Cauchy-Eulerin yhtälö

Visa fullständig post



Permalänk

http://urn.fi/URN:NBN:fi:hulib-202012094876
Titel: Cauchy-Eulerin yhtälö
Författare: Rautaoja, Jukka
Medarbetare: Helsingin yliopisto, Matemaattis-luonnontieteellinen tiedekunta
University of Helsinki, Faculty of Science
Helsingfors universitet, Matematisk-naturvetenskapliga fakulteten
Utgivare: Helsingin yliopisto
Datum: 2020
Språk: fin
Permanenta länken (URI): http://urn.fi/URN:NBN:fi:hulib-202012094876
http://hdl.handle.net/10138/322619
Nivå: pro gradu-avhandlingar
Utbildningsprogram: Matematiikan, fysiikan ja kemian opettajan maisteriohjelma
Master's Programme for Teachers of Mathematics, Physics and Chemistry
Magisterprogrammet för ämneslärare i matematik, fysik och kemi
Studieinriktning: Matematiikan opettaja
Teacher in Mathematics
Lärare i matematik
Ämne: none
Abstrakt: Tässä tutkielmassa esitetään Cauchy-Eulerin yhtälö, sen ratkaisu ja kaksi sovellusta sen monista sovelluksista. Cauchy-Eulerin yhtälö on homogeeninen lineaarinen differentiaaliyhtälö, jolla on muuttujakertoimet. Ensimmäisessä luvussa perustellaan aiheen valinta sekä kerrotaan perustietoja lineaarisista differentiaaliyhtälöistä ja Cauchy-Eulerin yhtälön historiasta. Toisessa luvussa esitetään Cauchy-Eulerin yhtälö ja osa yhtälön ratkaisun todistukseen tarvittavista aputuloksista. Kolmannessa luvussa todistetaan sekä toisen kertaluvun että n:nnen kertaluvun ratkaisu yhtälölle. Molempia todistuksia ennen esitetään todistuksien kannalta merkittävimmät aputulokset. Tärkeimpänä esimerkkinä mainittakoon Laplace-muunnos. Toisen kertaluvun ratkaisu todistetaan, koska se on helpompi ymmärtää, sitä tarvitaan molempiin sovelluksiin, ja koska se auttaa ymmärtämään n:nnen kertaluvun ratkaisua. Neljännessä luvussa yhtälölle esitetään kaksi sovellusta: Laplacen yhtälön napakoordinaattiesityksen ratkaisu ja Black-Scholesin yhtälön ratkaisu. Laplacen yhtälöä hyödynnetään kuvaamaan fysiikassa ajasta riippumattomissa tilanteissa tapahtuvia muutoksia esimerkiksi sähkömagneettisissa potentiaaleissa, tasaisissa lämpötiloissa ja hydrodynamiikassa. Yhtälön napakoordinaattiesitystä käytetään sellaisissa tilanteissa, joissa ympäristö on ympyrän rajaama kiekko. Black-Scholesin yhtälöä käytetään finanssimatematiikassa kuvaamaan osakeoptioiden arvonmuutosta. Siten molempia yhtälöitä käytetään paljon, ja ne ovat CauchyEulerin yhtälön tärkeitä sovelluksia. Viidennessä luvussa esitellään tutkielman tulokset. Tuloksina esitetään Cauchy-Eulerin yhtälön n:nnen kertaluvun ratkaisu, Laplacen yhtälön napakoordinaattiesityksen ratkaisu ja Black-Scholesin yhtälön ratkaisu. Sekä Laplacen yhtälön napakoordinaattiesityksen että Black-Scholesin yhtälön ratkaisu saadaan muuttujien separoinnin avulla, jolloin saadaan kaksi eri yhtälöä, joista toinen on toisen kertaluvun Cauchy-Eulerin yhtälö, jonka ratkaisu aiemmin todistettiin.


Filer under denna titel

Totalt antal nerladdningar: Laddar...

Filer Storlek Format Granska
Rautaoja_Jukka_Maisterintutkielma_2020.pdf 727.7Kb PDF Granska/Öppna

Detta dokument registreras i samling:

Visa fullständig post