catenin released from E-cadherin is part of the free intracellular p-catenin pool
availablefor celular signalling (modified from Bienz & Clevers 2000).

In the absence of activating Wnt signals, free cytoplasmic p-catenin is destabilised by numerous
kinases and phosphatases and a multiprotein complex containing APC, axin, GSK3p (Né&thke 2004).
GSK3p phosphorylates B-catenin and two scaffolding proteins in the complex, which increases their
interaction. p-catenin is initially phosphorylated by casein kinase | (CKI) to provide the priming
necessary for efficient phosphorylation by GSK3p. Sequential phosphorylation of a set of conserved
Ser and Thr residues in the amino terminus of B-catenin recruits a -TrCP-containing E3 ubiquitin

ligase and subsequently leads to degradation of [3-catenin by proteasomes.

In the presence of a Wnt signal, the Frizzled-Lrp5/6 receptor complex is activated. This leads to a
poorly understood signalling cascade in which the kinase activity of the p-catenin destruction complex
is inactivated. The mechanism by which receptor occupancy inhibits the kinase activity of GSK3p

seems to involve the phosphorylation of an axin-binding molecule, Dishevelled, that causes

14



dissociation of the B-catenin destruction complex as it binds axin (Doucas et al. 2005). As a
consequence, B-catenin cannot be targeted for destruction, but it accumulates and trand ocates to the
nucleus where it acts as a co-activator for T-cell factor (TCF)/lymphoid-enhances factor (LEF)-

responsive genes.

Earlier, the presence of APC protein in the nucleus was debated. It is now known to be shuttled into
and out of the nucleus by NL S and NES sequences (Bienz 2002). This feature gives APC adual rolein
downregulating f-catenin activity. APC promotes the nuclear export of -catenin to the cytoplasm by
direct transport or by indirectly shifting the equilibrium of p-catenin to the cytoplasm. In cytoplasm
APC then promotes axin-mediated destabilisation of B-catenin (Rosin-Arbesfeld et al. 2000,
Henderson et al. 2000, Neufeld et al. 2000). Other B-catenin interaction partners also retain -catenin
in the compartment in which they are localized and in that way regulate B-catenin subcelular
localisation (Krieghoff et al. 2006).

The loss of full length APC protein affects p-catenin similarly to Wnt signalling, leading to
accumulation and translocation of B-catenin to the nucleus due to non-functional degradation. The
mutated APC may also have another effects on p-catenin. The truncated APC typically observed in
colon cancer is not exported efficiently from the nucleus due to the lack of necessary central NESs.
Mutated APC is also unable to export B-catenin from the nucleus, or may even trap B-catenin in the
nuclei of these cells (Bienz & Clevers 2000).

E-cadherin binds to the same region of p-catenin as the destruction complex proteins APC and axin,
and TCFs (Harris & Pefer 2005). E-cadherin competes with other binding partners of B-catenin
(Orsulic et al. 1999) keeping B-catenin away from nuclear signalling (Gottardi et al. 2001, Wong &
Gumbiner 2003). However, E-cadherin may have a surprisingly small impact on gene expression in
the absence of Wnt signalling (Kuphal & Behrens 2006). Any activity capable of dissociating f-
catenin from the membranous pool could rapidly increase the level of free B-catenin available for

transcription (Harris & Pefer 2005).

Traditionally, the transcriptional activity of B-catenin is considered to hinge on stabilization of
cytoplasmic B-catenin and its translocation to the nucleus but Gottardi and Gumbiner (2004), as well
as Brembeck and collegues (2004), have chalenged this view. According to their discoveries,
regulated changes in -catenin structure alter specific protein interaction affinities to dictate whether
B-catenin interacts with adhesion or transcription complexes. Tyrosine phosphorylation of -catenin
may result in dissociation of B-catenin from adherens junctions (Brembeck et al. 2006). Of particular
importance are two tyrosine residues in B-catenin: tyrosine 654 that is essential for binding to E-
cadherin (Roura et al. 1999, Piedra et al. 2001) and tyrosine 142 that is crucia for binding to a-
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catenin (Aberle et al. 1996, Piedra et al. 2003, Brembeck et al. 2004). Tyrosine phosphorylation is
also involved in the regulation of the free cytoplasmic pool of B-catenin as tyrosine phosphorylation of
[-catenin prevents its association with the destruction complex (Danilkovitch-Miagkova et al. 2001).

Formation of B-catenin-TCF complex during Wnt signalling is not only due to elevated B-catenin
levels. Conformational changes in cytoplasmic B-catenin due to tyrosine phosphorylation results in
selective binding of p-catenin to TCF and lowers the affinity of cadherin interaction (Gottardi &
Gumbiner 2004). It is also speculated that APC and axin interactions might be blocked. -catenin does
not bind to DNA directly, but interacts with Tcf/Lef factors, which transiently converts them into
transcriptional activators (Giles et al. 2003). The vertebrate genome encodes four highly similar
Tcf/Lef proteins whose activity is tightly controlled by negative regulators, like Groucho. Tcf/Lefs are
normally expressed during embryogenesis, but in most tissues are downregulated once the tissue
becomes terminally differentiated. However, in sites of continual cell growth, such as bone marrow,
skin, and intestinal mucosa, they are constantly expressed (Giles et al. 2003).

B-catenin/Wnt signalling regulates the complex balance of proliferation, migration and differentiation
which is essential for normal functioning of the rapidly proliferating intestinal epithelium. In the
normal intestinal epithelium B-catenin is located mainly in the proliferative compartment in the crypt
and its expression decreases as cells move upward. Conversely, levels of APC increase as
differentiating cells move up the crypt-villus axis (Smith et al. 1993, Midley et al. 1997).
Compartmentalisation of B-catenin signalling in the crypt-villus axis has also been proposed (van de
Wetering et al. 2002, Radtke & Clevers 2005, Clevers 2006). In crypts, Wnt proteins expressed by the
crypt epithelial cells (Gregorieff et al. 2005) drive the formation of B-catenin/Tcf complexes and thus
stimulate the proliferation of crypt progenitors as well as promote the terminal differentiation of
Paneth cells, residing at the bottoms of the crypts (van Es et al. 2005). This is mediated at least in part
through Wnt-controlled expression of the EphB sorting system (Batlle et al. 2002, Clevers & Batlle
2006). The absence of Wnt signalling in the villus compartment results in rapid cell cycle arrest and
differentiation.

Nuclear B-catenin is a hallmark of an active Wnt pathway. Dozens of Wnt/p-catenin target genes able
to regulate different cellular aspects have been identified and an updated list of target genes can be
found from http://www.stanford.edu/~rnusse/'wntwindow.html. Many of the targets, like c-myc and
cyclin D1 (He et a. 1998, Shtutman et al. 1999, Tetsu & McCormick 1999), have the potentia to
change the proliferation, cell-cycle progression and differentiation states of cells. Wnt/p-catenin
signalling also influences apoptosis, angiogenesis, extrace lular matrix degradation and cell adhesion
(Table 1). All these highly regulated processes are needed in the normal physiology of intestinal
epithelium.
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Table 1. Representativelist of B-catenin target genes and their function. Modified from Brablez et al.
2005.

Target gene Function

c-myc Proliferation

cyclin D1

Slug EMT induction

c-jun Oncogenic transcription factors
ets2

fra-l

ITF-2

MMP-7 Protein degradation
MMP-26

MT1- MMP

UPA-R

VEGF Angiogenesis

BMP-4 Morphogenesis
Ephrinb2/B3

Laminin g2 chain Migration
Fibronection

L1

CD44 Dissemination

Cdx1 Loss of differentiation
1d2

Enc-1

Gastrin Trophic factors
PPARdelta

MDR Cdl survival

Survivin Stem cell formation
Conductin/axin-2 Negative feedback and tumour suppression
Tcf-1

Aberrant p-catenin signalling in intestinal tumourigenesis

Any disturbance in normal intestinal homeostasis may lead to tumour development. Traditionally, the
intestinal mucosa of human colon cancer patients has been considered normal. Now thereisincreasing
evidence that mucosa also has genetic and cell signalling alterations early in carcinogenesis (Chen et
al. 2004, Hao et al. 20053, Hao et al. 2005b, Sugiyama et al. 2005). The expression of several genesis
differently regulated in normal-appearing colonic mucosa from human colon cancer patients when
compared with normal colonic biopsies from individuals without cancer (Chen et al. 2004). Changes
in normal colon may precede or at least accompany the development of cancer as alterations in gene
expression patterns in morphologically normal-appearing colonic mucosa are associated with the
presence of adenomatous polyps (Hao et al. 20053). It is also known that loss of wild-type Apc protein
in the normal-appearing mucosa of Min/+ mice is associated with the earliest stages of dysplasia and
moreover mitotic defects precede the loss of the second allele of Apc, B-catenin stabilisation, and
dysplastic growth (Caldwell et al. 2007).
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The earliest mutation reported in the adenoma-carcinoma sequence, the APC mutation, has deleterious
effects on the architecture and function of the intestinal epithelium. The primary consegquences of
inactivation of Apc have been studied with conditional models (Sansom et al. 2004, Andreu et al.
2005). The inactivation of Apc activates Wnt signalling through rapid nuclear relocation of B-catenin
which requires Myc as the critical mediator (Sansom et al. 2007). This changes both the appearance of
enterocytes and the histology of the crypt. Apc-deficient cells maintain a “crypt progenitor-like”
phenotype with perturbed differentiation, impaired migration, increased proliferation, and e evated
apoptosis. The adenomas are said to result from the unabated expansion of these crypt progenitor-
phenotype cells (Gregorieff & Clevers 2005). The role of B-catenin signaling in intestinal
tumourigenesis is strengthened by the fact that genetically modified mice lacking p-catenin/Tcf
activity lack the proliferative progenitors in the intestine (Korinek et al. 1998, Pinto et al. 2003,
Kuhnert et al. 2004).

APC mutation results in the enlargement of the proliferation zone as APC is unable to attenuate -
catenin signalling and favour differentiation. Cell migration is slowed down and the initial direction is
lost. This might provides an early mechanism for disease progression: an increased number of cellsin
the crypt-villus compartment allows the opportunity for a ‘second hit'. As mutated cells start to
accumulate and form a polyp and early adenoma, other mutations may be adopted more easily thereby
leading to tumour progression. The enlargement of the proliferation zone has been documented also in
the Min/+ mouse. The preneoplastic intestina epithelium of the Min/+ mouse expresses both the 312
kDa full-length and the 95 kDa truncated Apc proteins (Apc*). Apc mutation results in an extended
proliferative compartment, reduced cellular turnover and decreased enterocyte migration in the normal
intestinal epithelium of the Min/+ mouse (Mahmoud et al. 1997, Mahmoud et al. 1999).

Adenoma cells of Min/+ mice have homozygous truncating Apc mutations (Apc’) and abnormal
migration behaviour due to activated p-catenin/Tcf genes. Activated p-catenin/Wnt signalling leads to
the formation of benign intestinal lesions similar to the preneoplastic lesions developed by humans,
such as dysplastic crypts and adenomas. In dysplastic crypts the APC mutant cells expand laterally and
repopulate the surrounding crypts (Moser et al. 1990, Su et al. 1992, Yamada et al. 2002). Adenomas
develop at the crypt-villus junction and form pockets that migrate inside the normal epithelium of the
villus (Oshima et al. 1997). The cells proliferate inside the mucosa as a disorganized mass that will
eventually give rise to a tumour. In the initial process of adenoma formation p-catenin affects the
aberrant crypt fission (Wasan et al. 1998). Adenomas of Min/+ mice do not go beyond this promotion
stage. Progression to carcinoma or invasive activity has not been described in Min/+ mice with a
C57BL background as they die early from anaemia due to a large number of tumours. Although in
Min/+ mice with an AKR background carcinomas have been observed which is probably due to their

higher resistance, lower number of tumours and longer life (Moser et al. 1992).
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The changes in pB-catenin expression and cellular localization are early events in colon cancer
development (Valizadeh et al. 1997, Sheng et al. 1998, Sparks et al. 1998, Lifschitz-Mercer et al.
1999, Samowitz et al. 1999, Lamlum et al. 2000). The amount of nuclear 3-catenin increases in the
course of tumour progression from small to large colorectal adenomas while strongest intensities are
found in the dedifferentiated carcinoma cells at the invasive front (Takayama et al. 1996, Hao et al.
1997b, Brabletz et al. 2000, lwamoto et al. 2000). In early colon adenomas nuclear B-cateninisrelated
to the morphogenic changes (Shih et al. 2001) and in late dysplastic colon adenomas the increasing
accumulation is associated with increasing irregular branching (Kirchner & Brabletz 2000). The
increased expression of nuclear p-catenin and the reduced expression of membranous B-catenin in
colorectal tumours have been well reported as well as their corrdation with metastasis and poor
prognosis (Takayama et al. 1996, Hao et al. 1997a, Valizadeh et al. 1997, Takayama et al. 1998b,
Hugh et al. 1999, Wang et al. 2002). However, some studies have not seen the connection (Maruyama
et al. 2000, Chung et al. 2001). A reciprocal relationship between reduced membranous and increased
nuclear p-catenin expression has aso been demonstrated in the development from adenoma to
carcinoma (Hao et al. 1997b, Hugh et al. 1999, Chung et al. 2001).

