Feasibility Study of the Permeability and Uptake of Mesoporous Silica Nanoparticles across the Blood-Brain Barrier

Show full item record



Permalink

http://hdl.handle.net/10138/166632

Citation

Baghirov , H , Karaman , D , Viitala , T , Duchanoy , A , Lou , Y-R , Mamaeva , V , Pryazhnikov , E , Khiroug , L , Davies , C D L , Sahlgren , C & Rosenholm , J M 2016 , ' Feasibility Study of the Permeability and Uptake of Mesoporous Silica Nanoparticles across the Blood-Brain Barrier ' , PLoS One , vol. 11 , no. 8 , 0160705 . https://doi.org/10.1371/journal.pone.0160705

Title: Feasibility Study of the Permeability and Uptake of Mesoporous Silica Nanoparticles across the Blood-Brain Barrier
Author: Baghirov, Habib; Karaman, Didem; Viitala, Tapani; Duchanoy, Alain; Lou, Yan-Ru; Mamaeva, Veronika; Pryazhnikov, Evgeny; Khiroug, Leonard; Davies, Catharina de Lange; Sahlgren, Cecilia; Rosenholm, Jessica M.
Contributor: University of Helsinki, Faculty of Pharmacy
University of Helsinki, Faculty of Pharmacy
University of Helsinki, Neurotar LTD
Date: 2016-08-22
Language: eng
Number of pages: 22
Belongs to series: PLoS One
ISSN: 1932-6203
URI: http://hdl.handle.net/10138/166632
Abstract: Drug delivery into the brain is impeded by the blood-brain-barrier (BBB) that filters out the vast majority of drugs after systemic administration. In this work, we assessed the transport, uptake and cytotoxicity of promising drug nanocarriers, mesoporous silica nanoparticles (MSNs), in in vitro models of the BBB. RBE4 rat brain endothelial cells and Madin-Darby canine kidney epithelial cells, strain II, were used as BBB models. We studied spherical and rod-shaped MSNs with the following modifications: bare MSNs and MSNs coated with a poly (ethylene glycol)-poly(ethylene imine) (PEG-PEI) block copolymer. In transport studies, MSNs showed low permeability, whereas the results of the cellular uptake studies suggest robust uptake of PEG-PEI-coated MSNs. None of the MSNs showed significant toxic effects in the cell viability studies. While the shape effect was detectable but small, especially in the real-time surface plasmon resonance measurements, coating with PEG-PEI copolymers clearly facilitated the uptake of MSNs. Finally, we evaluated the in vivo detectability of one of the best candidates, i.e. the copolymer-coated rod-shaped MSNs, by two-photon in vivo imaging in the brain vasculature. The particles were clearly detectable after intravenous injection and caused no damage to the BBB. Thus, when properly designed, the uptake of MSNs could potentially be utilized for the delivery of drugs into the brain via transcellular transport.
Subject: BIOMEDICAL APPLICATIONS
IN-VITRO
CELLS
EXOCYTOSIS
NANOCARRIERS
ENDOCYTOSIS
DETERMINES
ABSORPTION
MECHANISM
TRANSPORT
317 Pharmacy
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
journal.pone.0160705.PDF 12.82Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record