Algorithms for 13C metabolic flux analysis

Show full item record



Permalink

http://urn.fi/URN:ISBN:952-10-3511-0
Title: Algorithms for 13C metabolic flux analysis
Author: Rantanen, Ari
Contributor: University of Helsinki, Faculty of Science, Department of Computer Science
Publisher: Helsingin yliopisto
Date: 2006-11-22
Language: en
URI: http://urn.fi/URN:ISBN:952-10-3511-0
http://hdl.handle.net/10138/21381
Thesis level: Doctoral dissertation (article-based)
Abstract: The metabolism of an organism consists of a network of biochemical reactions that transform small molecules, or metabolites, into others in order to produce energy and building blocks for essential macromolecules. The goal of metabolic flux analysis is to uncover the rates, or the fluxes, of those biochemical reactions. In a steady state, the sum of the fluxes that produce an internal metabolite is equal to the sum of the fluxes that consume the same molecule. Thus the steady state imposes linear balance constraints to the fluxes. In general, the balance constraints imposed by the steady state are not sufficient to uncover all the fluxes of a metabolic network. The fluxes through cycles and alternative pathways between the same source and target metabolites remain unknown. More information about the fluxes can be obtained from isotopic labelling experiments, where a cell population is fed with labelled nutrients, such as glucose that contains 13C atoms. Labels are then transferred by biochemical reactions to other metabolites. The relative abundances of different labelling patterns in internal metabolites depend on the fluxes of pathways producing them. Thus, the relative abundances of different labelling patterns contain information about the fluxes that cannot be uncovered from the balance constraints derived from the steady state. The field of research that estimates the fluxes utilizing the measured constraints to the relative abundances of different labelling patterns induced by 13C labelled nutrients is called 13C metabolic flux analysis. There exist two approaches of 13C metabolic flux analysis. In the optimization approach, a non-linear optimization task, where candidate fluxes are iteratively generated until they fit to the measured abundances of different labelling patterns, is constructed. In the direct approach, linear balance constraints given by the steady state are augmented with linear constraints derived from the abundances of different labelling patterns of metabolites. Thus, mathematically involved non-linear optimization methods that can get stuck to the local optima can be avoided. On the other hand, the direct approach may require more measurement data than the optimization approach to obtain the same flux information. Furthermore, the optimization framework can easily be applied regardless of the labelling measurement technology and with all network topologies. In this thesis we present a formal computational framework for direct 13C metabolic flux analysis. The aim of our study is to construct as many linear constraints to the fluxes from the 13C labelling measurements using only computational methods that avoid non-linear techniques and are independent from the type of measurement data, the labelling of external nutrients and the topology of the metabolic network. The presented framework is the first representative of the direct approach for 13C metabolic flux analysis that is free from restricting assumptions made about these parameters.In our framework, measurement data is first propagated from the measured metabolites to other metabolites. The propagation is facilitated by the flow analysis of metabolite fragments in the network. Then new linear constraints to the fluxes are derived from the propagated data by applying the techniques of linear algebra.Based on the results of the fragment flow analysis, we also present an experiment planning method that selects sets of metabolites whose relative abundances of different labelling patterns are most useful for 13C metabolic flux analysis. Furthermore, we give computational tools to process raw 13C labelling data produced by tandem mass spectrometry to a form suitable for 13C metabolic flux analysis.Solun aineenvaihdunta koostuu verkostosta biokemiallisia reaktioita, jotka muuttavat pieniä molekyylejä, metaboliitteja toisiksi. Aineenvaihdunta tuottaa elämälle välttämättömiä yhdisteitä, kuten aminohappoja, pienempiä metaboliitteja yhdistelemällä. Lisäksi aineenvaihdunta tuottaa solulle energiaa metaboliitteja pilkkomalla. Solut reagoivat ympäristön ja genotyyppien muutoksiin säätelemällä aineenvaihduntaansa. Siten tieto aineenvaihdunnan reaktioiden nopeuksista on hyödyllistä mm. tutkittaessa organismin käyttäytymistä eri olosuhteissa tai sukulaisorganismien eroja vertailtaessa. Tietoa aineenvaihduntareaktioiden nopeuksista voidaan hyödyntää esim. muokattaessa mikrobeja tai kasveja tuottamaan tehokkaasti haluttuja lopputuotteita, kuten biopolttoainetta tai lääkeaineita. Informaatio aineenvaihduntareaktioiden nopeuksista voi auttaa myös ihmisen sairauksien ymmärtämisessä ja niiden hoidossa. Tässä tietojenkäsittelytieteen alaan kuuluvassa väitöskirjassa kehitetään laskennallisia menetelmiä aineenvaihduntareaktioiden nopeuksien päättelemiseksi. Väitöskirjan koeasetelmassa solulle syötetään hiilen 13C-isotoopein leimattua lähtöainetta. Isotooppileimattu lähtöaine leviää aineenvaihduntaverkostossa muihin metaboliitteihin aineenvaihduntareaktioiden nopeuksista riippuvalla tavalla. Metaboliittien leimausasteet voidaan mitata, mutta saatava mittaustieto on epätäydellistä. Väitöskirjassa esitetään laskennallisia menetelmiä, jotka pyrkivät epätäydellisen leimausmittausdatan avulla arvioimaan aineenvaihduntareaktioiden nopeudet mahdollisimman tarkasti. Menetelmiä on mahdollista soveltaa kaikille aineenvaihduntaverkoille sekä lähtöaineiden isotooppileimauskuvioille. Menetelmät kykenevät myös yhtäaikaisesti hyödyntämään eri mittalaitteiden tuottaman, toisiaan täydentävän informaation metaboliittien leimausasteista. Näin väitöskirjan laskennalliset menetelmät yleistävät aiempia, vain tietyille aineenvaihduntaverkon rakenteille, lähtöaineiden leimauskuvioille tai mittaustekniikoille räätälöityjä menetelmiä. Väitöskirjassa esitetään myös algoritmeja reaktionopeuksien arvioimisen kannalta tärkeimpien mitattavien metaboliittien valitsemiseksi sekä massaspektrometrin tuottaman raakadatan muokkaamiseksi paremmin aineenvaihduntareaktioiden nopeuden arvioimiseen sopivaan muotoon. Väitöskirjan menetelmät perustuvat aineenvaihduntaverkon rakenteen kombinatoriseen vuoanalyysiin sekä mittausdatan kuvaamiseen ja manipuloimiseen lineaarialgebran tekniikoin. Esitetyt menetelmät ovat laskennallisesti tehokkaita ja sopivat siten suurtenkin aineenvaihduntaverkkojen analysointiin.
Subject: tietojenkäsittelytiede
Rights: This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.


Files in this item

Total number of downloads: Loading...

Files Size Format View
algorith.pdf 764.7Kb PDF View/Open

This item appears in the following Collection(s)

Show full item record