Examining the role of the anterior insular cortex and its efferent connections in regulating voluntary ethanol consumption

Show full item record



Permalink

http://urn.fi/URN:NBN:fi:hulib-202001291179
Title: Examining the role of the anterior insular cortex and its efferent connections in regulating voluntary ethanol consumption
Author: Järvi, Vilja
Contributor: University of Helsinki, Faculty of Biological and Environmental Sciences
Publisher: Helsingin yliopisto
Date: 2019
Language: eng
URI: http://urn.fi/URN:NBN:fi:hulib-202001291179
http://hdl.handle.net/10138/310624
Thesis level: master's thesis
Degree program: Neurotieteiden maisteriohjelma
Master's Programme in Neuroscience
Magisterprogrammet i neurovetenskap
Specialisation: Neurotiede
Neuroscience
Neurovetenskap
Abstract: The insular cortex has been implicated in the neurocircuitry underlying alcohol addiction. The role of the insular cortex and its projections in regulating ethanol intake in AA (Alko-Alcohol) rats has been studied using chemogenetic tools. Chemogenetic activation of the anterior agranular insula (aAI) in AA rats through excitatory DREADDs expressed in the aAI has been found to decrease ethanol consumption. The aAI projects to the central nucleus of the amygdala (CeA), another brain region involved in the development of addiction, particularly in the withdrawal/negative affect stage. In the current study, we sought to further investigate the role of the aAI and the CeA in regulating voluntary ethanol consumption in AA rats. First, we characterized the efferent projections of the aAI in AA rats by chemogenetically activating the aAI with DREADDs and then measuring c-Fos expression in various regions of interest throughout the brain. Next, we investigated the role of the aAI --> CeA projection in ethanol intake by chemogenetically activating or inhibiting the aAI --> CeA projection using the dual viral Cre-dependent DREADD approach. We examined the effects of this manipulation on voluntary ethanol consumption in AA rats in a two-bottle choice paradigm. Finally, we examined the roles of CeA D1Rs (dopamine receptors) and 5-HT2ARs (serotonin receptors) in regulating ethanol intake by examining the effects of pharmacological agonism or antagonism of these receptors on voluntary ethanol consumption in AA rats. Our results from the first experiment reveal significant activation of brain regions including the posterior agranular insula, the mediodorsal nucleus of the thalamus, and the posterior piriform cortex following chemogenetic activation of the aAI. The projections from the aAI to these regions are potentially important in the aAI circuitry in AA rats and are therefore of interest in future studies on the role of aAI circuitry in ethanol intake. In the second experiment, we found no significant effects of aAI --> CeA projection activation or inhibition on ethanol consumption in AA rats, indicating that this projection may not be a key component in regulating ethanol intake in these rats. Finally, we found no significant effects of pharmacological D1R antagonism, 5-HT2AR antagonism, or 5-HT2AR agonism in the CeA on ethanol intake in AA rats, although there was a non-significant trend towards a dose-dependent decrease in ethanol consumption with increasing dose of the D1R antagonist. Our results reveal new neural projections that should be investigated in future research on the role of the aAI in regulating ethanol intake. Studies on the neurobiology underlying alcoholism may reveal new pharmacological or anatomical targets for treatments of alcoholism in humans.
Subject: insular cortex
central nucleus of the amygdala
DREADDs
alcohol consumption
addiction


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show full item record