Within the colorectal carcinoma the cells in different areas show different proliferation rates, as
tumour cells at the luminal side and central areas proliferate more strongly than at the invasive areas
(Palmqvist et al. 1999). The staining for pB-catenin often shows a heterogeneous pattern with strong
nuclear enrichment at the invasion front and mainly cytoplasmic and membrane staining in the central
tumour area. Similarly, membranous E-cadherin is found in differentiated central areas of the
colorectal carcinoma, whereas in the invasive areas the expression of membranous E-cadherin is
decreased (Brabletz et al. 2001). Nuclear accumulation of 3-catenin appearsto predominate in areas of
active migration and remodelling rather than sites of proliferation in human tumours (Brabletz et al.
1998, Kircher & Brabletz 2000). Even though the target genes of p-catenin known to induce
proliferation, cyclin D1 and c-myc, follow the expression of nuclear B-catenin the simultaneous
overexpression of the cell cycle inhibitor p16™<*
(Brabletz et al. 2000, Palmgvist et al. 2000, Jung et al. 2001). This indicates that high levels of nuclear
B-catenin in the tumour margins, as compared with the tumour centre, play a role in the transition to

the invasive state of the tumour cells (Brabletz et al. 2001) and at the invasive front of well-

ceases the proliferation at the invasion site

differentiated colorectal tumours cyclin D1 may have functions other than proliferation (Jung et al.
2001).

Capahilities of invasion and metastasis are the hallmarks of malignant transformation. During the

carcinoma progression, advanced tumour cells frequently downregulate epithelial markers, like E-

cadherin, and loosen the intercelular junctions which result in the loss of epithdial polarity and

19



reduced intercellular adhesion (Christiansen & Rajasekaran 2006). E-cadherin mutations are very rare
in colorectal cancer (Schuhmacher et al. 1999) and the loss of E-cadherin observed in colorectal
cancers is generally associated with later stages of tumour progression and correlates with increased
tumour invasiveness (Birchmeier & Behrens 1994, Mohri 1997, Valizadeh et al. 1997, Perl et al.
1998, Takayama et al. 1998b). Loss of E-cadherin function seems to be a cause of its redisribution
from the cell membrane to the cytoplasm by tyrosine phosphorylation rather than due to reduced
expression of the protein (Hiscox & Jiang 1997, Wijnhoven et al. 2000). Alterations in any of cell
adhesion components may lead to disrupted function of the complex. The presence of membranous E-
cadherin does not always imply afunctional cell adhesion complex as 3-catenin may be dysfunctional.
Therefore, the combination of E-cadherin and one of the catenins may have a better prognostic value
than evaluation of the individual components (Gofuku et al. 1999) although some studies have failed
to show therelationship (llyas et al. 1997).

Colorectal carcinomas often retain an epithelial phenotype and grow in tubular structures. A loss of an
epithelial and gain of a mesenchyme-like phenotype by re-distribution of -catenin enablesinvasion in
tumour margins (Brabletz et al. 2005a). Oncogenic activation of B-cateninin the tumour invasion front
is associated with advanced Dukes stage, tumour recurrence and the presence of metastasis
(Ougolkov et al. 2002, Zhang et al. 2003). Many B-catenin target genes are involved in epithelial-
mesenchymal transition (EMT) by extracellular matrix proteolysis, induced cell migration, loss of E-
cadherin function and inhibition of epithelial differentiation (Table 1). Together with the genes
involved in formation of stem cells they effectively induce invasion and metastasis (Brabletz et al.
20054a). For example, MYC, MMP-7, CD44 and UPA-R, corrdate with tumour progression and have
been implicated with tumour invasion and metastasis (Fodde et al. 2001).

The microenvironment influences the growth and invasion potential of tumour cells by producing
various degrading enzymes such as matrix metalloproteinases (MMPs), by storing cytokines and
remodelling and supplying new vessels for the tumour (Liotta & Kohn 2001, Geho et al. 2005).
Environmental factors are the most probable reasons for the heterogeneous intracellular B-catenin
distribution and function in colorectal carcinomas (Brabletz et al. 2002, Brabletz et al. 2005a). Many
growth factors are shown to accumulate -catenin in the nucleus due to release of p-catenin from the
cell membranes by tyrosine phosphorylation (Brabletz et al. 2002) and, for example, MMPs are able
cleave the extracellular domains of E-cadherin that leads to the loss of E-cadherin function.
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Roleof cyclin D1 in the cell cycleand in intestinal tumourigenesis

Most of the cdls in an adult organism are quiescent and only specialized cells in the haematopoietic
system or in the gut epithelium maintain active proliferation. B-cateni/'TCF4 activity controls
proliferation versus differentiation in the intestinal epithelium through its' target genes. At the bottom
of the crypt, the progenitor proliferative cells accumulate nuclear 3-catenin and express p-catenin/TCF
target genes like cyclin D1. As the cells reach the mid-crypt region, p-catenin/TCF activity as well as
transcription of cyclin D1 is downregulated which resultsin cell cycle arrest and differentiation (Giles
et al. 2003).

The cell cycle consists of four phases (Figure 4). During the two main functional phases, cells generate
a single and faithful copy of their genomic DNA (synthesis, S phase) and divide all the cellular
components between two identical daughter cells (mitosis, M phase). Between these phases are gap
periods, G1 and G2, during which cells prepare themselves for successful DNA replication or mitosis.
During development, differentiation, or growth factor withdrawal, cells can enter an inactive period
GO0. Cdl-cycle checkpoints in G1 and G2 ensure proper chromosome replication and separation. One
of these in mid G1 is called the restriction point (R) after which cells become independent of growth

factors and commit to cell division.
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Figure 4. Simplified model of the cell cycle indicating DNA synthesis and mitosis phases as well as
gap periods between them. The expression of cyclin D is activated by several growth factors,
transcription factors, p-catenin and RAS dependent pathways. Production of D-type cyclins and
activation of cdk4/6 in response to mitogens results in phosphorylation and inactivation of Rb with
consequent derepression of E2F-dependent transcription (modified from Weinstein 1996, Isragls &
Israels 2001).
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Cdll-cycle progression is regulated by two protein classes, the cyclins and their serine/threonine kinase
partners, the cyclin-dependent kinases (cdks) (Figure 4). The D-type cyclins bind to and activate cdks
4 and 6, and E-type cyclins interact with and activate cdk2 at restriction point passage. Cyclin-CDK
activity is regulated at several leves: through control of cyclin synthesis and degradation, activating
and inhibitory phosphorylation of the CDK subunit, subcellular localisation and inhibition by cyclin
dependent kinase inhibitors (CKI). Two types of CKI inhibitors are involved: INK4 family proteins
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(p15, pl16, pl18, p19) hind to cdks 4 and 6 preventing their association with D-type cyclins and
WAF/KIP family proteins (p21, p27, p57) that have a broader specificity and can bind to all cyclin-
CDK complexes (Sherr & Roberts 1999, Besson et al. 2004).

The expression of cyclin D is largely dependent on extracellular signals and signalling cascades, and is
a fundamental link between mitogens, nutrient stimulation and the cell cycle machinery. Cyclin D1 is
atarget gene of B-catenin/TCF (Shtutman et al. 1999, Tetsu & McCormick 1999) but genes encoding
cyclin D1 are also activated by several growth factors, transcription factors and RAS dependent
pathways (Coqueret 2002, Diehl 2002, Fu et al. 2005, Gladden & Diehl 2005). Active cyclin D1-
ckd4/6 complex translocates to the nucleus and partially inactivates the retinoblastoma protein (Rb) by
phosphorylation. This allows E2F to transcribe genes required for S phase, such as cyclin E. Binding
of WAF/KIP inhibitors to cyclin D1 and ckd4/6 stabilizes the complex without losing the kinase
activity and keeps the inhibitors away from the cyclin E-cdk 2 complex. This completes the
inactivation of Rb and release of E2F transcription factors (LaBaer et al. 1997). Recently, new
mechanisms through which cyclin D1-cdk4 drives restriction point passage have been identified:
cyclin D1-cdk4 can directly inactivate Smad3, TGF-p signalling protein, by phosphorylation and by
that way inhibit its antiproliferative function (Matsuura et al. 2004).

In addition to cdk-dependent functions, cyclin D1 also has cdk-independent roles including chromatin
remodelling by associating with histone deacetylases and p300 (Fu et al. 2005). Furthermore, cyclin
D1 can directly associate with and regulate activity of different transcription factors (Fu et al. 2004,
Coqueret 2002).

Overexpression of cyclin D1 is one of the most commonly observed alterations in human cancers
(Diehl 2002). It occurs relatively early during tumourigenesis (Weinstein 1996) and is likely to affect
normal intestinal epithelium renewal by increasing the overall proliferation rate. Activated B-catenin
signalling favours cdlular proliferation as well as exerts anti-apoptotic effects (Peifer 1997) and in
human colorectal adenocarcinomas aberrant expression and nuclear accumulation of B-catenin is
associated with elevated protein levels of cyclin D1 (Wang et al. 2002). Adenomas of FAP patients
have significantly increased cyclin D1 levels (D'Orazio et al. 2002), similar to those seen in sporadic
colorectal tumours (Bartkova et al. 1994, Arber et al. 1996, Sutter et al. 1997, Oda et al. 1999,
Sugiyama et al. 2005). The overexpression of cyclin D1 correlates with advanced cancer stage and
poor prognosis (Maeda et al. 1997, Oda et al. 1999) but the prognostic role of cyclin D1 is not seenin
all studies (Palmquist et al. 1998, Chegh et al. 2002).

The ability of cyclin D1 to act as an oncogene in the absence of B-catenin demonstrates its functional

importance in gastrointestinal tumours (Kazanov et al. 2003). Introduction of an antisense cyclin D1
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cDNA construct into human colon adenocarcinoma cell lines overexpressing cyclin D1 decreases the
levels of cyclin D1 and markedly inhibits growth. These cells also lose the tumourigenity in nude mice
(Arber et al. 1997). The crossing of Min/+ mice with cyclin D17 mice reduces the cyclin D1
abundance as well as intestinal tumour number by approximately 50% upon the loss of a single cyclin
D1 alele (Hulit et al. 2004). In the presence of activated p-catenin signalling cyclin D1 inhibits
differentiation and promotes proliferation of intestinal epithelium, possibly in a PPARg dependent
manner (Girnun et al. 2002, Hulit et al. 2004). In the experimental models alterations in subcellular
distribution of p-catenin are connected with increased cellular levels of cyclin D1 (Sdlin et al. 2001)
although cyclin D1 might not to be an immediate target of the B-catenin/Wnt pathway in vivo as it
becomes activated in a delayed manner (Sansom et al. 2005).

In addition to the increased expression of cyclin D1, adenomas as well as adenocarcinomas of the
colon exhibit a poor staining reactivity of p21“* (Valassiadou et al. 1997, Sinicrope et al. 1998,

Zirbes et al. 2000) as cancer epithelial cells have decreased expression of p21“@*

compared with
surrounding stromal cells (Sugiyama et al. 2005). p21*@ correlates with advanced disease stage
(Viale et al. 1999) and appears to be an independent prognostic parameter in colorectal cancer that is
associated with favourable survival (Zirbes et al. 2000). A lack of p27 expression when combined
with accumulation of nuclear B-catenin is a marker of poor prognosis (Cheah et al. 2002). E-cadherin,
generally described as an invasion suppressor, might be a major growth suppressor (Wijnhoven et al.

2000) asit has the ability to inhibit proliferation in vitro by upregulation of p27 (St Croix et al. 1998).

Approachesto tar get aberrant p-catenin signalling

The implication of deregulated B-catenin signalling in colorectal tumourigenesis has raised the interest
for novel cancer drug targets. B-catenin has been seen as both a prognostic marker and a target for
drug intervention in colorectal cancer. Many approaches to target the p-catenin pathway at the
extracellular/membrane, cytoplasmic, and nuclear levels have been used (Wijnhoven et al. 2000, Luu
et al. 2004, Dihlmann et al. 2005, Doucas et al. 2005, McMillan & Kahn 2005, van Es & Clevers
2005, Kundu et al. 2006). Research has predominately been on nonsteroidal anti-inflammatory drugs
(NSAIDs), but interest in natural phytochemicals is increasing.

