Effects of CDNF/MANF family of neurotrophic factors on alpha-synuclein

Show full item record

Permalink

http://urn.fi/URN:NBN:fi:hulib-201905021800
Title: Effects of CDNF/MANF family of neurotrophic factors on alpha-synuclein
Author: singh, abhishek
Contributor: University of Helsinki, Faculty of Biological and Environmental Sciences, Faculty of Biological and Environmental Sciences
Publisher: Helsingin yliopisto
Date: 2019
URI: http://urn.fi/URN:NBN:fi:hulib-201905021800
http://hdl.handle.net/10138/301477
Thesis level: master's thesis
Abstract: Neurotrophic factors (NTFs) play an important role in regulating the survival, differentiation and maturation of developing neurons. Based on strong pre-clinical evidences, some of NTFs have been suggested to be efficient therapeutic agents for treatment of Parkinson’s disease (PD). PD is a neurodegenerative disorder characterized by loss of dopamine (DA) neurons from nigrostriatal pathway resulting in motor symptoms of the disease. A hallmark of the disease is the presence of Lewy bodies in the brain and they comprise majorly of aggregated alpha-synuclein (aSyn) protein. MANF, an unconventional NTF, was discovered over a decade ago and differs from traditional NTFs. Removal of MANF has been shown to trigger unfolded protein response in cells. Evidences indicate that increased endogenous level of aSyn may have a role in enhancing the process of aggregation of aSyn into Lewy body. Determining the initiation event of aSyn aggregation is an important step in Lewy body pathology and it is still under investigation. In the first part of this study, I aimed to elucidate if MANF knockout can trigger any change in endogenous level of aSyn. Transmission of Lewy bodies from cell to cell has been well studied by researchers and is suggested to spread across brain in a prion like fashion. CDNF has been neuroprotective and restorative for tyrosine hydroxylase (TH)-positive neurons in a toxin-based models of PD. However, presently exists no study which has evaluated the effects of CDNF on propagation of aSyn aggregates in vivo. In the second part of this study, I aimed at evaluating effects of long-term intrastriatal infusion of CDNF at two concentrations (1.5 μg/24h or 3 μg/24h) on propagation of endogenous phosphorylated aSyn inclusions in vivo. CRISPR/Cas9-mediated MANF knockout in SH-SY5Y cells did not yield any significant changes in the endogenous level of aSyn. Additionally, brain samples derived from MANF knockout mice yielded similar non-significant difference in level of aSyn compared to wild-type mice. MANF knockout primary DA neurons when inoculated either with only pre-formed fibrils (PFFs) or with a combination of PFFs and aSyn overexpression, showed no significant difference in the number of Lewy body like aggregates, suggesting no change in endogenous aSyn levels. Rats were injected with PFFs and then chronically infused with CDNF, 1 month and 2 months after PFFs at 2 different concentrations (1.5 μg/24h or 3 μg/24h). Immunohistochemical analysis of substantia nigra pars compacta (SNpc) derived from rats showed similar numbers of endogenous phosphorylated aSyn inclusions in animals treated chronically with either CDNF or PBS. In summary, only MANF knockout from cells or animals has no direct effect on endogenous level of aSyn. But external stressors may perhaps trigger upregulation of aSyn in MANF knockout cells. Furthermore, chronic infusion of CDNF either 1 month or 2 months after PFF injection doesn’t reduce the total number of phosphorylated aSyn inclusions in SNpc compared to control. Nevertheless, we need more data to corroborate this evidence.
Subject: Neurotrophic Factors
CDNF
MANF
alpha-synuclein
Parkinson’s Disease
Dopamine neurons.
Discipline: biokemia
Biochemistry
biokemi


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show full item record