TY - T1 - Image Recognition for Atomic Force Microscopy SN - / UR - URN:NBN:fi:hulib-202109233754; http://hdl.handle.net/10138/334559 T3 - A1 - Kurki, Lauri A2 - PB - Helsingin yliopisto Y1 - 2021 LA - eng AB - Atomic force microscopy (AFM) is a widely utilized characterization method capable of capturing atomic level detail in individual organic molecules. However, an AFM image contains relatively little information about the deeper atoms in a molecule and thus interpretation of AFM images of non-planar molecules offers significant challenges for human experts. An end-to-end solution starting from an AFM imaging system ending in an automated image interpreter would be a valuable asset for all research... VO - IS - SP - OP - KW - Atomic force microscopy; machine learning; deep learning; convolutional neural networks; Laskennallinen materiaalifysiikka; Computational Material Physics; BerÀkningsmaterialfysik; Materiaalitutkimuksen maisteriohjelma; Master's Programme in Materials Research; Magisterprogrammet i materialforskning N1 - PP - ER -