NSAIDs and a wide variety of naturally occurring anti-inflammatory substances are able to prevent
certain forms of cancer (Surh 2002, Chun & Surh 2004, Kundu et al. 2006). NSAID treatment
significantly lowers nuclear accumulation of -catenin in adenomas and induces the regression of
intestinal tumours in FAP patients (Boon et al. 2004) and rodent models of colon cancer (Mahmoud et
al. 1997, Mahmoud et al. 1998, McEntee et al. 1999, Brown et al. 2001). NSAIDs seem to elicit anti-
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proliferative effects in colorectal cancer by inhibiting nuclear accumulation of B-catenin and
expression of cyclin D1 (Smith et al. 2000, Dihlmann et al. 2001, Hawcroft et al. 2002, Gardner et al.
2004, Dihlmann et al. 2005, Kundu et al. 2006). Enhanced expression of APC and E-cadherin as well
as the relocation of nuclear and cytoplasmic p-catenin to the cell membranes accompany NSAID
inhibited growth in colon cancer cells and tumours (Oshima et al. 2001, Chang et al. 2005, Roy et al.
2005, Kapitanovic et al. 2006). There is also some evidence that NSAIDs decrease the level of f-
catenin and redistribute p-catenin and E-cadherin back to the plasma membrane in normal-appearing
mucosa (Mahmoud et al. 1998, Roy et al. 2005).

Diet and intestinal tumourigeness

Western-style diets have been hypothesized as contributing to the development of colon cancer
(Adlercreutz 1990, Slattery et al. 1998, World Cancer Research Fund 2007). Red mesat, animal and
saturated fat, refined carbohydrates, sugar, alcohol and also total energy intake, appear to relateto risk
of colon cancer (Slattery et al. 2000, Meyerhardt et al. 2007, World Cancer Research Fund 2007). On
the other hand, the intake of dietary fibre, whole-grain cereals, vegetables, fruits, antioxidant vitamins,

calcium, and folate seem to be negatively associated with the development of colon cancer.

Whether the intake of dietary fibre can protect against colorectal cancer is a long-standing question.
Besides intensive research, the relationship between fibre intake and risk of colon cancer is somewhat
inconsistent. Many correlational and case-control epidemiologic studies have supported a protective
effect of fibres (reviewed in Kim 2000, Young et al. 2005); but prospective studies have given
confusing results (Young et al. 2005, Schatzkin et al. 2007). Furthermore, large randomized clinical
trials (Alberts et al. 2000, Schatzkin et al. 2000) and large observational investigations (Peters et al.
2003, Bingham et al. 2003) have been contradictory. The confounding factors in fibre research are
probable the heterogeneous nature of fibre —i.e. fibre from cereals, vegetables, fruits — the mixture of

other foods in the diet and different ways inwhich fibre is measured and recorded.

Diets rich in vegetables and fruit has long been said to protect against cancer. The epidemiological
evidence was believed to be strong and firm until recently published studies challenged the view (Kim
2001, Riboli & Norat 2003, Koushik et al. 2007). However, berries and their phenolic compounds
have shown promising chemopreventive effects (Duthie 2007, Heinonen 2007). In Finland, the
incidence of colorectal cancer differs up to twofold between the North and the South (Finnish Cancer
Registry, http://www.cancerregistry.fi/eng/statistics/ updated 12.10.2007). One of the main differences
between the diets in the two areas is a significantly higher consumption of wild berries in the North,

where colorectal cancer incidence is lower (Simila et al. 2005). A lot of effort has been put to finding
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the ‘magic bullet’ of cancer prevention from phytochemicals derived from edible plants. Over 5000
individual phytochemicals have been identified from edible plants, including berries (Liu 2004).

Besides synthetic drugs, many extracted naturally occurring phytochemicals are able to target -
catenin signalling related to colorectal cancer (Surh 2003, Clapper et al. 2004). The most convinsing
evidence is found from curcumin from turmeric (Mahmoud et al. 2000, Jaiswal et al. 2002,
Thangapazham et al. 2006) and epigallocatechin gallate (EGCG) from green tea (Orner et al. 2003, Ju
et al. 2005, Dashwood et al. 2005) but also resveratrol from grapes, docosahexanoic acid fromfish ail,
sulforaphane from broccoli, indole-3-carbinol from cabbage, genistein from soybean are widely
studied (Oshima et al. 1995, Joe et al. 2002, Kim et al. 2003, Surh 2003, Clapper et al. 2004, Kundu
et al. 2006).

Multiple lines of evidence suggest that an inappropriate activation of p-catenin signalling contributes
to colorectal tumourigenesis. Although extracted phytochemicals have received significant attention
for their B-catenin suppressing activity, the potential of foods and dietary constituents to disrupt -
catenin signalling remains less clear. As diet is known to be a mgjor environmental factor that affects
colon tumourigenesis it is of great importance to elucidate diet induced cell signalling events that

contribute to intestinal tumourigenesis.
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Aimsof the study

The main objective of this study was to investigate whether diet is able to modulate p-catenin
signalling of enterocytes related to the promotion or prevention of intestinal tumourigenesis in an
animal model of colon cancer. A series of dietary experiments with Min/+ mouse were performed
(Figure5).

Figure5. The study outline. Adenomas (Apc”) | Mucosa (Apc™)

Tumour
promotive diet I v
inulin

Tumour
preventive diet I, 1 I, 1
berries

Fructo-oligosaccharide inulin was used in promotion as it has been seen to promote tumourigenesis in
Min/+ mice (Mutanen et al. 2000, Pgjari et al. 2003). Beries and their phenolic compounds have
shown promising chemopreventative effects (Duthie 2007, Heinonen 2007) and therefore the tumour
preventative effects of four berries, bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-

idaea), cloudberry (Rubus chamaemorus), and white currant (Ribes x pallidum) were studied.

Dietary experiments were designed to study
the effects of diet on B-catenin signalling in the adenomas of Min/+ mice

the effects of diet on -catenin signalling in the normal-appearing mucosa of Min/+ mice and

their wild-type littermates
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Sudy designs and methods

General descriptions of the studies are presented here. More detailed descriptions of the materials and
methods used can be found in the original papers I-1V in the appendix. Neither affymetrix microarrays
inthe original paper Il nor NFkp signalling in the original paper IV wereincluded in this thesis.

Table 2. General overview of materials and methods in the original publications.

Materials or methods Original publications
Animals

C57BL/6JWT mice v

C57BL/6J-Apc™™* mice I-1V
Diets

Control and inulin [, IV

Control, wild blueberry, lingonberry and cloudberry I
Control and white currant "
Tissues
Adenomas [-111
Normal appearing mucosa l-1v
Western blotting
B-catenin -1V
E-cadherin -1V
cyclin D1 -1V
MMP-9 I
p21 I
p27 I
I mmunohistochemistry
B-catenin -1V
E-cadherin [-11, IV
cyclin D1 -1V

Animals

The Laboratory Animal Ethics Committee of the University of Helsinki, Finland, approved the study
protocols of all experiments (I-1V). Mae and female C57BL/6J (wt) and C57BL/6J-Apc™™ (Min/+)
mice were bred at the Experimental Animal Unit of the University of Helsinki from inbred mice
originally obtained from the Jackson Laboratory (Bar Harbor, ME, USA). During the suckling time
pups had free access to pelleted standard rodent laboratory chow (Altromin, Ringsted, Denmark) and
tap water. Mice were genotyped after weaning by PCR assay (Promega Wizard® Genomic DNA
Purification Kit) for the Apc allele (Dietrich et al. 1993). Both Min/+ and wt were used in Study 1V
and only Min/+ micein Studies I-111. At five weeks of age, the animals were stratified by litter and sex
and assigned randomly to the control or experimental diets, with 8-15 mice per group, depending on
the study protocol and genotype. The mice had free access to the semisynthetic diets and tap water for
3 weeks (IV) or 10 weeks (I-1V). Animals were housed in plastic cages, 3-5 mice together in a
temperature- and humidity-controlled facility, with a 12-h light-dark cycle. The welfare of the animals
was ensured and the development of body weights was recorded weekly. If mice had a rapid decrease

in body weight they were killed and excluded from the experi ment.
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Diets

Mice were fed modified high-fat AIN93-G diets (Reeves et al. 1993) from the age of 5 weeks until the
age of 8 (I1l) or 15 weeks (I-1V). The control diet was a high-fat AIN93-G diet with no added fibre.
The experimental diets were similar to the control diet but contained 10% (w/w) inulin (polydisperse
B(2-1) fructan, RaftilineHP®; Orafti, Tienen, Belgium) (I, 1ll1) or freeze-dried wild blueberry
(Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), cloudberry (Rubus chamaemorus) (I1) or
white currant (Ribes x pallidum) (IV). The diets were isocaloric, containing 41% of their energy from
fat, 39% from carbohydrate, and 19% from protein. This means that when eating the same amount of
energy, the diets provided similar amounts of fat, carbohydrate, protein, as well as other components
of the diets, except for those provided by inulin or berries. The fat content of the diets was similar asin
an average Wederntype diet so that the ratio between saturated, monounsaturated and
polyunsaturated fatty acids was closeto 3:2:1. The diets were prepared at the beginning of the feeding
period, vacuum-packed in weekly portions, and stored at -20 °C.

Tumour scoring and sample collection

The mice werekilled at 8 (1V) or 15 weeks (I-1V) of age by CO, inhalation. The intestinal tracts were
removed, opened along the longitudinal axis, and washed with ice-cold saline. The small intestine was
divided into 5 equal sections. The representative tissue samples of variously sized adenomas and
normal appearing mucosa were taken from the distal small intestine and fixed in phosphate-buffered
4% paraformaldehyde solution overnight for histology and immunohistochemistry. Two observers
blinded to the dietary treatment scored the number, diameter and location of all adenomas in each
section using a dissecting microscope under 67 x magnification. Adenomas in each section were
categorized as small (diameter < 1.1 mm), medium (1.1-1.5 mm) or large (> 1.5 mm), excised and
pooled together according to the size-category (1, I1) for Western analysis. In study 111 adenomas were
not categorized to different size-groups but each mouse had one tissue sample containing all adenomas
for Western analysis. The normal-appearing mucosa was then gently scraped off with a microscope
dlide (111, V). The adenoma burden per mouse was calculated based on the total number and diameter
of adenomas (number x mr2). During the procedure samples were kept on ice and only during the
adenoma enumeration at room temperature. Because the intestine was divided into several parts
enumeration of each section was quick and sample degradation minimal. This was ensured by
analysing samples after several standing times (Latvala, 2005). The smallest detectable adenomas had
diameters of 0.3 mm. In unclear situations, possible adenomas smaller than 0.3 mm were removed but
were not included in the adenoma sample. The samples were snap-frozen in liquid nitrogen and stored
at -70°C for further analysis.
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Western analyss

Sample preparation and Western analysis are described in detail in original paper 1V in the appendix.
Briefly, mucosa (Il1, 1V) or adenomas (1, 11) in the distal small intestine were fractionated into nuclear,
cytosolic, and membranous pools individually for each mouse. For cellular fractionation various
centrifugal forces were used: 15 000 x g for the nuclear, 100 000 x g for cytosolic, and Triton X-100 +
100 000 x g for the membranous fraction. All fractions were concentrated using Amicon Ultra-4
Centrifugal Filter Devices (Millipore, Bedford, MA, USA). The purity of the celular fractions was
controlled by determining nuclear lamin B (Sc-6216, Santa Cruz Biotechology, Santa Cruz, CA, USA)
levelsin the cellular fractions. Both the cytosol and membrane fractions were free of lamin B. We had
ensured earlier that our mucosa samples were practically free of COX-2 that is expressed mainly in
adenoma tissue. For Western analysis analyses the following primary antibodies were used: anti-f3-
catenin [Sc-7199, Santa Cruz Biotechology, Santa Cruz, CA, USA (I-1V)], anti-cyclin D1 [Zymed,
San Francisco, CA, USA (1V) or RM-9104, NeoMarkers, Fremont, CA, USA (I-1V)], anti-E-cadherin
[610182, BD Transduction, San Diego, CA, USA (I-1V)], anti-MMP-9 [M9555, rabbit polyclonal,
Sigma-Aldrich Inc, St. Louis, MO, USA (1)], anti-p21 [Sc-397, Santa Cruz Biotechology (11)] and
anti-p27 [Sc-528, Santa Cruz Biotechology (I1)]. Equal loading of samples was ensured by incubating
the blots with B-actin antibody (A5441, Sigma-Aldrich). Blocking peptides, immunoprecipitation,
other commercially available antibodies or normal serum were used to ensure detection of the right
bands (data not shown). The results are expressed as sample band intensity (optical density of protein

band multiplied by band areq) divided by intensity of the positive control.

| mmunohistochemistry

The fixed tissues were dehydrated, embedded in paraffin, cut in serial 5-pm sections and mounted on
dlides. Circa 3 sections per tissue sample, enclosing characteristics of adenomatous areas, were
selected for immunohistochemisty (IHC) and two for histology. For immunohistochemistry the
endogenous peroxidase activity of deparaffinised and rehydrated sections was quenched by H,O,. The
dlides wererinsed in Tris-buffered saline, and an antigen retrieval step was carried out in a microwave
ovenfor 15 minin citrate buffer, pH 6.0. Immunostaining with anti-p-catenin (BD Transduction), anti-
E-cadherin (BD Transduction), anti-cyclin D1 (Zymed (I11) or NeoMarkers (1, 11, V) was performed
using a PowerVision™ Homo-mouse IHC Detection Kit (KDM-7DAB, ImmunoVision Technologies
Company, Brisbane, CA, USA) or UltraVision Detection System anti-rabbit, HRP/DAP (Lab Vision
Corporation, Fremont, CA, USA). Negative control tissues were prepared in the same manner, except
that the primary antibody was replaced with a negative control for the mouse 1gG2a Ab-1
(NeoMarkers) or rabbit 1gG Ab-1 (NeoMarkers). All immunohistochemical sections were
counterstained with Mayer's hemalaum (Merck, Darmstadt, Germany). For histology, the
deparaffinized and rehydrated sections were stained with hematoxylin and eosin (H&E).
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| mmohistochemical and histological evaluation

