How to Calibrate Historical Aerial Photographs: A Change Analysis of Naturally Dynamic Boreal Forest Landscapes

Show full item record



Permalink

http://hdl.handle.net/10138/298653

Citation

Kulha , N , Pasanen , L & Aakala , T 2018 , ' How to Calibrate Historical Aerial Photographs: A Change Analysis of Naturally Dynamic Boreal Forest Landscapes ' , Forests , vol. 9 , no. 10 , 631 . https://doi.org/10.3390/f9100631

Title: How to Calibrate Historical Aerial Photographs: A Change Analysis of Naturally Dynamic Boreal Forest Landscapes
Author: Kulha, Niko; Pasanen, Leena; Aakala, Tuomas
Contributor: University of Helsinki, Department of Forest Sciences
University of Helsinki, Department of Forest Sciences
Date: 2018-10
Language: eng
Number of pages: 19
Belongs to series: Forests
ISSN: 1999-4907
URI: http://hdl.handle.net/10138/298653
Abstract: Time series of repeat aerial photographs currently span decades in many regions. However, the lack of calibration data limits their use in forest change analysis. We propose an approach where we combine repeat aerial photography, tree-ring reconstructions, and Bayesian inference to study changes in forests. Using stereopairs of aerial photographs from five boreal forest landscapes, we visually interpreted canopy cover in contiguous 0.1-ha cells at three time points during 1959-2011. We used tree-ring measurements to produce calibration data for the interpretation, and to quantify the bias and error associated with the interpretation. Then, we discerned credible canopy cover changes from the interpretation error noise using Bayesian inference. We underestimated canopy cover using the historical low-quality photographs, and overestimated it using the recent high-quality photographs. Further, due to differences in tree species composition and canopy cover in the cells, the interpretation bias varied between the landscapes. In addition, the random interpretation error varied between and within the landscapes. Due to the varying bias and error, the magnitude of credibly detectable canopy cover change in the 0.1-ha cells depended on the studied time interval and landscape, ranging from -10 to -18 percentage points (decrease), and from +10 to +19 percentage points (increase). Hence, changes occurring at stand scales were detectable, but smaller scale changes could not be separated from the error noise. Besides the abrupt changes, also slow continuous canopy cover changes could be detected with the proposed approach. Given the wide availability of historical aerial photographs, the proposed approach can be applied for forest change analysis in biomes where tree-rings form, while accounting for the bias and error in aerial photo interpretation.
Subject: Bayesian inference
DISTURBANCE DYNAMICS
EASTERN QUEBEC
ENCROACHMENT
NORTHERN FENNOSCANDIA
PICEA-ABIES STANDS
SPRUCE
STRUCTURAL ATTRIBUTES
TREE
VARIABILITY
VEGETATION
aerial photography
canopy cover
dendrochronology
eastern Canada
forest dynamics
northern Fennoscandia
4112 Forestry
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
forests_09_10_00631_v2.pdf 3.354Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record