A Monte Carlo method to estimate the confidence intervals for the concentration index using aggregated population register data.

Show full item record



Permalink

http://hdl.handle.net/10138/203382

Citation

Lumme , S , Sund , R T , Leyland , A H & Keskimäki , I 2015 , ' A Monte Carlo method to estimate the confidence intervals for the concentration index using aggregated population register data. ' Health services & outcomes research methodology , vol. 15 , no. 2 , pp. 82-98 . DOI: 10.1007/s10742-015-0137-1

Title: A Monte Carlo method to estimate the confidence intervals for the concentration index using aggregated population register data.
Author: Lumme, Sonja; Sund, Reijo Tapani; Leyland, Alastair H; Keskimäki, Ilmo
Contributor: University of Helsinki, Department of Social Research
Date: 2015-02-18
Language: eng
Belongs to series: Health services & outcomes research methodology
ISSN: 1387-3741
URI: http://hdl.handle.net/10138/203382
Abstract: In this paper, we introduce several statistical methods to evaluate the uncertainty in the concentration index (C) for measuring socioeconomic equality in health and health care using aggregated total population register data. The C is a widely used index when measuring socioeconomic inequality, but previous studies have mainly focused on developing statistical inference for sampled data from population surveys. While data from large population-based or national registers provide complete coverage, registration comprises several sources of error. We simulate confidence intervals for the C with different Monte Carlo approaches, which take into account the nature of the population data. As an empirical example, we have an extensive dataset from the Finnish cause-of-death register on mortality amenable to health care interventions between 1996 and 2008. Amenable mortality has been often used as a tool to capture the effectiveness of health care. Thus, inequality in amenable mortality provides evidence on weaknesses in health care performance between socioeconomic groups. Our study shows using several approaches with different parametric assumptions that previously introduced methods to estimate the uncertainty of the C for sampled data are too conservative for aggregated population register data. Consequently, we recommend that inequality indices based on the register data should be presented together with an approximation of the uncertainty and suggest using a simulation approach we propose. The approach can also be adapted to other measures of equality in health.
Subject: 112 Statistics and probability
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
10.1007_s10742_015_0137_1.pdf 450.3Kb PDF View/Open

This item appears in the following Collection(s)

Show full item record