Gromov–Hausdorff -etäisyys

Näytä kaikki kuvailutiedot

Permalink

http://urn.fi/URN:NBN:fi-fe2017112251239
Julkaisun nimi: Gromov–Hausdorff -etäisyys
Tekijä: Salminen, Kalle
Muu tekijä: Helsingin yliopisto, Matemaattis-luonnontieteellinen tiedekunta, Matematiikan ja tilastotieteen laitos
Opinnäytteen taso: pro gradu -tutkielmat
Tiivistelmä: Tässä työssä syvennytään metristen avaruuksien erilaisuuden vertailuun määrittelemällä niin sanottu Gromov–Hausdorff -etäisyys, eli metristen avaruuksien välinen etäisyyskuvaus, jonka osoitetaan toteuttavan metriikan ehdot jokaisessa joukossa metristen avaruuksien ekvivalenssiluokkia. Työssä todistetaan, että metristen avaruuksien välinen Gromov–Hausdorff -etäisyys on nolla, jos ja vain jos avaruudet ovat isometrisia. Työn päätuloksena todistetaan, että jonolla tasaisesti kompakteja metrisiä avaruuksia on osajono, joka suppenee kompaktien metristen avaruksien kokoelmassa Gromov–Hausdorff -metriikalla. Tutkielman edetessä todistetaan muita yleisiä, tutkielmassa hyödynnettäviä matemaattisia tuloksia. Näistä mainittakoon Heinen ja Borelin lause, jonka mukaan metrinen avaruus on kompakti, jos ja vain jos se on täysin rajoittunut ja täydellinen. Todistus pohjautuu metrisiin avaruuksiin pätevään jonokompaktiuden määritelmään. Lisäksi todistetaan, että jos f on tasaisesti jatkuva kuvaus metrisen avaruuden (X ,d_X) tiheältä osajoukolta A täydelliselle metriselle avaruudelle (Y, d_Y), niin on olemassa sellainen tasaisesti jatkuva kuvaus g : \overline{A} → Y, että g on kuvauksen f laajennus. Työn kannalta yksi merkittävimmistä välituloksista koskee metrisen täydellistämistä, jonka mukaan jokaisella metrisellä avaruudella (X, d) on olemassa sellainen täydellinen metrinen avaruus (Y, d^*) ja sellainen isometrinen kuvaus \varphi : X → Y, että \varphi(X) on tiheä avaruudessa Y.
URI: URN:NBN:fi-fe2017112251239
http://hdl.handle.net/10138/229193
Päiväys: 2017
Oppiaine: Mathematics
Matematiikka
Matematik


Tiedostot

Latausmäärä yhteensä: Ladataan...

Tiedosto(t) Koko Formaatti Näytä
Kalle Salminen GH etaisyys.pdf 419.5KB PDF Avaa tiedosto

Viite kuuluu kokoelmiin:

Näytä kaikki kuvailutiedot