Landscape scale mapping of tundra vegetation structure at ultra-high resolution using UAVs and computer vision

Show full item record



Permalink

http://urn.fi/URN:NBN:fi:hulib-202006233415
Title: Landscape scale mapping of tundra vegetation structure at ultra-high resolution using UAVs and computer vision
Author: Määttänen, Aino-Maija
Contributor: University of Helsinki, Faculty of Science
Publisher: Helsingin yliopisto
Date: 2020
URI: http://urn.fi/URN:NBN:fi:hulib-202006233415
http://hdl.handle.net/10138/316958
Thesis level: master's thesis
Abstract: Ilmastomuutoksella on voimakkain vaikutus suurten leveysasteiden ekosysteemeissä, jotka ovat sopeutuneet viileään ilmastoon. Jotta suurella mittakaavalla havaittuja muutoksia tundrakasvillisuudessa ja niiden takaisinkytkentävaikutuksia ilmastoon voidaan ymmärtää ja ennustaa luotettavammin, on syytä tarkastella mitä tapahtuu pienellä mittakaavalla; jopa yksittäisissä kasveissa. Lähivuosikymmenten aikana tapahtunut teknologinen kehitys on mahdollistanut kustannustehokkaiden, kevyiden ja pienikokoisten miehittämättömien ilma-alusten (UAV) yleistymisen. Erittäin korkearesoluutioisten aineistojen (pikselikoko <10cm) lisääntyessä ja tullessa yhä helpommin saataville, ympäristön tarkastelussa käytetyt kaukokartoitusmenetelmät altistuvat paradigmanmuutokselle, kun konenäköön ja -oppimiseen perustuvat algoritmit ja analyysit yleistyvät. Menetelmien käyttöönotto on houkuttelevaa, koska ne mahdollistavat joustavan ja pitkälle automatisoidun aineistonkeruun ja erittäin tarkkojen kaukokartoitustuotteiden tuottamisen vaikeasti tavoitettavilta alueilta, kuten tundralla. Luotettavien tulosten saaminen vaatii kuitenkin huolellista suunnittelua sekä prosessointialgoritmien ja -parametrien pitkäjänteistä testaamista. Tässä tutkimuksessa tarkasteltiin, kuinka tarkasti tavallisella digitaalikameralla kerätyistä ilmakuvista johdetuilla muuttujilla voidaan kartoittaa kasvillisuuden rakennetta maisemamittakaavalla. Kilpisjärvellä Pohjois-Fennoskandiassa kerättiin dronella kolmensadan hehtaarin kokoiselta alueelta yhteensä noin 10 000 ilmakuvasta koostuva aineisto. Lisäksi alueella määritettiin 1183 pisteestä dominantti putkilokasvillisuus, sekä kasvillisuuden korkeus. Ilmakuvat prosessoitiin tiheiksi kolmiulotteisiksi pistepilviksi konenäköön ja fotogrammetriaan perustuvalla SfM (Structure from Motion) menetelmällä. Pistepilvien pohjalta interpoloitiin maastomalli sekä kasvillisuuden korkeusmalli. Lisäksi tuotettiin koko alueen kattava ilmakuvamosaiikki. Näiden aineistojen pohjalta laskettiin muuttujia, joita käytettiin yhdessä maastoreferenssiaineiston kanssa kasvillisuuden objektipohjaisessa analyysissä (GEOBIA, Geographical Object-Based Image Analysis). Suodatetut maanpintapisteet vastasivat luotettavasti todellista maanpinnan korkeutta koko alueella ja tuotetut korkeusmallit korreloivat voimakkaasti maastoreferenssiaineiston kanssa. Maastomallin virhe oli suurin alueilla, joilla oli korkeaa kasvillisuutta. Valaistusolosuhteissa ja kasvillisuudessa tapahtuneet muutokset ilmakuvien keruun aikana aiheuttivat haasteita objektipohjaisen analyysin molemmissa vaiheissa: segmentoinnissa ja luokittelussa. mutta kokonaistarkkuus parani 0,27:stä 0,,54:n kun luokitteluun lisättiin topografiaa, kasvillisuuden korkeutta ja tekstuuria kuvaavia muuttujia ja kohdeluokkien lukumäärää vähennettiin. Konenäköön ja –oppimiseen perustuvat menetelmät pystyvät tuottamaan tärkeää tietoa tundran kasvillisuuden rakenteesta, erityisesti kasvillisuuden korkeudesta, maisemassa. Lisää tutkimusta kuitenkin tarvitaan parhaiden algoritmien ja parametrien määrittämiseksi tundraympäristössä, jossa ympäristöolosuhteet muuttuvat nopeasti ja kasvillisuus on heterogeenistä ja sekoittunutta, mikä aiheuttaa eroja ilmakuvien välillä ja lisää vaikeuksia analyyseissä.Climate change has the strongest impact on high-latitude ecosystems that are adapted to cool climates. In order to better understand and predict the changes in tundra vegetation observed on large scales as well as their feedbacks onto climate, it is necessary to look at what is happening at finer scales; even in individual plants. Technological developments over the past few decades have enabled the spread of cost-effective, light and small unmanned aerial vehicles (UAVs). As very high-resolution data (pixel size <10cm) becomes more and more available, the remote sensing methods used in environmental analysis become subject to a paradigm shift as algorithms and analyzes based on machine vision and learning turn out to be more common. Harnessing new methods is attractive because they allow flexible and highly automated data collection and the production of highly accurate remote sensing products from hard-to-reach areas such as the tundra. However, obtaining reliable results requires careful planning and testing of processing algorithms and parameters. This study looked at how accurately variables derived from aerial images collected with an off-the-shelf digital camera can map the vegetation structure on a landscape scale. In Kilpisjärvi, northern Fennoscandia, a total of ~ 10,000 aerial photographs were collected by drone covering an area of three hundred hectares. In addition, dominant vascular plants were identified from 1183 points in the area, as well as vegetation height. Aerial images were processed into dense three-dimensional point clouds by using SfM (Structure from Motion) method, which is based on computer vision and digital photogrammetry. From the point clouds terrain models and vegetation height models were interpolated. In addition, image mosaic covering the entire area was produced. Based on these data, predictive variables were calculated, which were used together with the terrain reference data in Geographical Object-Based Image Analysis (GEOBIA). The filtered ground points corresponded to observations throughout the region, and the produced elevation models strongly correlated with the ground reference data. The terrain model error was greatest in areas with tall vegetation. Changes in lighting conditions and vegetation during aerial image surveys posed challenges in both phases of object-based analysis: segmentation and classification. but overall accuracy improved from 0.27 to 0.54 when topography, vegetation height and texture variables were added to the classifier and the number of target classes was reduced. Methods based on machine vision and learning can produce important information about vegetation structure, vegetation height, in a landscape. However, more research is needed to determine the best algorithms and parameters in a tundra environment where environmental conditions change rapidly and vegetation is heterogeneous and mixed, causing differences between aerial images and difficulties in analyses.
Subject: Miehittämättömät lennokit
Konenäkö
Objektipohjainen kuva-analyysi
Discipline: Maantiede


Files in this item

Total number of downloads: Loading...

Files Size Format View
Maattanen_AinoMaija_progradu_2020.pdf 4.166Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record