Two observers blind to the dietary treatment evaluated the IHC stainings. In Studies | and Il -
catenin, E-cadherin, and cyclin D1 proteins in adenomas were scored semiquantitatively based on the
staining intensity (grade O = negative; grade 1 = weak; grade 2 = moderate; grade 3 = strong) and
distribution. The percentage of cells with membranous or cytosolic positivity was graded as follows: O
(<5 %), 1 (5-30%), 2 (30-60%), 3 (> 60%), and nuclear positivity: 0 (< 5%), 1 (5-15%), 2 (15-50%), 3
(> 50%). A total score was obtained for each case by multiplying the 2 respective scores. Staining for
[-catenin and E-cadherin proteins in the normal-appearing mucosa of Study Il were scored separately
in the crypt and villus compartments on the basis of distributions and relative staining intensities.
Scales ranged between 0 (no staining) and 5 (very strong staining), at 0.5-units intervals. A scale for
staining intensity of cyclin D1 ranged between O (no staining) and 3 (very strong staining). In Studies
11 and IV staining in the normal-appearing mucosa was scored on the basis of distributions and
relative staining intensities. A scale for staining intensity ranged between 0 (no staining) and 3 (very
strong staining). Histology of the adenomas in Study | was assessed from H& E stained sections by
veterinary pathologist Jere Linden, University of Helsinki, blinded to the dietary treatment. Special
emphasis was placed on dysplasia (growth pattern and differentiation of the neoplastic epithelium) as
well as cellular anaplasia (nuclear and cellular morphology and nucleus to cytoplasm ratio) of the
adenomas. These were both graded separately according to the following five-tier system: grade 1 =
minimal; grade 2 = mild; grade 3 = moderate; grade 4 = marked; grade 5 = severe. The number of
adenomas (adenomatous areas) in the studied tissue samples ranged from one to seven; the most

pronounced changes in each sample were used for grading.

Statistics

The results are expressed as the median (min-max). P values of 0.05 or below were considered
stetistically significant. The differences in adenoma number and size between the control and
experimental groups were analyzed with the Mann-Whitney U test. Spearman correlation was used for
correlation analysis, the Wilcoxon signed rank test for paired comparisons, and the Chi-square test for
the IHC data. Statistical analyses were performed with StatView software (StatView, version 5.0.1,
SAS Institute Inc., Cary, NC). In Study | data from individual mice were combined to present the
average of the treatment group as one curve after a log transformation. The separate curves were
statistically tested with linear mixed models for repeated measures data to observe if the effect of diet
on the measured parameters (p-catenin, E-cadherin, cyclin D1, MMP-9) was similar in all size-
categories (small, medium, and large adenomas). Mixed models takes into account the correlation of
the measurements from individual mice. Additionally, the difference between the adenoma size-
groups was tested. Explanatory variables included diet, adenoma size and the number of adenomas in

different size groups. Statistical analyses were performed with SAS software (SAS, version 8.2).
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Results

This section describes how tumour promotive or preventive diets changed the adenoma formation as
well as cellular p-catenin signalling in the adenomas (Apc’) and in the surrounding mucosa (Apc™).
The main focus was in the expression of B-catenin in different cell compartments. Cyclin D1, the
target of B-catenin involved in cell cycle progression, and E-cadherin, the membranous protein that in
close relationship with p-catenin forms adhesion complexes, as well some other cel signalling

parameters relevant for ongoing study were investigated.

Generally, mice grew well in al studies. The body weights were recorded regularly and the final body
weights in the treatment groups were similar in each study. Adenoma numbers or sizes did not differ
between male and female mice and, therefore, the data from both sexes was pooled in the results. Most
(80%) of the adenomas developed into the distal part of the small intestine and this was therefore used
for biochemical analyses.

p-catenin signalling in the adenomas of Min/+ mice

The main aim was to see if dietary modifications are able to influence p-catenin signalling in the
adenomas of Min/+ mice and if the effects of the tumour promotive (1) and preventive (11, I11) diets

were opposite.

Tumour promotion by inulin diet (1)

It is earlier shown that dietary inulin promotes adenoma growth in Min/+ mice (Mutanen et al. 2000,
Pajari et al. 2003) and in this study inulin diet was used as a tumour promative diet. Now we studied
whether inulin-induced adenomas were merely larger than the controls or whether the p-catenin
signalling changed in the adenomas during their growth. As little as 2.5% inulin in the diet can
promote adenoma growth in Min/+ mice (Mutanen et al. 2000), but a higher amount (10%) was
chosen to enable clearer detection of differences in molecular biological analyses. As expected, inulin
feeding increased the size of the small intestinal adenomas of Min/+ mice (Figure 6).
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Figure 6. (A) The tota
number of adenomas in the
distal small intestine was
similar in both treatment
groups, but (B) inulin feeding
increased the size (mm) of the
adenomas. (C) The majority
of adenomas in the inulin
group were large and,
therefore, (D) the adenoma
burden (mm?) was bigger
than in the same category of
the control group. P is in
comparison to the control
group by the Mann-Whitney
test.
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We divided the adenomas of each mouse into 3 size categories: small (diameter < 1.1 mm), medium
(1.1-1.5 mm) and large (> 1.5 mm) to be able to follow the cellular signalling as adenomas enlarge.
The categories were based on our long-term experience with Min/+ mice but comparable size groups
can be found in the literature (Ju et al. 2005, Tucker et al. 2005, Issa et al. 2007). The inulin feeding
produced larger adenomas than the control feeding. On the other hand, 50% of the adenomas in the
control group remained small, in contrast to 25% in the inulin group. We calculated the adenoma
burden as a sum of the areas (nr?) of al the adenomas for each mouse and found that the adenoma
burden was increased by 100% in the inulin group compared with the control group. Histologically
adenomas were remarkably similar, regardless of their size or the treatment of the mice (Figure 7,

H& E).

Figure 7. Representative
H&E  staining and
immunohistochemical
staining of B-catenin, E-
cadherin, and cyclin D1 in
the large adenomas of
control or inulin-fed mice.
Positive cells show dark
staining, magnification is
400 x.
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We analysed the level and localisation of cell-signalling proteins in adenomas of three size-categories
to determine whether diets regulate the molecular characteristics of adenomas differently. In all size-
categories the relevant B-catenin signalling proteins were determined individualy for all mice. The
diets had different effects on B-catenin signalling as adenomas enlarged, which is presented in Table 3
and in detail in Figures 7, 8 and 9.

Table 3. Effects of diet on p-catenin, E-cadherin, cyclin D1, and MMP-9 during adenoma growth
were tested, using linear mixed models for repeated measures data (P values are given). Specific diet
effects were found for B-catenin, E-cadherin, and cyclin D1 (diet*size interaction P < 0.05). Theinulin
diet increased the amount of nuclear B-catenin (P = 0.004) and also membranous p-catenin (P < 0.001)
and E-cadherin (P = 0.003) as the adenomas enlarged. No specific diet effects were found for nuclear
cyclin D1, cytosolic B-catenin and membranous MM P-9 and therefore they are not shown in the table.

B-catenin B-catenin E-cadherin  cyclin D1
nucleus membrane membrane cytosol
Diet-specific interactions
Diet*sizeinteraction 0.036 0.012 0.009 0.019
Difference between the diets
S 0.031 0.047 0.072 ns.
M ns’ ns. ns. ns.
L ns. 0.013 ns. ns.
Difference between the adenoma size-groups
Control diet: SM-L? ns. 0.026 ns. ns.
SM 0.019
SL ns.
M-L ns.
Inulin diet: SM-L 0.004 < 0.001 0.003 < 0.001
SM 0.064 < 0.001 0.004 < 0.001
SL 0.001 < 0.001 0.012 0.010
M-L ns. ns. ns. ns.

& Adenoma size-groups are as follows; S = small, M = medium, L = large adenomas.
®ns. = not significant

During the adenoma growth, inulin diet, but not the control diet, increased the amount of nuclear -
catenin and the amount of its target protein cyclin D1 was also increased (Figure 8). Nuclear -catenin
and cyclin D1 were also strongly correlated (r = 0.818, P < 0.0001). Based on the statistical analysis
(Table 3, linear mixed models for repeated measures data), the inulin diet had a specific effect on -
catenin. This suggeststhat the increased [3-catenin seen in the inulin group was not only dueto bigger
adenomas in the group, but theinulin diet specifically influenced the level of 3-catenin.
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Figure 8. Theinulin diet increased the level of B-catenin and cyclin D1 as the adenomas enlarged. (A)
Amount of B-catenin and (B) cyclin D1 in adenoma size-groups analysed by Western analysis. For the
control (n=15) and inulin (n=13) groups, the results are presented separately for each mouse and the
lines show the change during adenoma growth. Each datapoint is a pooled sample that consists of all
adenomas the mouse had in the size-group (approx. 10-30 adenomas). The difference between the
adenoma size-groups was tested with the Wilcoxon signed rank test (P values). The adenoma size-
groups are as follows: S = small, M = medium, L = large. (C) In the representative immunaoblot of -
catenin and cyclin D1 groups the median intensities are presented. (D) Nuclear p-catenin and cyclin
D1 were strongly correlated; presented hereis the correlation seen in the large adenomeas.
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Figure 9. Increased levels of membranous B-catenin and E-cadherin were seen during inulin induced
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and P values are the differences between the adenoma size-groups tested by the Wilcoxon signed rank
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catenin and E-cadherin had strong correlation in the large adenomas.



We wanted to see if inulin induced adenomas had adopted some malignant properties. Matrix
metalloproteinases are related to progression toward malignant metastatic phenotypes (Zucker &
Vacirca 2004, Mook et al. 2004), and in Affymetrix microarray analysis we have seen that the small
intestinal adenomas of Min/+ mice express 20 times more MMP-9 gene than the normal appearing
mucosa (Mutanen et al., unpublished observation). MMP-9 could be involved in malignancy also in
Min/+ mice and therefore we analysed the level of MMP-9 in different size-categories of adenomas.
Neither of the diets changed the amount of MMP-9 as adenomas enlarged. This observation together
with the histological similarity seen in H& E staining suggests that adenomas in both diet groups were

benign.

Theinulin diet, but not the control diet, increased the levels of membranous p-catenin and E-cadherin
during adenoma growth (Figure 9) and these proteins had also a strong correlation with each other (r =
0.895, P < 0.001).

Tumour prevention by bilberry, lingonberry and cloudberry diets (1)

The chemopreventive effects of berries and whether they effected B-catenin signalling during adenoma
growth were studied from bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), and
cloudberry (Rubus chamaemorus). These berries were chosen as they are among the main berries
consumed in Finland and they also possess different compasitions of phenolic compounds. The major
phenolics in bilberry, lingonberry, and cloudberry are anthocyanins, proanthocyanidins and ellagic
acid, respectively (Maatta-Riihinen et al. 2004a, M &&tt&-Riihinen et al. 2004b).

All three berries provided potent protection against adenoma formation in Min/+ mice as they
decreased the number of adenomas in the small intestine (Figure 10). No differences were found
between the groups in the number of colon adenomas. Cloudberry and lingonberry aso reduced the
size of adenomas and the adenoma burden in the distal small intestine by 60%. Lingonberry and
cloudberry diets restricted the growth of the adenomas so that most of the adenomas stayed small (<
1.0 mm). They had also less medium size adenomas (1.1-1.5 mm) than the control group and only a
few adenomas proceeded to large (> 1.6 mm). In the bilberry group the bigger proportion of adenomas
grew large and despite the decreased number of adenomas the tumour burden did not differ from the
control group. When the analysis for cellular signalling was done, medium size and large adenomas
had to be combined (small adenomas = diameter < 1.0 mm, large adenomas = diameter > 1.1 mm).
The reason for this was that berry diets produced few large adenomas and did not provide enough
material for Western blotting.
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Figure 10. (A) Total number, (B) size A Bmé =
(mm) and (C) burden (mm?) of adenomas " =
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In the inulin study (I) we found that the tumour promotive diet increased the levels of nuclear -
catenin and cyclin D1 during the adenoma growth. Here, with the tumour preventive diets, we wanted
to see whether the opposite effects could be found. The cloudberry diet had the strongest inhibitory
effect on the adenoma growth which could be explained by the diminished p-catenin signalling.
Compared with the control the cloudberry group had less nuclear - catenin and nuclear cyclin D1 in

the large adenomas (Figures 11 and 12).

