TY - T1 - MSTAR - a fast parallelized algorithmically regularized integrator with minimum spanning tree coordinates SN - / UR - http://hdl.handle.net/10138/320660 T3 - A1 - Rantala, Antti; Pihajoki, Pauli; Mannerkoski, Matias; Johansson, Peter H.; Naab, Thorsten A2 - PB - Y1 - 2020 LA - eng AB - We present the novel algorithmically regularized integration method MSTAR for high-accuracy (vertical bar Delta E/E vertical bar greater than or similar to 10(-14)) integrations of N-body systems using minimum spanning tree coordinates. The twofold parallelization of the O(N-part(2)) force loops and the substep divisions of the extrapolation method allow for a parallel scaling up to N-CPU = 0.2 x N-part. The efficient parallel scaling of MSTAR makes the accurate integration of much larger partic... VO - IS - SP - OP - KW - gravitation; methods: numerical; quasars: supermassive black holes; galaxies: star clusters: general; SUPERMASSIVE BLACK-HOLES; GALACTIC NUCLEI; GALAXY MERGERS; EVOLUTION; BINARIES; IMPLEMENTATION; PERTURBATIONS; SYSTEMS; SPACE; CODE; 115 Astronomy, Space science N1 - PP - ER -