Magnetic field fluctuation properties of coronal mass ejection-driven sheath regions in the near-Earth solar wind

Show full item record



Kilpua , E K J , Fontaine , D , Good , S W , Ala-Lahti , M , Osmane , A , Palmerio , E , Yordanova , E , Moissard , C , Hadid , L Z & Janvier , M 2020 , ' Magnetic field fluctuation properties of coronal mass ejection-driven sheath regions in the near-Earth solar wind ' , Annales Geophysicae , vol. 38 , no. 5 , pp. 999-1017 .

Title: Magnetic field fluctuation properties of coronal mass ejection-driven sheath regions in the near-Earth solar wind
Author: Kilpua, Emilia K. J.; Fontaine, Dominique; Good, Simon W.; Ala-Lahti, Matti; Osmane, Adnane; Palmerio, Erika; Yordanova, Emiliya; Moissard, Clement; Hadid, Lina Z.; Janvier, Miho
Contributor organization: Department of Physics
Particle Physics and Astrophysics
Space Physics Research Group
Date: 2020-09-16
Language: eng
Number of pages: 19
Belongs to series: Annales Geophysicae
ISSN: 0992-7689
Abstract: In this work, we investigate magnetic field fluctuations in three coronal mass ejection (CME)-driven sheath regions at 1 AU, with their speeds ranging from slow to fast. The data set we use consists primarily of high-resolution (0.092 s) magnetic field measurements from the Wind spacecraft. We analyse magnetic field fluctuation amplitudes, compressibility, and spectral properties of fluctuations. We also analyse intermittency using various approaches; we apply the partial variance of increments (PVIs) method, investigate probability distribution functions of fluctuations, including their skewness and kurtosis, and perform a structure function analysis. Our analysis is conducted separately for three different subregions within the sheath and one in the solar wind ahead of it, each 1 h in duration. We find that, for all cases, the transition from the solar wind ahead to the sheath generates new fluctuations, and the intermittency and compressibility increase, while the region closest to the ejecta leading edge resembled the solar wind ahead. The spectral indices exhibit large variability in different parts of the sheath but are typically steeper than Kolmogorov's in the inertial range. The structure function analysis produced generally the best fit with the extended p model, suggesting that turbulence is not fully developed in CME sheaths near Earth's orbit. Both Kraichnan-Iroshinikov and Kolmogorov's forms yielded high intermittency but different spectral slopes, thus questioning how well these models can describe turbulence in sheaths. At the smallest timescales investigated, the spectral indices indicate shallower than expected slopes in the dissipation range (between 2 and 2 :5), suggesting that, in CME-driven sheaths at 1 AU, the energy cascade from larger to smaller scales could still be ongoing through the ion scale. Many turbulent properties of sheaths (e.g. spectral indices and compressibility) resemble those of the slow wind rather than the fast. They are also partly similar to properties reported in the terrestrial magnetosheath, in particular regarding their intermittency, compressibility, and absence of Kolmogorov's type turbulence. Our study also reveals that turbulent properties can vary considerably within the sheath. This was particularly the case for the fast sheath behind the strong and quasi-parallel shock, including a small, coherent structure embedded close to its midpoint. Our results support the view of the complex formation of the sheath and different physical mechanisms playing a role in generating fluctuations in them.
115 Astronomy, Space science
Peer reviewed: Yes
Rights: cc_by
Usage restriction: openAccess
Self-archived version: publishedVersion

Files in this item

Total number of downloads: Loading...

Files Size Format View
angeo_38_999_2020.pdf 4.476Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record