The results suggest that decreased activity of p-catenin suppresses the expression of cyclin D1 as the
levels were also strongly correlated (r = 0.831, P < 0.001). The levels of B-catenin and cyclin D1
correlated significantly with the tumour burden (Figure 11), strongly suggesting that in the tumour
tissue these proteins are associated with the growth of the tumours and are one reason for the
decreased adenoma burden seen with the cloudberry diet. The lingonberry diet also decreased the
adenoma burden but it had an effect only on nuclear cyclin D1, not on B-catenin. The bilberry and
control diets produced comparable adenoma burdens and levels of nuclear p-catenin and cyclin D1 in

large adenomas (Figure 12).
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Figure 11. The cloudberry diet
decreased the levels of nuclear -catenin
and cyclin D1 in the large adenomas.
(A) In arepresentative immunaobl ot of -
catenin and cyclin D1 the median
intensities are presented. (B) In addition
to the cloudberry diet, the lingonberry
diet also decreased the level of nuclear
cyclin D1. (C) B-catenin and cyclin D1
correlated with the adenoma burden and
with each other.

Figure 12. Representative
immunohistochemical staining of
[-catenin, E-cadherin, and cyclin
D1 in the large adenomas of
control or berry-fed mice. Positive
cels show dark staining,
magnification is 400 x.
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To further elucidate the role of B-catenin and cyclin D1 in adenoma growth, we analysed small and
large adenomas separately. The results showed that the levels of nuclear B-catenin and cyclin D1
increased several fold from the small to large adenomas in the control, bilberry and lingonberry groups
(Figure 13). However, cloudberry prevented the increase in nuclear B-catenin in the large adenomas
and actually maintained it at the level found in the small ones [2.47 (0.00-5.85) vs. 2.10 (0.25-6.57) in
the large adenomas, P = 0.999]. Cloudberry also inhibited the increasein nuclear cyclin D1 although it
did not abolish it altogether (Figure 13). It is noteworthy that the variation in cyclin D1 valuesin large

adenomas in the cloudberry group was considerably less than in the other groups.
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With inulin we found that tumour promotion increased the levels of membranous B-catenin and E-
cadherin as adenomas enlarged. Compared with the control group the cloudberry group had less
membranous B-catenin [0.56 (0.03-1.36) vs. 1.76 (0.13-4.96) in the controls, P = 0.056] in the large
adenomas. As we analysed small and large adenomas separately, we found that the levels of
membranous B-catenin and E-cadherin increased significantly as adenomas enlarged in the control,
bilberry and lingonberry groups (Figure 14). Differing from the other treatments, the cloudberry diet
maintained subcellular levels of B-catenin and E-cadherin that were unaltered between the small and

large adenomas (Figure 14). A similar effect was not seen with other diets.

In addition to results reported in original paper 11, regulators of the cell cycle p21 and p27 were
analysed from the cytosolic fractions. The levels of p21 or p27 did not explain the adenoma growth as
only in the bilberry group was p21 dlightly increased during adenoma growth [0.72 (0.47-2.39) in the
small adenomas vs. 1.49 (0.59-4.17) in the large adenomas, P = 0.012]. MMP-9 was not measured in
this study as the adenomas of berry-fed mice seemed to be more quiescent than the adenomas of inulin
fed mice on the earlier study (I) and even there the level of MMP-9 stayed constarnt.

Tumour prevention by white currant diet (111)

The original aim of the study of preventative effects of white currant was that we chose to use this
colourless berry as a negative control that would not affect tumour formation in Min/+ mouse. White
currant contains only very low levels of phenolic compounds, at least compared to bilberry,
lingonberry and cloudberry (Hakkinen et al. 1999, M&étta et al. 2001). Nevertheless, the white currant
diet decreased the number and size of the adenomas so that there was 65% reduction in the adenoma
burden in the distal small intestine (Figure 15).

The lower adenoma burden in the white currant group was associated with decreased levels of nuclear
[-catenin in the adenomas (Figure 16). The result was similar to that obtained in the cloudberry group
in the previous study (11). We assumed that the level of nuclear cyclin D1 could also be affected by the
white currant diet but dueto a lack of sample material for Western analysis we could perform only the
immunohistochemical staining of adenomas. The staining revealed a decreasing trend for nuclear

cyclin D1 in the white currant group.
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Figure 15. (A) Total number, (B) size (mm) and (C) area (mm?) of adenomas in the distal small
intestine of 15-week-old Min mice fed either a control diet (n = 11) or a diet containing 10% (w/w)
freeze-dried white currant (n = 12). P isin comparison to the control group by the Mann-Whitney test.

Figure 16. (A) White
currant feeding
decreased the level of
nuclear B-catenin in the
adenomas and nuclear

B-catenin correlated
with the size of the
adenomas. (B)

Immunohistochemical

staining also revealed
the decrease in nuclear
cycdin D1 in the
adenomas of the white
currant group. Positive

cdls show dark
staining, magnification
is200 x.
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Once more we wanted to evaluate the role of membranous p-catenin in tumour prevention. This time

adenomas were not divided into different size groups but al adenomas were pooled and analysed

together. We found the same effect as with the cloudberry: the level of membranous p-catenin was
decreased by the tumour preventive white currant diet [1.28 (0.18-22.30) vs. 8.26 (2.40-12.00),
P=0.012)]. This strengthens our observations of earlier studies.
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p-catenin signalling in the nor mal appearing mucosa of Min/+ and
WT mice

The main objective of these studies was to see whether tumour promotive (IV) or preventive (11, 111)
diets influenced the normal appearing mucosa (Apc™) surrounding the adenomas. It is of great
importanceto ducidate cell signalling events in the surrounding mucosa that influence the initiation of
the tumourigenic process. We hypothesised that dietary components could change the cellular integrity

in the mucosa, the levels of B-catenin in the cell membranes and further the activity in the nucleus.

Effect of thetumour promotive inulin diet (1V)

In Study 1V the influence of the tumour promotive inulin diet on the normal appearing mucosa was
tested. Min/+ mice were fed for 3 or 10 weeks with the control and inulin diets (Figure 17). The
adenoma data at the age of 8 weeks was not presented earlier but is introduced here. The adenomas of
Min/+ mice werebigger in theinulin group. At the age of 8 weeks theinulin group had relatively more
medium size adenomas and less small adenomas than the control group. The proportion of large
adenomas was similar. At the age of 15 weeks the proportion of large adenomas was bigger in the
inulin group. This indicates that inulin accelerated the growth of some adenomas while others stayed

small.

The promotion of adenoma growth in the inulin group was associated with increased level of cytosolic
cyclin D1 in the normal appearing mucosa of Min/+ mice (Figure 18). The most probable reason for
that was activation by nuclear -catenin. Inulin feeding seemed to reduce the levels of membranous f3-
catenin and E-cadherin (Figure 18) and lead to the accumulation of cytosolic and nuclear p-catenin.
The B-catenin signalling in adenomas at 15 weeks is presented in study | (p. 33).
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Figure 17. The Min/+ mice (n = 10-15 per group) were fed either a non-fibre control diet or 10 %
inulin diet from the age of 5 weeks until the ages of 8 or 15 weeks. (A) Adenomas were larger in the
inulin group at both time points. (B) At the age of 8 weeks the proportion of small adenomas in the
inulin group was much lower than in the control group and a larger proportion of adenomas had
reached the medium size. (C) By the age of 15 weeks inulin had induced the growth of the adenomas
so that the proportion of large adenomas was nearly three-fold compared to the control group. The
proportion of medium size adenomas remained unchanged but the proportion of small adenomas was
decreased to half. P isin comparison to control mice of the same age by Mann-Whitney test.
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The influence of the inulin diet on the normal appearing mucosa was also tested in wild-type (WT)
mice. These were fed either with the control or inulin diet from the age of 5 weeks until the age of 8
weeks. WT mice did not develop intestinal adenomas. In the WT mice, that have no Apc mutations,
the inulin induced drop in membranous p-catenin was clear (Figure 19). In addition, a subset of crypts
also had enhanced nuclear 3-catenin staining.
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Figure 19. Wild-type mice were fed with the control or inulin diets for 3 weeks (n = 8-9 per group).
(A) The control fed mice had clear membranous staining for B-catenin. Positive cells show dark
staining, magnification 400x. (A, B) Inulin feeding caused a reduction in membranous B-catenin,
while subsets of crypts had nuclear staining of -catenin. (C) There was also trend for membranous E-
cadherin but (D) not for cytosolic cyclin D1.

Effect of thetumour preventive berry diets(l1, 111)

As tumour promotion by dietary treatment was able to modify B-catenin signalling in normal
appearing mucosa, the main objective of these studies was to see if tumour prevention by berries can
also influence the same parameters but in reverse direction. The decreased number and size of the
adenomas in bilberry, lingonberry, and cloudberry groups is presented in Figure 10. In addition to the
analysis of the adenoma tissues (II) also the normal appearing mucosa was used for
immunohistochemistry. The expression of -catenin, E-cadherin, and cyclin D1 were scored separately

from the crypts and villus compartments (Figure 20).

Figure 20. Representative
immunohistochemical staining
for p-catenin, E-cadherin, and
cycdin D1 in the normal
appearing mucosa of control or
cloudberry-fed mice.
Cloudberry was chosen here as
tumour prevention was the best
among berry groups. However,
no difference was found
between the treatment groups.
Magnification is 100x.
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The inhibition in adenoma formation was not related to changes in subcellular levels of p-catenin, E-
cadherin, and cyclin D1 in mucosal tissue. No differences between the diets were observed in ether
the crypts or the villus compartments (Table 4). The intensities of -catenin and E-cadherin were
stronger in the crypt than in the villus in all subcelular fractions. Staining for cyclin D1 was

predominantly nuclear in the proliferation zone of the crypt, while the villus had no cyclin D1 staining.

Table 4. Immunohistochemical staining intensities (relative units) for p-catenin, E-cadherin and cyclin
D1 in the normal appearing mucosa of Min/+ mice after bilberry, lingonberry and cloudberry diets,
median (min-max).

Villus

Control Blueberry Lingonberry Cloudberry

(n=10) (n=12) (n=11) (n=12)
p-catenin,
- cytoplasmic 24(1.5-2.8) 2.1(1.8-3.0) 2.3(1.8-2.8) 2.3(1.5-2.8)
- nuclear 1.6(0.3-2.3) 1.3(1.0-1.8) 1.8(0.0-2.0) 15(0.8-2.3)
- membranous 1.9(0.8-2.5) 1.8(0.5-2.8) 1.8(0.5-2.3) 1.8(0.8-3.0)
E-cadherin,
- cytoplasmic 1.3(0.5-1.8) 1.3(0.5-2.0) 0.8(0.5-1.8) 1.3(0.5-2.0)
- membranous 0.4 (0.0-1.5) 0.6 (0.0-2.3) 0.5(0.0-1.8) 0.8 (0.0-2.0)

Crypt

Control Blueberry Lingonberry Cloudberry

(n=10) (n=12) (n=11) (n=12)
p-catenin,
- cytoplasmic 25(2.3-2.8) 25(2.3-2.8) 25(2.0-3.0 25(2.3-2.8)
- nuclear 2.6(2.0-3.3) 2.8(2.0-3.0) 2.3(2.0-3.0) 25(2.0-3.0
- membranous 3.1(2.8-35) 3.0(3.0-3.8) 3.3(2.8-35) 3.0(0.8-25)
E-cadherin,
- cytoplasmic 2.0(1.8-2.3 20(1.5-23 20(1.5-23 2.0(1.5-2.0)
- membranous 2.4(1.8-3.0) 25(1.5-3.0) 2.3(1.3-2.8) 2.3(1.8-2.8)
Cyclin D1,
- nuclear 2.0(1.0-3.0 2.0(1.0,3.0 2.0(1.0,3.0 25(2.0,3.0)
- thickness of stained cell layer (cells) 9 (6-12) 10 (7-10) 9(8-11) 11 (8-12)

- % of stained cells/crypt 509 (20-70%)  50% (20-60%) 50% (30-70%) 50% (30-60%)

As the white currant diet had also tumour preventive effects we wanted to study the normal appearing
mucosa in more detail in this group. In this experiment, p-catenin signalling could be analysed by
Western analysis. The tumour prevention had no effect on -catenin signalling in the normal appearing
mucosa: the levels of p-catenin, E-cadherin and cyclin D1 were similar in both treatment groups.
However, cytosolic cyclin D1 in the normal appearing mucosa might influence the initiation phase of
intestinal tumourigenesis as it significantly correlated with the number of adenomas (r = 0.736, P <
0.001).

The results of this study confirmed the notion that tumour prevention by berries does not influence -

catenin signalling in the normal appearing mucosa.




