MONOMIAL BASIS IN KORENBLUM TYPE SPACES OF ANALYTIC FUNCTIONS

Show simple item record

dc.contributor University of Helsinki, Department of Mathematics and Statistics en
dc.contributor.author Bonet, José
dc.contributor.author Lusky, Wolfgang
dc.contributor.author Taskinen, Jari
dc.date.accessioned 2019-12-16T12:19:03Z
dc.date.available 2019-12-16T12:19:03Z
dc.date.issued 2018-12
dc.identifier.citation Bonet , J , Lusky , W & Taskinen , J 2018 , ' MONOMIAL BASIS IN KORENBLUM TYPE SPACES OF ANALYTIC FUNCTIONS ' , Proceedings of the American Mathematical Society , vol. 146 , no. 12 , pp. 5269-5278 . https://doi.org/10.1090/proc/14195 en
dc.identifier.issn 0002-9939
dc.identifier.other PURE: 118088275
dc.identifier.other PURE UUID: 9a0cc1bc-e015-4f59-b0eb-19fb50c9a115
dc.identifier.other WOS: 000447836000025
dc.identifier.other Scopus: 85061611475
dc.identifier.uri http://hdl.handle.net/10138/308357
dc.description.abstract It is shown that the monomials A = (z(n))(n=0)(infinity) are a Schauder basis of the Frechet spaces A(+)(-gamma), gamma >= 0, that consists of all the analytic functions f on the unit disc such that (1 - vertical bar z vertical bar)(mu)vertical bar f(z)vertical bar is bounded for all mu > gamma. Lusky proved that A is not a Schauder basis for the closure of the polynomials in weighted Banach spaces of analytic functions of type H-infinity. A sequence space representation of the Frechet space A(+)(-gamma) is presented. The case of (LB)-spaces A(-)(-gamma), gamma > 0, that are defined as unions of weighted Banach spaces is also studied. en
dc.format.extent 10
dc.language.iso eng
dc.relation.ispartof Proceedings of the American Mathematical Society
dc.rights en
dc.subject 111 Mathematics en
dc.title MONOMIAL BASIS IN KORENBLUM TYPE SPACES OF ANALYTIC FUNCTIONS en
dc.type Article
dc.description.version Peer reviewed
dc.identifier.doi https://doi.org/10.1090/proc/14195
dc.type.uri info:eu-repo/semantics/other
dc.type.uri info:eu-repo/semantics/acceptedVersion
dc.contributor.pbl

Files in this item

Total number of downloads: Loading...

Files Size Format View
arXiv_1712.00280.pdf 146.4Kb PDF View/Open

This item appears in the following Collection(s)

Show simple item record