TY - T1 - Comparison of forecasting methods for retail data SN - / UR - URN:NBN:fi:hulib-202006172997; http://hdl.handle.net/10138/316577 T3 - A1 - Länsman, Olá-Mihkku A2 - PB - Helsingin yliopisto Y1 - 2020 LA - eng AB - Demand forecasts are required for optimizing multiple challenges in the retail industry, and they can be used to reduce spoilage and excess inventory sizes. The classical forecasting methods provide point forecasts and do not quantify the uncertainty of the process. We evaluate multiple predictive posterior approximation methods with a Bayesian generalized linear model that captures weekly and yearly seasonality, changing trends and promotional effects. The model uses negative binomial as t... VO - IS - SP - OP - KW - retail; probabilistic forecasting; Bayesian inference; posterior approximation; none; Algoritmit; Algorithms; Algoritmer; Tietojenkäsittelytieteen maisteriohjelma; Master's Programme in Computer Science; Magisterprogrammet i datavetenskap N1 - PP - ER -