Discussion

The development of colon cancer is a long process. The progression of the disease from benign
adenoma through early carcinoma to malignant metastatic cancer requires years or even decades. Due
to a long asymptomatic period, al too often the disease is life-threatening before it is diagnosed. As
food derived compounds are constantly present in the intestine diet can both prevent and induce colon
carcinogenesis, through for instance epigenetics, cellular signalling and mutations. It is also suggested
that from the chemoprevention point of view, inhibiting the growth of existing tumours is even more
important than preventing the initiating mutations (Luebeck & Moolgavkar 2002). Thus, it is vitally
important to understand the mechanisms that stimulate adenoma growth and development towards
accelerated malignancy or, in contrast, attenuates them to remain in quiescence for periods as long as
decades.

At the time this thesis work began there was already some evidence that diet could influence the
number and size of intestinal adenomas (Corpet & Pierre 2003). Whether diet is able to alter the
metabolism of these adenomas, which could result in very early prediction of their eventual outcome
was, however, unknown. The main objective of the thesis was to find out whether it is possible to
modulate cellular signalling in colon cancer by dietary constituents. -catenin signalling was chosen as
it has awell characterised role in intestinal tumourigenesis. The diet was defined as tumour inducing
inulin diet and preventive berry diets. Evaluation of other possible colon cancer related foods and cell
signalling pathways would give valuable information about cancer biology but is outside the scope of

thisthesis.

To address -catenin signalling in the adenoma promotion phase, we used dietary inulin that based on
earlier studies was known to induce growth of intestinal adenomas in the Min/+ mouse. In fact, inulin
had the most foreseeable and constant effects when compared to other tumourigenic foods in
experimental model of colon cancer (Mutanen et al. 2000, Pajari et al. 2003). To find the foods or
dietary ingredients that could clearly prevent adenoma formation in the Min/+ mouse, the different
kind of brans and sources of lignans were earlier studied (Mutanen et al. 2000, Oikarinen 2005). Their
preventive effects were not very pronounced and, therefore, we decided to evaluate the preventive
effects of berries. The idea of studying the effects of berries came from the notion that in Finland the
incidence of colorectal cancer differs up to twofold between the North and the South (Finnish Cancer
Registry, http://www.cancerregistry.fi/eng/statistics/ updated 12.10.2007). One of the main differences
between the diets in the two areas is a significantly higher consumption of wild berries in the North,
where colorectal cancer incidence is lower (Simila et al. 2005). In fact, the adenoma burden was

significantly decreased by four berries studied, therefore, they were chosen for use in the tumour
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prevention studies. With inulin and berry diets we could create situations where adenoma burden was
doubled or reduced by over 60 % compared to the control diet. Inulin accelerated adenoma growth so
that most of the adenomas grew large but cloudberry, lingonberry, and white currant prevented

adenoma growth, thus most of the adenomas stayed small and did not progress to large ones.

This was a fascinating starting point for the analyses of p-catenin signalling. By dividing adenomas to
different size-categories we were able to track cell signalling changes that were diet-specific and not
just due to the differences in adenoma sizes. We studied if adenomas were different from the controls
in size or if the cellular signalling changed differently during growth of the adenomas. We consider
that it is important to understand the early markers for the growth process of adenomas to be able to

evaluate the quality of adenomas in regard to their possible future aggressiveness.

Our results showed that the tumour promoting inulin diet doubled the total area of the adenomas and
also reinforced the early expression of nuclear B-catenin and cyclin D1 in the adenomas of Min/+
mice. On the other hand, cloudberry, lingonberry, and white currant diets prevented tumour initiation

and growth as well as the accumulation of nuclear B-catenin and cyclin D1 in the adenomas.

Inulin resulted in increased levels of B-catenin and cyclin D1 as
adenomas enlarged

B-catenin signalling is involved in the initial expansion of cancer cells as well as in tumour
progression. Nuclear p-catenin correates with tumour size in colon cancer patients (Brabletz et al.
2000) and it may be necessary for exceeding a certain tumour size. This has been seen in human
adenomas (Brabletz et al. 2000) and our studies also showed a similar pattern astheleve of nuclear -
catenin increased when adenomas grew from small to large. Additionally, increase in the number of
cells with nuclear B-catenin is significantly related to the tubular branching that is the main way how
adenomas of FAP patients and Min/+ mice enlarge (Wasan et al. 1998, Kirchner & Brablet 2000). Our
observations that the expression of B-catenin was related to the increased growth potential of inulin-
fed Min/+ mice fit well with these findings. Furthermore, cloudberry and white currant feeding

diminished the adenoma growth by attenuating p-catenin signalling.

The predictive value of nuclear p-catenin expression in the progression of colorectal cancer has been
proven (Hugh et al. 1999, Cheah et al. 2002) and the amount of nuclear B-catenin increases as early
adenomas progress to adenocarcinomas (Takayama et al. 1996, Hao et al. 1997b, Brabletz et al.
2000). Nuclear B-catenin, which seems to be the key player in the transition to the tumour invasive

state, has several target genes that regulate tumour proliferation, malignancy, and invasiveness. One of

46



the targets and a positive effector of the cell cycle, cyclin D1, is frequently overexpressed in colon
adenomas and tumours (Arber et al. 1996, Zhang et al. 1997, Bartkova et al. 2001, Chen et al. 2007).
Nuclear staining of cyclin D1 increases significantly from low-grade dysplastic adenomas to high-
grade dysplasia (Zhang et al. 1997) and it also correlates with the early onset of cancer and risk of
tumour progression and metastasis (Arber et al. 1996, Maeda et al. 1997, Oda et al. 1999, Kristt et al.
2000, Bartkova et al. 2001, Utsunomiya et al. 2001, Bahnassy et al. 2004, Mermelshtein et al. 2005).
In light of these observations, the inulin induced increase in the levels of nuclear B-catenin and cyclin

D1 as adenomas enlarged indicates acceleration in tumour promotion.

Histological evaluation of the adenomas of the inulin and control groups showed similar patterns in
their growth as well as the dysplasia and anaplasia stages. All histologically examined tumours were
also clearly benign. This is in agreement with the amounts of MMP-9 in the tumours, which did not
differ between the diets or the adenoma size-groups. The results support the idea that the adenomas of
Min/+ mice are still benign and that the MMP-9 gelatinase, the level of which increases in the
transition from colon adenoma to adenocarcinoma (Mook et al. 2004, Wagenaar-Miller et al. 2004,
Zucker & Vacirca 2004), is not yet needed for tumour cell invasion. Despite the similar histology of
the adenomas, all molecular biological changes occurred earlier in the inulin group, and the linear
mixed modd analysis showed the specific diet effect on 3-catenin signalling. The increase in nuclear
[-catenin during inulin induced adenoma growth was not just due to bigger adenomas but to a specific
effect of the inulin diet on p-catenin signalling. The increase in nuclear cyclin D1 seemed to be a
secondary event. This indicates that diet may cause qualitative changes in adenomas so that even in
the same size-category of histologically uniform adenomas, the diets reinforced B-catenin signalling
differently and predisposed to accelerated growth. We propose that some dietary constituents are able
to induce cellular signalling in a subset of adenomas so that they are more prone to malignancy than

they would have been under another dietary treatment.

Our notion that not all adenomas have equal potential for developing to cancer is supported by studies
of cancer stem cells and j3-catenin-accumulated-crypts. The cancer stem cell hypothesisisincreasingly
gaining evidence that colorectal cancer is created and propagated by a small number of
undifferentiated tumourigenic cells able to self-renew and differentiate into the bulk tumour
population (O'Brien et al. 2007, Ricci-Vitiani et al. 2007). Cancer stem cells may arise when the
function of tumour-progenitor genes are disrupted by epigenetic changes that might be frequent in a
subpopulation of stem cells owing to, for example, chronic inflammation, injury and nutrition
(Feinberg et al. 2006). Good candidates for such tumour-progenitor genes are proposed to be APC, /-
catenin and E-cadherin. Targeting this small subset of colon cancer cells able to initiate tumour

growth might offer effective therapeutic strategies.
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The notion that most colorectal carcinomas in humans and also in Min/+ mice arise from pre-existing
adenomas is supported by the similar gene expression profiles of adenomas and carcinomas (Paoni et
al. 2003, Nosho et al. 2005). However, al early intestinal lesions do not act similarly and some have
higher tumourigenic potential than others. B-catenin and its target genes have invincible roles in
creating stem cell phenotypes for cancer cells progressing toward malignancy (Brabletz et al. 2005b).
Furthermore, only some of the ACFs are prone to expand to malignant tumours and this process also
involves B-catenin (Yamada et al. 2003). Small dysplastic crypts with excessive 3-catenin (BCAC, -
catenin-accumulated-crypts) and microadenomatous crypts, which are similar lesions found in the
colon of Min/+ mice (Yamada et al. 2002), have histologal dysplasia with disruption of cellular
morphology. Some of them are also recognised as adenomatous crypts with extensive branching
(Yamada et al. 2000). These B-catenin-accumulated-crypts are thought to be more likely to progress
into malignant transformation than classical ACFs (Yamada & Mori 2003). These studies highlight the
importance of analysing also the signalling pattern of adenomas, not just the number or size of the

adenomas when evaluating the health claims for dietary constituents.

Studies of inulin in various colon cancer models

Inulin is a fructo-oligosaccharide fibre found for example in garlic, onion, artichoke and asparagus.
Mammals have no digestive enzymes to break B(2-1) glucoside bonds and, therefore, inulin-type
fructans escape digestion in the upper intestinal tract but are fermented by intestinal microbiota. The
extensive fermentation of inulin-type fructans results in the formation of short-chain fatty acids
(SCFA) that have been associated with a variety of positive health effects (Roberfroid 2005). The food
industry is ableto enrich inulin from its natural sources and inulin is used in foods to enhance the fibre

content and to give special texture usually to low-fat foods.

Pool-Zobel (2005) has written an extensive review of inulins in the reduction of colon cancer risk and,
therefore, only afew facts are pointed out here. Most of the studies determining the effect of inulin on
colorectal cancer have been conducted in rats injected with dimethylhydrazine (DMH) or its
metabolite, azoxymethane (AOM), that specifically targets the colon of rats (Corpet & Tache 2002,
Pool-Zobel 2005). When comparing the results between Min/+ mice and the chemical rodent model

one should keep in mind that in different colon cancer models the mutational background varies.

The molecular genetics of chemical rodent models are different from that found in human colon
tumourigenesis. AOM causes B-catenin and K-ras mutations (Takahashi & Wakabayashi 2004) that
are usually found in the later stages of human adenoma-carcinoma sequence. For example mutation in
Apc, the earliest change found in inherited FAP as well asin most of sporadic colon cancers, is less
frequent and mutation in p53 is totally absent in chemically induced rodent models (Song et al. 2000,
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O’ Shaughnessy et al. 2002, Takahashi & Wakabayashi 2004). However, like APC mutated human
tumours, rat tumours may accumulate p-catenin in the nucleus due to degradation resistant mutations
in B-catenin (Sheng et al. 1998, Corpet & Pierre 2005). Chemically induced tumours arise from flat
foci of dysplasia rather than from adenomatous polyps but similarly to human tumours go through
ACF, adenoma and carcinoma. Adenomas are considered one of the most established markers of colon
cancer risk and are reported as suitable targets for treatment intervention because of their phenotypic

and genotypic similarities and evolutionary proximity to invasive cancer (O’ Shaughnessy et al. 2002).

The tumour preventive action of inulin is mainly demonstrated by the suppression of ACF formation.
In chemically induced rodent models the numbers of ACFsand of aberrant crypts per focus seem to be
reduced when inulin-type fructans (2-15%) are added to the diet on their own or as part of synbiatic
diets (Koo & Rao 1991, Gallaher et al. 1996, Reddy et al. 1997, Rao et al. 1998, Rowland et al. 1998,
Bolognani et al. 2001, Perrin et al. 2001, Verghese et al. 2002a, Verghese et al. 2002b, Poulsen et al.
2002, Femia et al. 2002). Only some ACFs develop into tumours and the actual tumours have been
investigated in only few experiments (Verghese et al. 2002b, Femia et al. 2002) which found dietary

inulin alone or as a part of synbiatic diet to decrease the number of AOM induced colon tumours.

Different colon cancer models present different stages of colorectal tumourigenesis which can
influence the chemoprevention. Dietary compounds may have different effects depending on the stage
of preneoplastic lesion and also the life stage timing, dose, and genetic background that determines
how cells respond to specific dietary compounds (Fenton & Hord 2006). For example, the
chemopreventive effects of B-carotene and isoflavones of soy are dependent on the stage of
carcinogenenis in which they are presented. Short-term animal bioassays have shown that some
dietary constituents, like cholic acid (Reddy et al. 1977, Magnuson & Bird 1993) and genistein (Steele
et al. 1995, Rao et al. 1997), inhibit the development of carcinogen-induced colonic ACF, but long-
term studies using tumours as the end points have demonstrated tumourigenic effects. The studies with
cholic acid have revealed that the ability of dietary agents to modulate the multiplicity and size of
BCACsis more important for its potential action than the modulation of ACF (Hirose et al. 2003). The
studies with inulin have concentrated on the ACF, and not on BCAC.

The ability of inulin to reduce the risk of colon cancer in humans has been studied only in the
SYNCAN project (Van Loo et al. 2005, Rafter et al. 2007, Roller et al. 2007). Two groups of
volunteers, polypectomised subjects at high risk for colon cancer and colon cancer subjects who had
previously undergone ‘curative resection' for colon cancer but were not currently having treatment,
received inulin as a part of synbiotic diet for 12 weeks. The health effects were neutral or dightly
positive. The synbiotic intervention resulted in probiotic survival during gastrointestinal transit and

modification of the intestinal flora. The DNA damage in the colonic mucosa of the polyp patients was
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dlightly decreased but a similar effect was not seen in the cancer patients. The effects of fecal water
samples on tight junction permeability was monitored with cell cultures in vitro and some positive
effects were seen with the faeces obtained from the polyp patients but not from the cancer patients.
The synbiotic treatment had only minor stimulatory effects on the systemic immune system mainly on
polyp patients and the reduction of the colorectal proliferation was not statistically significant. The
results obtained from the SYNCAN project attest that chemopreventive effects of dietary compounds

are dependent on the stage of preneoplastic lesion and genetic background.

The inulin chain length may have different effects on ACF multiplicity. Poulsen et al. (2002) found
that long-chain inulins significantly inhibited the number of small and total ACFs but short-chain
inulins significantly increased the numbers of medium and large ACFs. Although we used long-chain
inulin in our studies, our results that inulin accelerated adenoma growth resulting in a higher
proportion of large adenomas is in accordance with the study of Poulsen et al. (2002). In addition to
our experiment, there are only a few other reports using Min/+ mouse. Pierre et al. (1997) fed short-
chain fructo-oligosaccharides to Min/+ mice which caused a reduction in the incidence of colonic
tumours but not of small intestinal tumours: fructo-oligosaccharides decreased the number of small
adenomas (diameter, < 1 mm) but increased the number of large adenomas (diameter, > 1 mm). A
result similar to this statistically nonsignificant trend was found in our study. Another Min/+ mouse
study that Pool-Zobel (2005) reports to be under preparation is not yet published but the author claims

a positive effect was found.

It can be speculated that the distal small intestine of mice resembles the colon, and that the molecular
biological background of the distal small intestine resembles the colon more than the proximal small
intestine as seen in the expression of D-type cyclins (Yang et al. 2006). In inherited and somatic
colorectal cancers tumours develop in distinct regions of the colon. The similar regionality in the small
intestine is seen in animal models of these cancers, which reflects the mechanism of loss of Apc
function (Haigis et al. 2004). For still unexplained reason mouse models of colon cancer develop
small intestinal tumours that are absent in human (T aketo 2006).

The promotional activity of inulinin our studiesin contrast to others who found protection may be due
to the different test systems. However our controversial results against the healthiness of inulin are not
unique, since inulin type fructans have also been shown to impair the mucosal barrier by the rapid
production of fermentation metabolites (Ten Bruggencate et al. 2004, Ten Bruggencate et al. 2005).
This may indicate that inulin and other more fermentable fibres may cause mucosal irritation in
humans (Ten Bruggencate et al. 2006) or even be associated with a greater risk of cancer (Jacobs
1987, Wasan & Goodlad 1996). Transgenic and chemically induced rodent models of carcinogenesis

provide tools for mechanistic chemoprevention studies in different stages of carcinogenesis, but their
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usefulness to predict efficacy in humans has been questioned (Corpet & Pierre 2005). The rodent
models roughly predict the effect in humans, but the prediction is not accurate for all agents. Keeping
this in mind it must be emphasised that the results obtained in this thesis are from Min/+ mice
experiments. The conclusions for human colon carcinogenesis may be suggestive but molecular
biological backgrounds in human and Min/+ mouse tumourigenesis are similar and therefore the

Min/+ mouseis seen as arelevant mode to study diet-induced mechanisms.

Theaim of this work was to investigate if atumour promoting inulin diet is able to modulate p-catenin
signalling in Min/+ mice adenomas. Previous studies have not investigated the effects of inulin-type
fructans on cdlular signalling as they have mainly concentrated on ACF multiplicity, fermentation and
possibly on proliferation. Our studies reported in this thesis and in other publications (Mutanen et al.
2000, Pajari et al. 2003, Rajakangas et al. 2006) are the only ones describing the mechanisms of inulin
action. It was found in this thesis that adenomas in the inulin group were not merely larger but dietary
inulin was able to alter the cellular signalling of the adenomas, i.e. to result in qualitative differences

that may predict the future outcome of the adenomas.

Four berriesinhibited intestinal tumourigeness by modulating p-
catenin and cyclin D1 in the adenomas

As the tumour promoting inulin diet induced p-catenin signalling in the adenomas of Min/+ mice, the
tumour prevention by berry diets was studied to see whether opposite effects on B-catenin could be
found. Indeed, cloudberry, white currant, and lingonberry diets significantly decreased the adenoma
size as well as accumulation of nuclear B-catenin and cyclin D1 in the adenomas. The levels of -
catenin and cyclin D1 correlated significantly with the tumour burden and with each other. These
results suggest that cloudberry, white currant and to a lesser extent lingonberry are able to inhibit the
growth of tumours by preventing the nuclear accumulation and thus presumably the transcriptional
activity of -catenin, which leadsto the decreased expression of cyclin D1. Our results are in line with
observations that declining tumour burden by dietary treatment decrease cyclin D1 in ACF and
tumours (Wali et al. 2002, Issa et al. 2007, Xiao et al. 2007) and the loss of cyclin D1 in mice prevents
the growth of intestinal lesions (Samson 2005). Decreases in nuclear p-catenin and cyclin D1 caused
by the berries could be a significant marker of their chemopreventive activity since both p-catenin and
cyclin D1 are recognised as targets for drug development (Kundu 2006), and also NSAIDs mediate
their effects through this pathway.

In FAP patients and rodent models of colon cancer a wide variety of anti-inflammatory substances are
reported to mediate their chemopreventive effects in colorectal cancer by lowering nuclear
accumulation of B-catenin and expression of cyclin D1 (Mahmoud et al. 1995, Mahmoud et al. 1998,
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McEntee et al. 1999, Brown et al. 2001, Boon et al. 2004, Chang et al. 2005, Kundu et al. 2006).
Besides synthetic drugs, many extracted naturally occurring phytochemicals are able to target -
catenin signalling related to colorectal cancer (Surh 2003, Clapper et al. 2004). The maost convincing
evidence is found from curcumin from turmeric (Mahmoud et al. 2000, Jaiswal et al. 2002,
Thangapazham et al. 2006) and epigallocatechin gallate from green tea (Orner et al. 2003, Ju et al.
2005, Dashwood et al. 2005, Xiao et al. 2007). Also resveratrol from grapes, docosahexanoic acid
from fish ail, sulforaphane from broccoli, indole-3-carbinol from cabbage and genistein from soybean
are widely studied for chemoprevention (Oshima et al. 1995, Joe et al. 2002, Kim et al. 2003, Surh
2003, Clapper et al. 2004, Kundu et al. 2006).

Studies of berriesin various colon cancer models

Studies using extracts of blackberry, black currant, black raspberry, bilberry, blueberry, cloudberry,
cowberry, cranberry, gooseberry, lingonberry, red raspberry, sea buckthorn, strawberry, tart cherry,
and white currant in vitro have found promising chemopreventive antiproliferative and proapoptotic
effects against colon cancer (Kang et al. 2003, Katsube et al. 2003, Olsson et al. 2006, Parry et al.
2006, Seeram et al. 2004, Seeram et al. 2006, Boivin et al. 2007, Coates et al. 2007, Wu et al. 2007).
The anticarcinogenic effects of the berries could be explained by their high concentration of phenolics,
although the studies have not found consis roles for different compounds or determined the
concentrations needed. The major phenolic compounds in bilberry, lingonberry, and cloudberry are
anthocyanins, proanthocyanidins and dlagic acid, respectively (Hakkinen et al. 1999, Maétta et al.
2001, M&étta-Riihinen et al. 2004a, M &étt&-Riihinen et al. 2004b, Koponen et al. 2007). White currant
contains only very low levels of phenolic compounds and it practically lacks antocyanins and other
flavonoids (Hakkinen et al. 1999, M &itta et al. 2001).

Many of the phenolic compounds of the berries have been studied on their own or in mixtures
(Wargovich et al. 2000, Surh 2003). For example, anthocyanins (Kang et al. 2003, Yi et al. 2005,
Katsube et al. 2003, Seeram et al. 2004, Zhao et al. 2004), proanthocyanidins (Seeram et al. 2004,
Ferguson et al. 2006), phenolic acids (Yi et al. 2005) and e lagitannins (Adams et al. 2006) were
found to have chemopreventive effects in colon cancer cellsin vitro. However, based on a subsequent
experiment (Paivéarinta et al. 2006), we can exclude the possibility of ellagic acid being the main
compound in cloudberry to prevent adenoma formation in Min/+ mice. In this study, the effects of the
berries on tumour number were similar despite their different phenolic profiles, suggesting that the
anticarcinogenic effects of the berries may result from compounds other than phenolics. This result is
in agreement with the study that found 10 different extracts of fruits and berries with great differences
in the contents of antioxidants and phenolic compounds inhibited cell proliferation of HT29 colon

cancer cells surprisingly similarly (Olsson et al. 2004).
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None of the four berries studied have previously been examined in animal models of colon cancer or
in p-catenin signaling. However, some other berries or berry extracts have demonstrated
chemopreventive effects in vivo and they seem to have stronger effects than the purified compounds
aone (Adams et al. 2006). Black raspberry has been shown to inhibit carcinogen-induced
tumourigenesis in therat colon (Harris et al. 2001) possibly through AP-1 and NFKB pathways (Lu et
al. 2006). Anthocyanin-rich tart cherry extract added to drinking water has been associated with fewer
and smaller tumours in the caecum of Min/+ mice (Kang et al. 2003). In combination with sulindac,
tart cherry extract has resulted in fewer tumours and a smaller tumour burden in the small intestine of
Min/+ mice when compared to mice fed sulindac alone (Bobe et al. 2006) but the studies were not
able to explain the possible chemopreventive mechanism. Anthocyanin-rich extracts of bilberry,
chokeberry and grape have been shown to have antiproliferative effects and to reduce the number of
ACFs compared with the control in AOM treated rats (Lala et al. 2006). Also in Min/+ mice an
anthocyanin mixture from bilberry has been shown to decrease the number of intestinal adenomas
(Cooke et al. 2006).

In addition to modulation of the levels of cyclin D1, the bioactive compounds of vegetables, fruits, and
berries can cause cell-cycle arrest and/or apoptosis through upregulation of CDK inhibitors p21 and
p27 (Manson 2003, Manson 2005). The specific roles for p21 and p27 in colon tumourigenesis have
also been pointed out as the effect of a Western type diet have been investigated (Yang et al. 2001,
Philipp-Stahdli et al. 2002, Yang et al. 2003b, Yang et al. 2005). In an Apc deficient background p21
and p27 mutations have additional influence on the incidence, multiplicity, and size of intestinal
tumours that can be, however, modulated by the composition of the diet. In our berry experiments the
levels of p21 and p27 were analysed from the different-sized adenomas of bilberry, lingonberry, and
cloudberry fed mice. p21 and p27 could not explain the adenoma growth and they stayed relatively
constant in different size-categories. Our findings are contradictory to those of Wu et al. (2007) who
found bilberry, black currant, cloudberry, lingonberry, raspberry and strawberry extracts to induce the
expression of p21 that was related to inhibition of cancer cell proliferation in vitro. It is possible that
the berries studied did not have specific effects on the levels of p21 or p27 in vivo and tumour
preventive functions in Min/+ mice are mediated by other signalling components. Another explanation
for the null result is a methodological problem with p21 and p27 analyses. These proteins are
supposed to function as cdl cycle inhibitors in the nucleus (Coqueret 2003), but in our Western
analyses they were detected only in the cytosol. This was probably due to the antibodies used and may

have been non-specific cross-reaction.

In this thesis, Western analysis was the main method for analysing the levels of the proteins dueto its

semiquantitative nature and thus its ability to allow the estimation of the average quantities of the
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protein of interest in the whole sample. Immunohistochemistry was used mainly to confirm the results
as one can focus on selected areas of the intestine and to visualise the location and to some extent also
the levels of analysed proteins. Our Western analysis and immunohistochemical stainings were
validated using commercially available antibodies. The antibody specificity i.e. the ability to detect the
correct proteins was ensured by blocking peptides, immunoprecipitation, other commercially available
antibodies and normal serum. The analysis of p21 and p27 was also proved to work specifically but
they detected only in the cytosolic fractions of the tissue samples. Therefore, the p21 and p27 results
could be questioned.

Our results indicate that the berries studied are potential sources of chemopreventive compounds
against colon cancer. Importantly, no adverse effects on weight gain by any of the berries were seen.
Furthermore, contrary to some drugs (Yang et al. 2003a), none of the berries increased tumour
formation in the colon, suggesting that the chemopreventive components of the berries are likely to
have a good safety profile The inhibition of nuclear p-catenin and cyclin D1 is comparable to
substances studied as cancer drugs (Luu et al. 2004, Kundy et al. 2006) and recently also green tea and
its constituents has been shown to decrease nuclear expression levels of B-catenin and cyclin D1 (Issa
et al. 2007, Xiao et al. 2007). The effects of berries most probably are not mediated by one class of
phenolics but rather by mixture of different compounds acting in synergistic and additive ways (Harris
et al. 2001, Adams et al. 2006). As demonstrated in this study, chemoprevention using natural, non-
toxic foods can achieve the same effect as drugs, both in terms of reduction in tumour burden, and

inactivation of cell signalling.

Effects of dietson membranous B-catenin in the adenomas

Staining for B-catenin in colorectal carcinomas often shows a heterogeneous pattern with strong
nuclear enrichment at the invasive front and mainly cytoplasmic and membranous staining in the
central tumour areas (Behrens 2005). In our studies a heterogeneous staining pattern of p-catenin was
found but it seemed to be the same adenomatous areas that were enriched with both nuclear and
membranous B-catenin within the adenoma. This controversy could be due to the fact that adenomas of
Min/+ mouse are benign and cells accumulating nuclear p-catenin at the invasive front is a

phenomenon found in invasi ve carcinomas.

[3-catenin shuttling between the nucleus, cytoplasm and cell membranes is the key for maintaining the
balance between the role of B-catenin in cell-cell adhesion at the surface and transcription in the
nucleus. Therefore, oncogenic nuclear activation of B-catenin could lead to tumour formation in

somatic cells (van Es et al. 2003). The loss of E-cadherin may release 3-catenin from cell membranes



and increase the cytoplasmic pool of B-catenin that is available for nuclear signalling (Smits et al.
2000, Gottardi et al. 2001). Our findings that the levels of membranous E-cadherin and p-catenin
increased as the adenomas enlarged after the tumour promoting inulin diet contradicts the view that
tumour growth induces nuclear p-catenin dueto release of p-catenin from the membranous pools (Hao
et al. 1997). Although this link between membranous and nuclear expression of -catenin is known
(Hao et al. 1997), contrasting or neutral findings are also described (Herter et al. 1999). Participation
of p-catenin in adhesion or Wnt signalling may be dictated by the regulation of distinct molecular
forms of B-catenin with different binding properties, rather than simple competition between cadherins

and Tcfsfor asingle constitutive form (Gottardi & Gumbiner 2004).

Our findings that the amounts of membranous E-cadherin and -catenin increased as the adenomas
enlarged could be a result of the overall increases of protein in contrast to increases only in some parts
of the cell. Therefore, the increasing levels of membranous B-catenin in Min/+ mice adenomas is not
desirable, due to simultaneous increase in oncogenic nuclear p-catenin. Our results are in line with
other reports (Carothers et al. 2001, Ju et al. 2005) showing that the expression and association of E-
cadherin, 3-catenin, and a-catenin are increased in Apc-/- adenomas compared with normal-appearing
Apc+/- mucosa and may result in tighter adhesion of tumour cells. Indeed, in tissue culture cells,
increased levels of B-catenin induced by Wnt signalling led to saturation of B-catenin binding to
cadherin at the plasma membrane and increase in cell-cell adhesion (Hinck et al. 1994b).

Tumour preventive cloudberry and white currant diets decreased the levels of membranous p-catenin
and E-cadherin compared to the control diet. In other diet groups the levels of these membranous
proteins were increased as adenomas enlarged but the cloudberry maintained the level of membranous
[-catenin in the large adenomas at the level found in the small ones. These results arein contrast to the
published reports where tumour prevention by NSAIDs redistributed 3-catenin and E-cadherin back to
the plasma membrane (Mahmoud et al. 1998, Roy et al. 2005, Kapitanovic et al. 2006). Our results
suggest that a loss of membranous B-catenin indicates an overall reduction of p-catenin in the cell, as
there was also a strong correlation between nuclear and membranous B-catenin and no increase in the
cytosol could be seen. Based on the findings from tumour promoting and preventive experiments, we
propose that the decreased amount of membranous f-catenin in a benign adenoma also means a
decrease in the nuclear pool and may thus be desirable. This would be in line with studies where
treating colorectal cancer patients with sulindac resulted in reduced membranous staining of p-catenin
(Koornstra et al. 2005) and treating human colon cancer cells with the anticarcinogenic NSAID
celecoxib induced B-catenin degradation, seen as decreased levels of cytosolic, nuclear, and
membranous B-catenin, and E-cadherin (Maier et al. 2005).
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p-catenin signalling in the nor mal-appearing mucosa was
modulated by inulin diet but not by berry diets

Dietary compounds influence the intestinal microenvironment that directs the cellular functions and
influences the clonal expansion of tumour cells. The extracellular signals may activate the normal-
appearing mucosa and the adenomas differently and cause diverse cellular responses as seen with
metabolic pathways (Koukourakis et al. 2006). It would be important to understand how to control the
microenvironment and to find biomarkers for the physiological status of the mucosa. As the dietary
modifications changed the p-catenin signalling in the adenomas, this approach was also chosen to

investigate normal-appearing mucosa.

The inulin-induced growth promotion was accompanied by accumulation of cytosolic and nuclear -
catenin, and an increased amount of cytosolic cyclin D1 in the normal-appearing mucosa of Min/+
mice. Furthermore, inulin feeding reduced the levels of B-catenin and E-cadherin in the mucosal
membranes. I1n the wild-type mice the drop in membranous p-catenin was clear and, in addition, subset
of crypts also had enhanced nuclear -catenin staining. Increasing levels of nuclear B-catenin and the
activation of p-catenin/Tcf pathway are the primary transforming events in colon cancer as the target
genes of B-catenin control whether cells in the intestinal epithelium proliferate or differentiate (Bienz
& Clever 2000, Giles et al. 2003). E-cadherin can influence the availability of p-catenin by competing
with other binding partners of 3-catenin and, therefore, B-catenin is suggested to have nuclear activity
only when it is free of E-cadherin (Orsulic et al. 1999, Gottardi et al. 2001) as was seen also in the

normal-appearing mucosa of inulin-fed mice.

Histologically normal-appearing enterocytes in the small intestine of Min/+ mice show 25% reduction
in migration rate compared to those in their wild-type littermates (Mahmoud et al. 1997). Min/+ mice
have impaired enterocyte proliferation and apoptosis, as well as defects in cell-cell adhesion, reflecting
the reduced association between E-cadherin and p-catenin (Carothers et al. 2001). It has been
proposed that APC mutations result in increased localisation of 3-catenin at the membrane, increasing
adhesion and consequently decreasing migration (Gilet et al. 2003). Our results are in accordance with
these observations since at 5 weeks of age the Min/+ mice had less membranous E-cadherin and f-
catenin in the mucosa than their wild-type littermates. Cyclin D1 has also been suggested to be
involved in signalling pathways regulating cellular differentiation and migration (Hulit et al. 2004, Fu
et al. 2004) and the Min/+ mice had less cytosolic cyclin D1 than WT mice.

Epithelial cell proliferation rate in the normal-appearing mucosa predicts the risk for colorectal cancer

and is associated with diet (Akedo et al. 2001). The precise action of different dietary fibres and the

fermentation products in colorectal tumourigenesis still remains to be determined but it is already
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known that both the amount and the nature of dietary fat influence the function of fibre (Lupton 2000,
Lupton 2004). The most fermentable dietary fibres have been shown to increase the cells in the S
phase of the cell cycle and to stimulateintestinal cell proliferation by lowering intestinal pH (Jacobs &
Lupton 1984, Lupton et al. 1985, Lupton et al. 1987). This could be one reason for increased cyclin
D1 found in the inulin group. Therole of cyclin D1 in colon tumourigenesis is well defined and there
arereportsindicating that cyclin D1 in the normal-appearing mucosa responds to dietary treatment and
may reflect adenoma formation (Wali et al. 2002, Shinozaki et al. 2003, Orner et al. 2003, Yang et al.
2003a). It has been suggested that cyclin D1 overexpression is not a mere consequence of cellular
proliferative activity but rather represents a true difference between the normal and tumorous states

(Hur et al. 2000) which could explain the tumour promoting effects of the inulin diet.

Our results showed that cloudberry, white currant, and lingonberry were able to target both the
initiation and promotion stages of colon cancer, as they prevented the formation and growth of
intestinal adenomas in Min/+ mice. Since some chemopreventive compounds have resulted in changes
in the levels of B-catenin (Schmelz et al. 2001) and E-cadherin (Carothers et al. 2001, Moran et al.
2005) in Min/+ mice mucosa in vivo and ex vivo, and in colorectal cancer patients (Koornstra et al.
2005), we investigated if berries affected the levels of B-catenin, E-cadherin and cyclin D1 in the
normal-appearing mucosa. In vitro studies have shown that citrus flavonoids are able to promote cell
migration in Apc deficient colon epithelia cells (Fenton & Hord 2004). The stabilisation of the
migration up the crypt by bioactive compounds in the berries could alow cells to migrate normally,
undergo apoptosis and in that way prevent adenoma formation. However, the levels of analysed
proteins were similar in the control and berry groups. The B-catenin signalling gives a convincing
explanation for the induction and inhibition of tumour growth in Min/+ mice. It does not, however,
explain the inhibition of tumour initiation by berries as the effects were found in the adenomas but not
in the normal-appearing mucosa, suggesting that other pathways are responsible for the reduced
number of adenomas. It is also possible that the reduced formation of adenomas was due to slow
growth and regression in berry diet group as it was seen in our study 1V that at 5 weeks of age Min/+
mice already have visible adenomas. The strong correlation between cytosolic cyclin D1 and the
number of adenomas after the white currant diet suggests a possible mechanism for initiation of
adenoma formation. However, new studies claim that upregulation of cyclin D1 in intestinal neoplasia
may be an important factor in adenoma establishment and growth rather than initiation (Sansom et al.
2005). Some authors also propose that cyclin D1 may not be essential for the devel opment of intestinal
tumourigenesis but may modify adenoma frequency (Wilding et al. 2002, Hulit et al. 2004).

Asthisthesis was unableto find a clear explanation for the prevention of tumour initiation from the -

catenin signalling, some other possibilities were also evaluated. In addition to the proteomic approach,

an Affymetrix microarray technique on normal-appearing Min/+ mucosa was used to identify early
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changes in intestinal tumourigenesis. When the cut-off point was set at a 2-fold difference between the
berry and the control treatments, Affymetrix microarray reveal ed changes in genes implicated in colon
carcinogenesis, including the decreased expression of the adenosine deaminase, ecto-5'-nucleotidase
and PGE2 receptor subtype EP4 (results shown in the original paper 11). It is noteworthy that the
changes in the cancer-related genes took place already in the normal-appearing mucosa and that all the
berries resulted in similar changes in the expression of these genes. The results are in line with the
inhibitory effects of the berries on tumour formation rather than explaining their effects on tumour
growth. The gene expression data give valuable information and a good starting point to further study

the chemopreventive effects of the berries.
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Conclusions

In conclusion, diets were able to modulate B-catenin signalling in the adenomas of Min/+ mice,
tumour promotive and preventive diets having opposite effects on B-catenin signalling in the
adenomas. The changes in p-catenin signalling in adenoma tissues seemed to be related to the different
adenoma growth capacity in the presence of dietary inulin or berries. The levels of nuclear p-catenin
and cyclin D1 combined with the size of the adenomas in the treatment groups suggest that diets
induced differences in the cancerous process and adenomas progressing to malignant carcinomas are
most likely found in the sub-groups having the highest levels of p-catenin. On the other hand
adenomas staying quiescent for long perioid of time are most probably found from cloudberry or white

currant diet groups.

That levels of membranous E-cadherin and B-catenin increased as the adenomas in the inulin diet
group grew could be a result of the overall increase in protein levels of the cell. The increasing levels
of membranous B-catenin in Min/+ mice adenomas would be undesirable, due to simultaneous
increase in oncogenic nuclear B-catenin. We propose that the decreased amount of membranous (-
catenin in benign adenomas of berry diet groups implies also a decrease in the nuclear pool of f-

catenin and may thus be desirable.

Tumour promotion, but not tumour prevention, influenced p-catenin signalling aready in the normal-
appearing mucosa. Inulin-induced tumour promotion was related to p-catenin signalling in Min/+ mice
and in WT mice changes were also visible. The chemopreventative effects of berries in the initiation
phase were not mediated by attenuated p-catenin signalling, but cyclin D1 might have its own
independent roleinthis.

One should bear in mind that the results obtained in this thesis are applicable in an Apc deficient
background. All other tumour promative or preventive diets do not necessarily cause similar -catenin
signalling as seen in this study. However, it could be argued that if a similar signalling pattern is found
the tumourigenic effect of diet are most probably similar. Our results suggest that in addition to the
number, size, and growth rate of adenomatous polyps, the signalling pattern of the adenomas should

also be considered when evaluating preventative dietary strategies.
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